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Abstract: In this paper, a fixed-point iterative filter developed from the classical extended Kalman
filter (EKF) was proposed for general nonlinear systems. As a nonlinear filter developed from EKF,
the state estimate was obtained by applying the Kalman filter to the linearized system by discarding
the higher-order Taylor series items of the original nonlinear system. In order to reduce the influence
of the discarded higher-order Taylor series items and improve the filtering accuracy of the obtained
state estimate of the steady-state EKF, a fixed-point function was solved though a nested iterative
method, which resulted in a fixed-point iterative filter. The convergence of the fixed-point function
is also discussed, which provided the existing conditions of the fixed-point iterative filter. Then,
Steffensen’s iterative method is presented to accelerate the solution of the fixed-point function. The
final simulation is provided to illustrate the feasibility and the effectiveness of the proposed nonlinear
filtering method.

Keywords: fixed-point filter; extended Kalman filter; nested iterative method; Steffensen’s iterative
method; convergence condition

1. Introduction

Interesting but unavailable signal variables can be estimated using a proper filter. In recent
decades, filter design for various theoretical and applied systems has been a popular research topic in
the fields of automatic control, target tracking, fault diagnosis, etc. [1–5].

The Kalman filter is designed for linear systems with noise-satisfying Gaussian distribution, and
is an optimal filter due to the minimum mean square error (MMSE) [6]. The Kalman filter provides an
estimate and prediction of the system state in real time. However, the classical Kalman filter must be
applied to linear systems. For the filtering problem of nonlinear systems, a large number of effective
filters have been developed on the basis of the classical Kalman filter.

The filters for nonlinear systems are mainly designed according to two principles. The first kind
of nonlinear filter is designed by linearizing the system function, such as the celebrated extended
Kalman filter (EKF) [7]. The second kind of nonlinear filter is designed on the basis of approximating
the state statistics, such as the Unscented Kalman filter (UKF) [8–10], and the Cubature Kalman filter
(CKF) [11–13]. Various nonlinear filters are designed in different ways to predict and update nonlinear
system state estimates. In the state estimate prediction stage, according to EKF, the process function
is linearized by discarding the second or higher order Taylor series items at the state estimate of the
previous time instant. Then, the Kalman filter is utilized to predict the state estimate in terms of the
linearized process function. In the state estimate updating stage, the measurement function is linearized
by discarding the higher order items of its Taylor series at the predicted state estimate of the current
time instant. Then, the Kalman filter is utilized to update the state estimate in terms of the linearized
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measurement function [14,15]. Although the EKF can estimate the state of a nonlinear system, the
estimation accuracy of the EKF is always limited, due to the discarded second and higher order Taylor
series terms of the process function and the measurement function in their linearization processes.
In this context, a few nonlinear filters have been developed from the EKF. Based on the orthogonal
principle, a fading factor is introduced to adjust the prediction error variance and to improve the
robustness of the system modeling error and the filtering accuracy. The so-called strong tracking
filter is proposed in [16,17], and developed in [18,19]. The multiple model method introduced in [20]
simultaneously considers multiple possible state estimates, then improves the final state estimation
accuracy through distributed extended Kalman filtering fusion. However, the discarded higher-order
terms of the Taylor series in the linearization processes still inevitably affect the estimation accuracy of
the nonlinear filters developed from the EKF.

The fixed-point theory is an effective numerical solution method for nonlinear equations. Therefore,
the fixed-point theory is also utilized to design linear filters. In [21], the fixed-point theory is used
for the identification of Wiener systems, which includes an infinite impulse response (IIR) system
and a nonlinear static function. In [22,23], the maximum correntropy Kalman filter is designed
by solving a fixed-point equation. The fixed-point iteration Gaussian sum filtering estimator with
unknown time-varying non-Gaussian measurement noise is proposed in [24]. A characteristic function
filter is developed in [25] for a class of non-Gaussian nonlinear dynamical systems with the linear
measurement model.

