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Abstract: Smile and Learn is an Ed-Tech company that runs a smart library with more that
100 applications, games and interactive stories, aimed at children aged two to 10 and their families.
The platform gathers thousands of data points from the interaction with the system to subsequently
offer reports and recommendations. Given the complexity of navigating all the content, the library
implements a recommender system. The purpose of this paper is to evaluate two aspects of such system
focused on children: the influence of the order of recommendations on user exploratory behavior, and
the impact of the choice of the recommendation algorithm on engagement. The assessment, based on
data collected between 15 October 2018 and 1 December 2018, required the analysis of the number of
clicks performed on the recommendations depending on their ordering, and an A/B/C testing where
two standard recommendation algorithms were compared with a random recommendation that served
as baseline. The results suggest a direct connection between the order of the recommendation and the
interest raised, and the superiority of recommendations based on popularity against other alternatives.
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1. Introduction and Background

Smile and Learn’s smart library is an application in the educational technology (Ed-Tech) space
which is aimed at children. As of December 2018, the platform features a total of 107 games, which are
grouped according to Gardner’s theory of multiple intelligences [1].

Contents, which include games, stories and videos, are designed to be used in different devices
and rely on a common framework. The application registers thousands of data points as a result of user
interaction. Based of these, the system can then generate personalized reports and recommendations
relevant to users, parents and educators.

The initial interaction with the application requires choosing among a large set of alternatives
that are organized according to broad categories. These can be identified in Figure 1. The different
games are grouped in so-called “worlds”, with each world corresponding to an intelligence: science
(naturalistic), spatial (visual-spatial), multiplayer (group-interpersonal), logic (logical-mathematical),
literacy (verbal-linguistic), emotions (emotional-intrapersonal), and arts (artistic). There is one
additional world named after the user, which consists on a virtual village where the child interacts
with characters to improve her wealth. Here, the dynamics require abilities from all intelligences.

Once a world is chosen, apps are displayed grouped in categories, with one category per line.
The children can use the vertical scroll (swipe pattern) to navigate through categories, and the horizontal
scroll to navigate between apps within a category. An example screenshot from the Science world is
shown in Figure 2.
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Figure 1. Screenshot of the main menu of Smile and Learn, showing the different worlds available in
the application, each world corresponding to an intelligence.

Figure 2. Screenshot of a world menu (in this case, the science world) in Smile and Learn, where apps
belonging to the same world (or intelligence) are listed grouped by category.

Due to the increase in the number of games, which is still growing month after month, navigation
through the application is becoming more cumbersome, meaning that it can take more time and
effort to search for a certain game within the application. In order to alleviate this issue, we have
introduced a navigation ribbon at the bottom of the main menu which allows a fast access to some
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chosen applications. As it can be seen at the bottom of Figure 1, this navigation pattern consists of two
tabs: “recommended” and “most played”. The latter displays a list of the five top-played apps for the
child using the app, turning into a useful mechanism for providing a fast access to those frequent apps.

Regarding the former tab, it displays a list of up to seven apps recommended to children based
on their usage behavior. The design motif behind this recommender system is not only to enable fast
access to those apps which might be of interest for a child, but also to enhance exploration: letting
children discover games which they might not reach if they had to find them by navigating through
the app.

The range of strategies developed to assign users to items is broad. Some well established
alternatives would be the recommendation of the most popular items [2]; collaborative filtering [3];
content-based approaches [4] or usage context-based similarity [5]. In addition to the basic possibilities,
there is room for hybrid strategies that combine the output of several canonical strategies to generate
their output.

Currently, two different strategies are implemented in Smile and Learn:

• Popular: this approach recommends the most popular applications among other users.
The rationale behind this approach is that it is likely that some games are specially enjoyable
for most children, because of their quality, design or playability, and therefore, they are safe to
recommend, as there is a high chance that other children will find them engaging.

• Collaborative filtering: in this approach, the historical records of usage of all children are used in
order to generate recommendations. The idea behind collaborative filtering is to find children
similar to the one whose recommendations are being generated, so that these recommendations
consist of games that have been played by these similar children, but not the child being targeted.