Motivated by the discussion above, in this paper, a novel fixed-point nonlinear filtering method is
studied to update the state estimate obtained by the EKF. Firstly, taking advantage of the fixed-point
theory, a fixed-point function is constructed to solve the filtering problem. Since the state estimate and
the filter gain in the fixed-point function are both unknown, a nested iterative method is presented to
solve the fixed-point function and obtain the fixed-point filter. The convergence and the existing of
the fixed-point filter are also discussed. Steffensen’s iterative method is presented to accelerate the
solution of the fixed-point iterative function.

The main contributions of this paper are threefold. (1) A fixed-point function was utilized to
reduce the influence of discarded second- and higher-order Taylor series terms of nonlinear systems
and to improve the filtering accuracy of the steady-state EKF. (2) Two kinds of fixed-point function
solution methods were used and resulted in two fixed-point iterative filters. (3) The convergence of the
fixed-point function and the existing conditions of the fixed-point iterative filter are also provided.

The remainder of this article is organized as follows. In Section 2, the general discrete time
nonlinear system is formulated and the motivation of this paper is analyzed. In Section 3, a fixed-point
function is provided to update the state estimate obtained by the EKF. The fixed-point filter is designed
using two iterative solution methods, which iteratively update the state estimates and the filter gains.
The convergence and existing conditions of the fixed-point filter are also discussed. The final illustrated
simulation is provided in Section 4. Section 5 concludes the paper.

2. Problem Formulation

Considering the following nonlinear discrete-time system:

x(k+ 1) = f (x(k), k) + w(k+ 1, k) (1)

y(k+ 1) = h(x(k+ 1), k) + v(k+ 1) (2)

where x(k) is the system state at the discrete time instant k, f (∗) is the nonlinear state evolution
function and h(∗) represents the nonlinear measurement function. The process noise w(k + 1, k) and
the measurement noise v(k + 1) satisfy w(k+1,k) ~N(0,Q(k+1,k)) and v(k+1) ~N(0,R(k)).

Remark 1. The existing nonlinear filtering methods designed for the system above mainly include two types:
(1) EKF-based nonlinear filtering methods, in which the nonlinear system model is always approximated by an
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appropriate linear function; and (2) sample point-based nonlinear filtering methods, in which the statistics of the
state estimate are usually approximated by the statistical result of the sample points, for instance. However, it is
unavoidable that certain errors exist in the above two kinds of approximations and result in estimation errors of
the above two kinds of nonlinear filters. In order to improve the nonlinear filtering accuracy of the EKF-based
nonlinear filtering methods, taking advantage of fixed-point theory, an EKF-based fixed-point iterative filter is
proposed in this paper.

3. EKF-Based Fixed-Point Filter

In this section, for the filtering problem of the general nonlinear system described in Equations (1)
and (2), the classical EKF will firstly be introduced. Then, a fixed-point function will be provided
to update the obtained state estimate by solving the fixed-point function. In Section 3.3, a nested
iterative method is derived to solve the fixed-point filter. The convergence and existing condition
of the fixed-point filter will be discussed in Section 3.4. Then, Steffensen’s iterative method will be
presented to accelerate the solution of the fixed-point function in Section 3.5.

3.1. Classic Extended Kalman Filter

In the EKF-based nonlinear filtering methods for the system described in Equations (1) and (2), the
nonlinear system model is always represented by the Taylor series at a working point and linearized by
discarding the second and higher order terms. Then, the well-known Kalman filter is used to estimate
the state of the linearized system. The classical EKF can be summarized as follows.

Assumption 1. The estimate and the estimation error variance of the state at the time instant k have been
obtained and are denoted as x̂(k

∣∣∣k), P(k
∣∣∣k) , then the state at the time instant k + 1 will be estimated as follows.

(1) Time Updating

Taking the state estimate as the working point, the Taylor series expression of the nonlinear process
function is

x(k + 1) = f (x(k), k) + w(k + 1, k)

= f (x̂(k|k), k) + ∂ f (x(k),k)
∂x(k)

∣∣∣∣
x(k)=x̂(k|k)

(x(k) − x̂(k
∣∣∣k)) + O

(
(x(k) − x̂(k

∣∣∣k))2
)
+ w(k + 1, k)

≈ f (x̂(k|k), k) + ∂ f (x(k),k)
∂x(k)

∣∣∣∣
x(k)=x̂(k|k)

(x(k) − x̂(k
∣∣∣k)) + w(k + 1, k)

(3)

Applying the Kalman filter to the linearized system shown as the second approximate formula above, the
state prediction at the time instant k + 1 and the prediction error variance can be obtained by{

x̂(k + 1
∣∣∣k) = f (x̂(k

∣∣∣k), k),
P(k + 1

∣∣∣k) = F(k + 1, k)P(k
∣∣∣k)FT(k + 1, k) + Q(k + 1, k),

(4)

where F(k + 1, k) = ∂ f (x(k),k)
∂x(k)

∣∣∣∣
x(k)=x̂(k | k)

is the Jacobian of f (x(k), k) at the working point x̂(k
∣∣∣k) .

(2) Measurement Updating:

Taking the state prediction obtained above as the working point, the measurement function can be rewritten as

y(k + 1) = h(x(k + 1), k + 1) + v(k + 1)

= h(x̂(k + 1|k), k + 1) + ∂h(x(k+1),k+1)
∂x(k+1)

∣∣∣∣
x(k+1)=x̂(k+1|k)

(x(k + 1) − x̂(k + 1
∣∣∣k))

+ O
(
(x(k + 1) − x̂(k + 1|k))2

)
+ v(k + 1)

≈ h(x̂(k + 1|k), k + 1) + ∂h(x(k+1),k+1)
∂x(k+1)

∣∣∣∣
x(k+1)=x̂(k+1|k)

(x(k + 1) − x̂(k + 1
∣∣∣k)) + v(k + 1)

(5)
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The state estimate and the estimate error variance at time instant k + 1 can be derived as{
x̂(k + 1

∣∣∣k + 1) = x̂(k + 1
∣∣∣k) + K(k + 1)(y(k + 1) − h(x̂(k + 1

∣∣∣k))),
P(k + 1

∣∣∣k + 1) = P(k + 1
∣∣∣k) −K(k + 1)H(k + 1)P(k + 1

∣∣∣k), (6)

where H(k + 1) =
∂h(x(k+1),k+1)

∂x(k+1)

∣∣∣∣
x(k+1)=x̂(k+1|k)

is the Jacobian of h(x(k + 1), k + 1) at the working point

x̂(k + 1
∣∣∣k) and K(k + 1) is the filter gain, which is represented as

K(k + 1) = P(k + 1
∣∣∣k)HT(k + 1)

(
H(k + 1)P(k + 1

∣∣∣k)HT(k + 1) + R(k + 1)
)−1

(7)

3.2. Numerical Updating Method Based on the Fixed-Point Theory

As mentioned above, in the EKF, x̂(k + 1
∣∣∣k + 1) is obtained to estimate the system state x(k+ 1) on

the basis of the measurements
{
y(1), y(2), · · · , y(k + 1)

}
. Due to the discarded second and higher order

Taylor series items of the process function and the measurement function, not all of the information
contained in the measurement could be utilized to obtain x̂(k + 1

∣∣∣k + 1) . In order to update this state
estimate and make more full use of the unused information in the measurement, taking advantage of
fixed-point theory, the following fixed-point function is constructed for a steady-state filter{ ˆ̂x(k + 1|k + 1) = ˆ̂x(k + 1|k + 1 ) + K∗(k + 1)[y(k + 1) − ŷ∗(k + 1)]

ŷ∗(k + 1) = h( ˆ̂x(k + 1|k + 1), k + 1) + E
{
v(k + 1)

} (8)

where ˆ̂x(k+ 1|k + 1) is the state of the above fixed-point filter, K∗(k+ 1) is the filter gain to be determined,
and E

{
v(k + 1)

}
is the mean of the measurement noise, which was found to be zero in this paper.