Both these strategies are based on implicit feedback, since explicit feedback given by children can
turn out to be unreliable or difficult to interpret. Out of the different implicit parameters that could
be taken into account [6], we have used the number of games played by child and app, as well as the
duration of such games.

The specifics of the implementation of these algorithms are discussed in relation to a prior version
of the system by Ruiz–Iniesta et al. [7].

In the navigation bar displayed at the bottom of the main menu, recommendations from different
recommenders could be combined. Also, it is worth noting that while there is a maximum of seven
recommended games, in some screen sizes or formats it can occur that less than seven are displayed
and then the list becomes scrollable. Based on our experience, most screens are able to show five
recommendations, with the last two being hidden and accessible only upon scroll (through a swipe
pattern or by pressing the side arrows, an example can be seen in Figure 1).

In this paper, we want to design a sound experiment in order to determine which recommender
strategy is working best, i.e., which one is translating into a higher engagement of children with the
recommended games. We are also interested in getting insights about the interaction patterns taken
by children when dealing with the recommendations. With this information, we could improve the
system and enhance user experience.

This work contributes valuable new evidence on the reaction of children to two well-established
methods of generating recommendations, and assessing the importance of the order of presentation.
Information like this, specifically focused on children in the educational space, is both scarce and very
hard to obtain. Given that the related literature on children is very limited, we consider that the results
might be very relevant to developers of K-12 Ed-Tech applications.

The rest of the document is structured as follows: in Section 2 we present related works on
recommender systems and interaction patterns within the context of an Ed-Tech application. That will
be followed by Section 3, where we describe the experimental methodology. The results are then
reported in Section 4. Finally, conclusive remarks are presented in Section 5 along with some suggested
future lines of work.
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2. Related Work

Applications of technology to educational processes (a field known under the term “Ed-Tech”) are
not particularly new. However, it has only been in the last decade that the availability and ubiquity of
technology devices (such as smart-phones or tablets) has reached a point in which these applications
can be deployed in large-scale settings.

Additionally, the implementation of data science or machine learning techniques are allowing
to extend Ed-Tech far beyond the classical definition of using technology to deliver contents to
an audience (e.g., slides, interactive videos, etc). Bhattacharya and Nath [8] discuss how novel
development allow tracking the progress of individual users, detecting strengths and weaknesses, and
providing a customized experience to enhance the learning process, among other possibilities.

Many examples of such novel applications can be found in the literature in recent years.
For example, Charleer et al. [9] presented a learning analytics dashboard aimed at improving the
communication in advising sessions, helping to increase students’ motivation. Lange et al. [10] also
made related contributions in the space of virtual training centers and Käser et al. [11] have proposed
an approach to student modelling to represent and predict students’ knowledge and skills. Some
authors have been working on the prediction of academic performance [12] and others, like Ueno
and Miyazawa [13] introduced a system designed to scaffold learning in specific domains such as
programming.

An important subset of Ed-Tech applications are those aiming at providing a customized
experience by suggesting users a certain topic or learning process. This problem can generally be
regarded as a recommendation problem. Recommender systems, the instruments used to tackle the
problem, have a three-decade long history and have been the subject of a sizable amount of research.
These efforts on recommender systems in general have been surveyed by Bobadilla et al. [14] and,
more recently, by Lu et al. [15]. If we focus specifically in education, the literature reviews authored by
Drachsler et al. [16] and Erdt et al. [17] are specially insightful and comprehensive.

The design and implementation of recommender systems in the education space poses a number
of difficulties, as discussed by Tarus and Niu [18], and so does their evaluation [19]. Among these
challenges, we can mention the selection of the right algorithm (or set of algorithms) and the design
of the interface. Even though the first aspect is not settled yet, there have been valuable efforts to
contribute evidence in this regard like a recent work by Kopeinik et al. [20].

These authors cite among the best-established and computationally inexpensive tag and
resource recommendation strategies for technology-enhanced learning: base level learning equation
with associative component [21]; collaborative filtering [3]; content-based [4]; most popular [2];
SUSTAIN [22] or usage context-based similarity [5].

In this regard, studies like [23] offer systematic reviews of different algorithmic alternatives,
while [24,25] provide specific lists of advantages and disadvantages of the main recommendation
techniques for technology-enhanced learning. These are briefly summarized in Table 1, which adapts a
very similar one included in the last two mentioned studies, adding popularity-based recommendations
to the set of techniques.