Remark 2. In (8), the ˆ̂x(k+ 1|k + 1)will be estimated on the basis of the measurements
{
y(1), y(2), · · · , y(k + 1)

}
,

such that the solution ˆ̂x(k + 1|k + 1) is close to the actual state value at time instant k + 1. This aims to solve
ˆ̂x(k + 1|k + 1) such that y(k + 1) = h( ˆ̂x(k + 1|k + 1), k + 1). In order to solve ˆ̂x(k + 1|k + 1), such that
y(k+ 1) = h( ˆ̂x(k+ 1|k + 1), k+ 1) + v(k+ 1), the fixed-point function method is used, and (8) is the structured
fixed-point function. However, as the state estimate and the filter gain are both unknown, it is difficult to solve the
fixed-point function (8) by the traditional fixed-point iterative solution method.

3.3. A Nested Iterative Solution for the Fixed-Point Function

In the fixed-point function (8), two unknown items must be determined simultaneously—The
unknown state of the above fixed-point filter, ˆ̂x(k + 1|k + 1) and the filter gain to be determined
K∗(k + 1). In this section, a fixed-point filter is presented by solving the above fixed-point function (8),
according to the following nested iterative computation process.

In the first iteration, take the state estimate x̂(k + 1
∣∣∣k + 1) obtained by the EKF as the initial

value on the right side of the fixed-point function. Denote the initial state of the first iteration as
ˆ̂x0
0(k + 1|k + 1 ) = x̂(k + 1|k + 1), where the subscript 0 means the first iteration, while the superscript

0 is the initial value of this iteration, which increases in this iteration. Then we have the following
iterative solution process of the fixed-point function with the initial filter gain K∗0(k + 1)= K(k + 1).

ˆ̂x1
0(k + 1|k + 1 ) = ˆ̂x0

0(k + 1|k + 1 ) + K∗0(k + 1)
(
y(k + 1) − h( ˆ̂x0

0(k + 1|k + 1 ), k + 1)
)

ˆ̂x2
0(k + 1|k + 1 ) = ˆ̂x1

0(k + 1|k + 1 ) + K∗0(k + 1)
(
y(k + 1) − h( ˆ̂x1

0(k + 1|k + 1 ), k + 1)
)

...
ˆ̂xi0
0 (k + 1|k + 1 ) = ˆ̂xi0−1

0 (k + 1|k + 1 ) + K∗0(k + 1)
(
y(k + 1) − h( ˆ̂xi0−1

0 (k + 1|k + 1 ), k + 1)
) (9)
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If
∣∣∣∣ ˆ̂xi0

0 (k + 1|k + 1 ) − ˆ̂xi0−1
0 (k + 1|k + 1 )

∣∣∣∣ < ε, take ˆ̂xi0
0 (k + 1|k + 1 ) as the state estimate in the first

iterative process.
Due to

ˆ̂x(k + 1|k + 1 ) = x̂(k + 1|k + 1 ) + K∗(k + 1)
(
y(k + 1) − h( ˆ̂x(k + 1|k + 1 ), k + 1)

)
(10)

the filter gain can be updated in the first iteration by

K∗1(k + 1) =
ˆ̂xi0
0 (k + 1|k + 1) − ˆ̂xi0−1

0 (k + 1|k + 1 )

y(k + 1) − h( ˆ̂xi0−1
0 (k + 1|k + 1), k + 1)

(11)

In the second iteration, the initial value in the fixed-point numerical solving process is ˆ̂x0
1(k +

1|k + 1 )= ˆ̂xi0
0 (k + 1|k + 1 ), then we have

ˆ̂x1
1(k + 1|k + 1 ) = ˆ̂x0

1(k + 1|k + 1 ) + K∗1(k + 1)(y(k + 1) − h( ˆ̂x0
1(k + 1|k + 1 ), k + 1))

ˆ̂x2
1(k + 1|k + 1 ) = ˆ̂x1

1(k + 1|k + 1 ) + K∗1(k + 1)(y(k + 1) − h( ˆ̂x1
1(k + 1|k + 1 ), k + 1))

...
ˆ̂xi1
1 (k + 1|k + 1 ) = ˆ̂xi1−1

1 (k + 1|k + 1 ) + K∗1(k + 1)(y(k + 1) − h( ˆ̂xi1−1
1 (k + 1|k + 1 ), k + 1))

(12)

Similarly, if
∣∣∣∣ ˆ̂xi1

1 (k + 1|k + 1 ) − ˆ̂xi1−1
1 (k + 1|k + 1 )

∣∣∣∣ < ε, ˆ̂xi1
1 (k + 1|k + 1 ) is taken as the state estimate

in the second iterative process, then the filter gain in the second iteration can be updated by

K∗2(k + 1) =
ˆ̂xi1
1 (k + 1|k + 1) − ˆ̂xi1−1

1 (k + 1|k + 1 )

y(k + 1) − h( ˆ̂xi1
1 (k + 1|k + 1), k + 1)

(13)

For the lth iteration, ˆ̂x0
l (k + 1|k + 1 )= ˆ̂xil−1

l−1(k + 1|k + 1 ) is taken as the initial value to solve the
fixed-point numerical and is iteratively updated by the following

ˆ̂x1
l (k + 1|k + 1 ) = ˆ̂x0

l (k + 1|k + 1 ) + K∗l (k + 1)(y(k + 1) − h( ˆ̂x0
l (k + 1|k + 1 ), k + 1))

ˆ̂x2
l (k + 1|k + 1 ) = ˆ̂x1

l (k + 1|k + 1 ) + K∗l (k + 1)(y(k + 1) − h( ˆ̂x1
l (k + 1|k + 1 ), k + 1))

...
ˆ̂xil
l (k + 1|k + 1 ) = ˆ̂xil−1

l (k + 1|k + 1 ) + K∗l (k + 1)(y(k + 1) − h( ˆ̂xil−1
l (k + 1|k + 1 ), k + 1))

(14)

Similarly, if
∣∣∣∣ ˆ̂xil

l (k + 1|k + 1 ) − ˆ̂xil−1
l (k + 1|k + 1 )

∣∣∣∣ < ε, ˆ̂xil
l (k + 1|k + 1 ) is taken as the state estimate

in the lth iterative process, then the filter gain in the lth iteration can be updated by

K∗l+1(k + 1) =
ˆ̂xil
l (k + 1|k + 1) − ˆ̂xil−1

l (k + 1|k + 1 )

y(k + 1) − h( ˆ̂xil
l (k + 1|k + 1), k + 1)

(15)

For the α(k + 1)th iteration, if
∣∣∣∣K∗α(k+1)+1

(k + 1) −K∗
α(k+1)

(k + 1)
∣∣∣∣ < εK (εK is a given scalar), the

final estimate output of the state at the time instant k + 1 is given by

ˆ̂x(k + 1|k + 1 ) = ˆ̂x
ilα(k+1)

α(k+1)
(k + 1|k + 1) (16)

The flowchart of the iterative computational process of the estimates is illustrated in Figure 1.
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Figure 1. Flowchart of the iterative computational process of the estimates. 
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3.4. Convergence of the Fixed-Point Filter

In order to ensure that the constructed fixed-point filter is convergent, it is necessary to conditionally
constrain the fixed-point equation. In this subsection, the convergence of the fixed-point function (8)
will be discussed.

Firstly, a necessary lemma is given as follows [26,27].

Lemma 1. An iterative function ϕ(x) has a unique fixed point x∗ in [a, b], if

(1) x ∈ [a, b], then a ≤ ϕ(x) ≤ b;

(2) There exists a positive scalar L, such that
∣∣∣∣∂ϕ(x)∂x

∣∣∣∣ ≤ L, for x ∈ [a, b].

Based on this lemma, the convergence conditions of the fixed-point function (8) are given as follows.

Theorem 1. For a given filter K∗(k+ 1), the fixed-point function (8) has a fixed point in [a,b], if the measurement
function satisfies the following two conditions

(1) a + ŷ
[a,b]
≤ K∗(k + 1)y(k + 1) ≤ b + ŷ[a,b], where

ŷ
[a,b]

= min
{
K∗(k + 1)h( ˆ̂x(k + 1|k + 1), k + 1) − ˆ̂x(k + 1|k + 1), where ˆ̂x(k + 1|k + 1) ∈ [a, b]

}
(17)

ŷ[a,b] = max
{
K∗(k + 1)h( ˆ̂x(k + 1|k + 1), k + 1) − ˆ̂x(k + 1|k + 1), where ˆ̂x(k + 1|k + 1) ∈ [a, b]

}
(18)

(2)
∣∣∣∣1−K∗(k + 1) ∂h( ˆ̂x(k+1|k+1),k+1)

∂ ˆ̂x(k+1|k+1)

∣∣∣∣ ≤ L, ˆ̂x(k + 1|k + 1) ∈ [a, b].