Besides the alternatives displayed in the table, an additional category of recommender systems
are hybrid approaches. In this case, two or more of these techniques are fused in order to alleviate
some of the disadvantages of a particular recommender. This possibility was discussed in detail in a
survey on Next Generation of Recommender Systems by Adomavicius and Tuzhilin [26] and, later by
Aamir and Bhusry [27].
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Table 1. Characteristics of main recommendation techniques suitable for technology-enhanced learning.
CF: collaborative filtering. Adapted from Drachsler et al. [24] and Manouselis et al. [25].

Technique Description Advantages Disadvantages

Popularity Recommends items
that are popular among
all users.

No new user problem.
No content analysis.
Domain-independent.

Only popular taste.
Insensitive to changes
of preferences.

User-based CF Users who rated the
same item similarly
probably have the same
taste. Based on this
assumption, this
technique recommends
the unseen items
already rated by
similar users.

No content analysis.
Domain-independent.
Quality improves.
Bottom-up approach.
Serendipity.

New user problem.
New item problem.
Popular taste.
Scalability.
Sparsity.
Cold start problem.

Item-based CF Focus on items,
assuming that the
items rated similarly
are probably similar. It
recommends items
with the highest
correlation (based on
ratings for the items).

No content analysis.
Domain-independent.
Quality improves.
Bottom-up approach.
Serendipity.

New item problem.
Popular taste.
Sparsity.
Cold start problem.

Stereotypes or
demographics CF

Users with similar
attributes are matched,
then it recommends
items that are preferred
by similar users (based
on user data instead of
ratings).

No cold start problem.
Domain-independent.
Serendipity.

Obtaining information.
Insufficient
information.
Only popular taste.
Obtaining metadata
information.
Maintenance ontology.

Case-based
reasoning

Assumes that if a user
likes a certain item, she
or he will probably also
like similar items.
Recommends new but
similar items.

No content analysis.
Domain-independent.
Quality improves

New user problem.
Overspecialisation.
Sparsity.
Cold start problem.

Attribute-based
techniques

Recommends items
based on the matching
of their attributes to the
user profile. Attributes
could be weighted for
their importance to the
user.

No cold start problem.
No new user/new item
problem.
Sensitive to changes of
preferences.
Can include
non-item-related
features.
Can map from user
needs to items.

Does not learn.
Only works with
categories.
Ontology modelling
and maintenance is
required.
Overspecialisation.

Among the works that could illustrate this possibility, we could mention one by Rodriguez et al. [28],
who built a hybrid recommender combining content-based, collaborative filtering and knowledge-based
approaches to develop a recommender system that suggests learning objects extracted from a repository
in an educational setting. Another example can be found in the work by Salehi and Kmalabadi [29],
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which combines content-based and collaborative filtering recommenders, in this case to suggest
appropriate learning materials. Bourkoukou and El Bachari [30] introduce a recommender system for
web-based education that adapts its recommendations of learning objects to the learning styles of
users. In this case, the hybrid recommender system is based on collaborative filtering and association
rule mining. Finally, Nafea et al. [31] recently introduced the ULEARN system, that also selects and
sequences learning objects that match the learning styles of the users. To this end, they rely on a hybrid
recommendation approach that includes collaborative filtering and content filtering.

The second aspect is specially complicated when it involves children, as their cognitive
development makes their interests and capabilities change dramatically over a period of relatively
few years [32], and the fact that intuitions by adult designers might not be correct [33]. Even though
there have been advances in this aspect, like the contribution of Wu et al. [34] on interface design for
children, there is still a significant amount of work to be done.

If we focus on recommendation for children, even though we could mention some relevant works
like that by Pera and Ng [35] the volume is still very scarce. To illustrate this, it is worth mentioning
that the first specialized workshop, KidRec, took place in 2017 [36]. As Deldjoo et al. [37] explain,
recommender systems have been traditionally focused on adults and, when it comes to children, the
field is still in its infancy.

3. Materials and Methods

In this study we intend to compare the performance of two popular recommender strategies
to suggest potential games of interest to children. As it was described earlier, these are providing
recommendations based on apps commonly played by most children, and collaborative filtering,
whose recommendations are based on games played by similar users, i.e., those who have a similar
record of played games.