Proof. Denote

ϕ( ˆ̂x(k + 1|k + 1)) = ˆ̂x(k + 1|k + 1 ) + K∗(k + 1)[y(k + 1) − h( ˆ̂x(k + 1|k + 1), k + 1)] (19)

If ˆ̂x(k + 1|k + 1) ∈ [a, b], according to Lemma 1, one has a ≤ ϕ( ˆ̂x(k + 1|k + 1)) ≤ b. It means that

a ≤ ˆ̂x(k + 1|k + 1 ) + K∗(k + 1)[y(k + 1) − h( ˆ̂x(k + 1|k + 1), k + 1)] ≤ b (20)
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Then, the measurement function satisfies

a ≤ K∗(k + 1)y(k + 1) − ŷ[a, b] ≤ b (21)

where

ŷ[a, b] = K∗(k + 1)h( ˆ̂x(k + 1|k + 1), k + 1) − ˆ̂x(k + 1|k + 1), ˆ̂x(k + 1|k + 1) ∈ [a, b] (22)

Using the upper bound in (17) and the lower bound in (18), one gets

a + ŷ
[a,b]
≤ K∗(k + 1)y(k + 1) ≤ b + ŷ[a,b] (23)

The Jacobian value of ϕ( ˆ̂x(k + 1|k + 1)) is obtained by

∂ϕ( ˆ̂x(k + 1|k + 1))

∂ ˆ̂x(k + 1|k + 1)
= 1−K∗(k + 1)

∂h( ˆ̂x(k + 1|k + 1), k + 1)

∂ ˆ̂x(k + 1|k + 1)
(24)

Then, according to Lemma 1, the measurement function should satisfy∣∣∣∣∣∣1−K∗(k + 1)
∂h( ˆ̂x(k + 1|k + 1), k + 1)

∂ ˆ̂x(k + 1|k + 1)

∣∣∣∣∣∣ ≤ L (25)

Therefore, the fixed-point function (8) has a unique fixed point in [a,b], if the measurement
function satisfies (23) and (25). The proof is completed. �

Remark 3. It is commonly known that not all fixed-point equations are convergent. The convergence conditions
of the fixed-point function (8) are presented in Theorem 1, which is also the existing condition of the fixed-point
iterative filter given in Section 3.3. If the convergence conditions in Theorem 1 are satisfied, the state estimate
will be further updated by the fixed-point iterative filter shown in Section 3.3. Otherwise, the state estimate
obtained by the EKF need not be updated and denoted as the final estimate at a certain time instant. The interval
[a,b] can be set according to the actual demand, or by using the state prediction value with the 3-Delta rule. The
norm could be 1-noum for the vector parameters.

3.5. Steffensen’s Iterative Solution of the Fixed-Point Function

In Section 3.3, a nested iterative solution for the fixed-point filter was presented. In this section,
Steffensen’s iterative method is used to accelerate the solution of the fixed-point function (8). Steffensen’s
iterative method in the lth iteration is given as follows

ˆ̂x j+1
l (k + 1|k + 1 ) = ˆ̂x j

l (k + 1|k + 1 ) −
(φ( ˆ̂x j

l (k+1|k+1 ))− ˆ̂x j
l (k+1|k+1 ))

2

φ(φ( ˆ̂x j
l (k+1|k+1 )))−2φ( ˆ̂x j

l (k+1|k+1 ))+ ˆ̂x j
l (k+1|k+1 )

, j = 1, 2, · · · (26)

Let K∗0(k + 1)= K(k + 1), then Steffensen’s iterative method can be given by

ˆ̂x1
0(k + 1|k + 1) = ˆ̂x0

0(k + 1|k + 1) − (φ( ˆ̂x0
0(k+1|k+1))− ˆ̂x0

0(k+1|k+1))
2

φ((φ( ˆ̂x0
0(k+1|k+1)))−2φ( ˆ̂x0

0(k+1|k+1))+ ˆ̂x0
0(k+1|k+1)

...