In order to get a better understanding of which strategy was working best, we tested the
performance of both recommender strategies and, additionally, we compared them against a baseline
recommender which made random recommendations. Given that the aim of the work in this regard
was descriptive, not prescriptive, an A/B/C testing, a well-established evaluation approach in this
context, was performed. This methodology was recently used by Kalloori et al. [38] to evaluate their
recommender algorithm in Taobao display advertising platform in production, and so was used by
Hidasi and Karatzoglou [39] to evaluate theirs on a large scale online test on an online video portal.

During the whole period in which the experiment was running, each child was assigned one
group (either A, B or C) randomly following a uniform distribution. When running the recommender,
children received recommendations coming from a different strategy based on their group:

A. Popular strategy was used.
B. The collaborative filtering strategy was used.
C. The random strategy was used.

Instead of generating all the recommendations (a maximum of seven) from the resulting strategy,
only the first three recommendations were computed using the recommender corresponding to the
child’s group, and the remaining recommendations were chosen randomly.

In all cases, some filters were applied in order to opt out of some recommendations which might
not be suitable:

• Some games were blacklisted, meaning that they might not have enough quality as to be
recommended (e.g., they were in a beta stage).

• Games were filtered out if they were not available in the version of the app owned by the user
(e.g., a game was introduced in version 4 and the child is using version 3).

• Games were filtered out if they were not designed for the range of age of the target child (e.g., a
game is aimed at children 4–6 years old, but the child is 3 years old).
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It is worth mentioning that these filters were applied in all cases, even in the random
recommendation strategy.

3.1. Algorithms

As stated earlier, three different recommendation strategies were followed. One of these strategies
was entirely random, and was used as a baseline. Its implementation was trivial, as apps to be
recommended were randomly sampled from among the whole set.

3.1.1. Popular Recommender

The second strategy was the popular one. For the popular recommender, the algorithm computed
a metric of normalized interest, I(a), for each app a, which was immediately derived from the number
of games (#Games(a)) and the amount of time in days that the app has been available in the library
(Age(a)), as shown in Equation (1):

I(a) =
#Games(a)

Age(a)
. (1)

Once the normalized interest was computed for each app, then all apps were ranked according to
this value and the top-k apps were returned by the recommender.

Two design decisions about the popular recommendation system are worth mentioning. First,
only the amount of games played for an app was taken into account, while the duration of these
games was ignored. This was done on purpose, as each app has its own particularities and some
might naturally lead to longer games than others, and we did not want to set these apps higher in the
ranking. However, it must be noted that games with a duration of less than five seconds have been
ignored. Second, the interest was normalized by the amount of time that the app has been published
in the library. While another alternative could have been chosen (for example, considering only the
data from the last d days), we have intentionally performed this normalization so that new apps had a
higher chance to be chosen by the recommender.

3.1.2. Collaborative Filtering Recommender

The third recommendation strategy was based on collaborative filtering. This strategy relies on
implicit rather than explicit feedback. This decision was motivated by the fact that small children have
their own interacting patterns, and might be unable to properly give credit or score to a game after
playing it [37]. For this reason, a system based on explicit feedback could be unreliable. Instead, we
are basing recommendations on implicit patterns of interaction, and in particular in how much and
how long a child played with a game.

The idea behind collaborative filtering was to recommend apps to a child which can be of
high interest based on the preferences of other children which are deemed similar. Therefore, our
implementation of collaborative filtering was done in two stages. In the first stage, the neighborhood
was formed by choosing children similar to the one to whom recommendations are being provided.
In the second phase, a rating was predicted for each candidate app based on the neighborhood and the
top-k apps were selected for the recommendation.

In the neighborhood formation stage, for each target child to whom recommendations were
provided, we needed to select similar children on which the recommendations relied. First of all,
only children with at least one game of the same application in common were considered for the
neighborhood (or equivalently, children whose set of played apps was disjoint with that of the
target child are systematically excluded for the neighborhood). Each child’s profile included some
demographic data including the age and the gender. In this case, the age was used to form the
neighborhood; however, the gender was intentionally omitted to prevent unintended biases.

To establish the neighborhood, a similarity metric between two children c1 and c2 was defined as
shown in Equation (2):
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Sim(c1, c2) = 0.4 · Simage(c1, c2) + 0.6 · |Apps(c1) ∩ Apps(c2)|
|Apps(c1) ∪ Apps(c2)|

. (2)

As it can be seen, this similarity measure relied on a weighted average of two different criteria:
the similarity in the age and the similarity of the gaming history of the two children, and returned a
value in the range [0, 1]. In the case of the former criterion, it was computed following Equation (3):

Simage(c1, c2) =


1 if Age(c1) = Age(c2),

0.5 if |Age(c1)− Age(c2)| = 1,

0 otherwise.

(3)

In the previous equation, Age(c) refers to the age of child c in years. The previous function has
been designed to fit an educational reality: a difference of more than one year in such an early stage of
the educational process (two to 10 years old) was very large, and two children with such an age gap
were likely be very different.

The latter part of Equation (2) refers to the similarity in terms of the used apps, which was
the main criterion for the implicit feedback collaborative filtering. This was computed as the
intersection-over-union of the sets of apps played intensively by the two children. By “intensively”
we refer to apps that have a cumulative of at least 10 games and 60 s of game. This filtering has been
done to prevent considering apps which might been rarely played by a children while examining or
exploring Smile and Learn library.

Neighborhood formation was carried out by choosing the top-100 children with higher similarity.
A minimum similarity of 0.5 was enforced in order for a child to be included in the neighborhood.

Finally, for each candidate app a to be recommended we computed the average of the ratings
r(n, a) for each children n in the neighborhood N. Since we wanted to deal with implicit feedback, this
rating corresponds to the number of games of children c in app a. The average of ratings was weighted
by the similarity of the target children and each neighbor. In summary, the interest of children c in app
a, I(c, a) was computed as shown in Equation (4):

I(c, a) = ∑n∈N (Sim(c, n) · r(n, a))
|N| . (4)

Finally, apps were sorted by their interest and the top-k apps were provided as recommendations.

3.2. Dataset

During the period of the experiment, from 15 October 2018 to 1 December 2018, we recorded the
following information, which we used to later evaluate the system and report the results:

• The recommender (popular, collaborative filtering, or random) assigned to each child.
• The recommendations generated, and also which recommender provided each of these

recommendations.
• The date and time at which each recommendation is generated.
• The games usage per child, including the times at which they play and the duration for each game.

It is worth noting that regarding the second aspect, recommendations might not always be
generated using the desired recommender. For example, a child might be assigned the collaborative
filtering strategy, but this recommender might not have enough information about usage as to generate
useful recommendations, or that all of these recommendations are filtered out. In that case, random
recommendations are provided instead.

With this data, we can explore the patterns of engagement of children with the different games
depending on whether those games were recommended or not.
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3.3. Performance Metrics

The impact of the position in the ribbon of recommendations was be analyzed using click-through
frequencies. That way, we will determined whether the first five visible items got more clicks than the
last two, and whether the ordering within the visible and invisible ones mattered.

The core assessment of the recommendation algorithms will be made according to two engagement
metrics. One based on the number of games and another one on game time.

The first one, the average number of games per user (ANG), is formally defined in Equation (5).

ANG =
∑NumUsersR

i=1 GamesRi

NumUsersR
, (5)

where GamesRi is the number of games played by user i on apps recommended by algorithm R (either
collaborative filtering, popular or random, and NumUsersR is the total number of users who were
recommended the apps by algorithm R and acted on it.

The second aspect of engagement to be measured was the average game time (AGT) by users
who acted on the recommendations. The expression used to compute the indicator is described in
Equation (6).

AGT =
∑NumUsersR

i=1 GameTimeRi

NumUsersR
, (6)

where GameTimeRi is the total time spent by user i playing apps recommended by algorithm R (either
collaborative filtering, popular or random, and NumUsersR is the total number of users who were
recommended the apps by algorithm R and used them.

We should note that, for the computation of these metrics, we define “game” as the event where
the user interacts with the application for 10 s or more. Given the presence of some outliers, we also
filtered out games of more than 3000 s and the instances where a game was played more than 60 times
by the same user. These accounted for less than 0.5% of the sample.

In order to provide a more complete picture, in addition to these engagement metrics, we reported
four standard performance indicators: accuracy, precision, recall and F1 score.

To compute these metrics we have proceeded as follows: we have divided the pilots period,
comprising a total of 45 days, into two different time spans. The first one comprised one month
(from 15 October 2018 to 14 November 2018) and the second comprised 15 days (from 15 November
2018 to 1 December 2018). The former was used as the training set while the latter was used for
validation purposes.

We have considered the apps suggested by the recommender during the training phase to each
child and have then matched this information with the actual apps played by children during the
testing period. With this information, we have been able to build a confusion matrix as follows:
apps recommended to a child during training and then played during testing constituted a true
positive (TP), apps recommended but not played counted as false positives (FP), apps played but not
previously recommended were considered false negatives (FN) and apps not recommended and not
played constituted the true negatives (TN). All confusion matrices for each child were summed up
for each recommendation strategy, and then accuracy, precision, recall and F1 score were computed
following their standard definitions, which are shown in Equations (7)–(10).

Accuracy =
TP + TN

TP + TN + FP + FN
, (7)

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)
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F1 Score = 2 · Precision · Recall
Precision + Recall

. (10)

4. Results and Discussion

As it was mentioned before, the first part of the study has to do with the analysis of the impact of
the position in the recommendation ribbon on the click-through. During the pilots period we have
measured a total of 30,516 clicks received by 89 different apps, which have been involved in a total of
472,498 games. The experimental results on this aspect are reported in Table 2. There, we can see the
total number of clicks over the relevant period by position for the apps that were recommended in all
the possible slots.

Table 2. Accumulated click-through by position in the recommendation ribbon and mean for the visible
and invisible positions for the period from 15 October 2018 to 1 December 2018.

Position Visible Hidden

1 2 3 4 5 6 7

Clicks 6329 5834 4516 2639 3960 3150 2937
Mean - - 4830 - - 3044 -
Rank 1 2 3 7 4 5 6

It is apparent that the first three positions grabbed much more interest than the rest. The difference
between the first two and the other five were specially sizable. While it was true that the fourth
received fewer clicks than the ones that follow, other than that, the results were consistent with the
existence of a direct relationship between the order and the number of times that users acted on the
recommendations.

If we consider visibility, the ribbon only showed five recommendations at a time. We expected
that to be a relevant factor, as getting to the last two requires a supplementary effort from the user.
Interestingly, even though the average number of clicks on the visible slots was 4830, higher than the
3044 average clicks on the hidden ones, the role of friction as an element that drags click-through down
could be questioned. If we consider the effect of position, where apps on the left hand side gather
more interest that those on the right, and we infer the trend line, the recommendations on the sixth
and seventh positions get more clicks than expected.

Regarding engagement, a total of 12,229 games were completed in apps that were being
recommended at the moment by a total of 1387 children, summing up a total of 598 gaming hours.
From the study of engagement, we find that the recommender algorithm based on popularity was
superior across metrics. As we can see in Table 3, it outperformed the other two both in terms of
number of games and accumulated use time by user. Unexpectedly, the proposed collaborative filtering
algorithm resulted in a slightly lower mean number games vs. the random alternative. The sign of this
difference, however, was the opposite for game time.

Table 3. Engagement metrics for game apps by recommender for the period from 15 October 2018 to 1
December 2018.

Engagement Metric Mean Median Variance

Games

NGRandom 4.79 3 34.22
NGPopular 6.72 4 53.89
NGCF 4.22 2 24.75

Time

GTRandom 740.98 405.26 1,084,308.47
GTPopular 1202.76 639.79 3,286,849.96
GTCF 776.01 295.37 5,020,886.62
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The statistical significance of the differences reported in Table 3 was assessed according to the
protocol that follows. First, we started testing the normality of the distribution of the engagement
metrics with Kolmogorov–Smirnov test with Lilliefors correction. In case normality was rejected,
we applied Wilcoxon’s test. Otherwise, we tested for the presence homoskedasticity using Levene
test and, based on the result, we relied either on Welch test, or the traditional t-test. The results were
analogous for the metrics. The superiority of the Popular algorithm over the other two was significant
at 1%. Regarding the comparison of the baseline vs the implementation of collaborative filtering, the
null hypothesis of equality could not be rejected at the 5% conventional level for neither the number of
games nor the total game time.

In regards to the standard performance metrics, we report the main ones (accuracy, precision,
recall and F1 Score) in Table 4. As we can see, recommendations based on popularity offered the
largest precision and F1 score, while collaborative filtering and random recommendations provided
the highest values in terms of accuracy and recall, respectively.

Table 4. Performance metrics for game apps by recommender algorithm. Train: 15 October 2018 to 14
November 2018. Test: 15 November 2018 to 1 December 2018.

Algorithm Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Col. Filtering 94.92 7.40 1.28 2.18
Popular 94.73 12.93 3.30 5.25
Random 93.51 6.64 3.57 4.64

These results are influenced by the nature of the algorithms and the variety or recommendations
that they generate. At the ends of the spectrum we would have random recommendation and
recommendations based on popularity. The former approach is less constrained than the other two
and, as a result, it foments exploration to a higher extent. Among the remainder, even though both are
more stable, collaborative filtering provides a richer range of alternatives, as unguided exploration by
peers is likely to result in new app recommendations.

A second aspect to be considered regarding the performance indicators is that, unlike the
engagement ones, they only provide information on whether the user felt compelled to try new
apps, not whether the user liked them. We are more interested in discovering this latter extent,
which we find more important in the scope of this study. For this reason, we find that the average
number of games and average time spent playing the recommended apps are the key indicators to
consider, whereas standard performance metrics can be useful supplemental information to gain a
better understanding of the situation.

To summarize the results, the two elements that constituted the subject of study of the
recommender system were the influence of the order of recommendation on user exploratory behavior
and the impact of the choice among two well-established recommendation algorithms, pre-selected by
the company, on engagement. In order to evaluate such aspects, we acquired data of real interaction
with the application between 15 October 2018 and 1 December 2018, running an A/B/C test with three
different implementations of a recommender system (including a random baseline) and measuring
clicks made on recommendations.

We found a direct association between the order in the recommendation ribbon and the number of
clicks. Apps on the left gather more interest that those on the right hand side. The friction introduced
by the fact that reaching the last recommendations requires either swiping or pressing on the arrows
on the side does not seem to have a negative impact.

The A/B/C testing analysis used to compare the two recommendation approaches, one that
recommends apps based on popularity and an implementation of collaborative filtering, vs the random
recommender used as baseline offered two main results in regards to engagement: The first one is that
the popular algorithm beats the other two both in terms of number of games and the total time spent
playing the recommended contents. The second is that the current implementation of collaborative
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filtering does not seem to add value, as it offers the same performance as the baseline. A likely
explanation to this outcome is that there are some games that due to their nature are very likeable,
and for this reason they end up being “the popular ones”. These games will end up being suggested
by the recommender based on popularity, and if children start to play them, in most cases they will
quickly become engaged. This process could be adding some bias in the computed engagement
metrics in favor of the popular recommendation strategy. If we consider performance indicators, the
approach based on popularity seems to be the best alternative in terms of precision and F1 score, but
collaborative filtering offers the highest accuracy.

5. Summary and Conclusions

In this paper we have described and evaluated the behavior of a recommender system in the scope
of an Ed-Tech application aimed at children aged 2–10 and their families. The smart library gathers
thousands of data points based on user interaction and uses that information to generate tailored
reports and recommendations. The latter aspect is managed by a recommender system designed for
the purpose of easing navigation through the library and enhancing exploration. We evaluated two
aspects of the system: the influence of the order of recommendations on user exploratory behavior,
and the impact of the choice of the recommendation algorithm on engagement.

The analysis led to the following conclusions: first, the order in the recommendation ribbon
matter. Apps in the left positions got more clicks, and the effort to access hidden recommendations
did not seem to have a negative impact. The second one is that the popular algorithm resulted in
more engagement than the other two. Finally, the current implementation of collaborative filtering
does not seem to add value. Future works would include thorough studies on alternatives to the
current implementation of collaborative filtering or the optimization of its parameters; studying new
possibilities based on the interface to drive the attention of the user to the recommended applications;
or the implementation of recommendation strategies based on competences aimed at fostering the
development of the user according to predefined preferences established by parents and educators.
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