ˆ̂xn0−1
0 (k + 1|k + 1) = ˆ̂xn0−2

0 (k + 1|k + 1) −
(φ( ˆ̂x

n0−2
0 (k+1|k+1))− ˆ̂x

n0−2
0 (k+1|k+1))

2

φ((φ( ˆ̂x
n0−2
0 (k+1|k+1)))−2φ( ˆ̂x

n0−2
0 (k+1|k+1))+ ˆ̂x

n0−2
0 (k+1|k+1)

ˆ̂xn0
0 (k + 1|k + 1) = ˆ̂xn0−1

0 (k + 1|k + 1) −
(φ( ˆ̂x

n0−1
0 (k+1|k+1))− ˆ̂x

n0−1
0 (k+1|k+1))

2

φ((φ( ˆ̂x
n0−1
0 (k+1|k+1)))−2φ( ˆ̂x

n0−1
0 (k+1|k+1))+ ˆ̂x

n0−1
0 (k+1|k+1)

(27)
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where

φ( ˆ̂xi
0(k + 1|k + 1)) = ˆ̂xi

0(k + 1|k + 1) + K∗0(k + 1)(y(k + 1) − h( ˆ̂xi
0(k + 1|k + 1))), i = 0, 1, · · · , n0 (28)

φ((φ( ˆ̂xi
0(k + 1|k + 1))) = φ( ˆ̂xi

0(k + 1|k + 1) + K∗0(k + 1)(y(k + 1) − h((φ( ˆ̂xi
0(k + 1|k + 1)))), i = 0, 1, · · · , n0 (29)

If
∣∣∣∣ ˆ̂xn0

0 (k + 1|k + 1 ) − ˆ̂xn0−1
0 (k + 1|k + 1)

∣∣∣∣ < ε, take ˆ̂xn0
0 (k + 1|k + 1 ) as the state estimate of the

fixed-point filter with the filter gain K∗0(k + 1).
Similar to (11), the filter gain can be updated by

K∗1(k + 1) =
ˆ̂xn0
0 (k + 1|k + 1) − ˆ̂xn0−1

0 (k + 1|k + 1)

y(k + 1) − h( ˆ̂xn0
0 (k + 1|k + 1 ), k + 1)

(30)

Substituting the new filter gain above, the fixed-point function is represented as

ˆ̂x(k + 1|k + 1 ) = ˆ̂x(k + 1|k + 1 ) + K∗1(k + 1)[y(k + 1) − h( ˆ̂x(k + 1|k + 1 ), k + 1) − E
{
v(k + 1)

}
] (31)

According to Steffensen’s iterative method, one has

ˆ̂x1
1(k + 1|k + 1) = ˆ̂x0

1(k + 1|k + 1) − (φ( ˆ̂x0
1(k+1|k+1))− ˆ̂x0

1(k+1|k+1))
2

φ((φ( ˆ̂x0
1(k+1|k+1)))−2φ( ˆ̂x0

1(k+1|k+1))+ ˆ̂x0
1(k+1|k+1)

...

ˆ̂xn1−1
1 (k + 1|k + 1) = ˆ̂xn1−2

1 (k + 1|k + 1) −
(φ( ˆ̂x

n1−2
1 (k+1|k+1))− ˆ̂x

n1−2
1 (k+1|k+1))

2

φ((φ( ˆ̂x
n1−2
1 (k+1|k+1)))−2φ( ˆ̂x

n1−2
1 (k+1|k+1))+ ˆ̂x

n1−2
1 (k+1|k+1)

ˆ̂xn1
1 (k + 1|k + 1) = ˆ̂xn1−1

1 (k + 1|k + 1) −
(φ( ˆ̂x

n1−1
1 (k+1|k+1))− ˆ̂x

n1−1
1 (k+1|k+1))

2

φ((φ( ˆ̂x
n1−1
1 (k+1|k+1)))−2φ( ˆ̂x

n1−1
1 (k+1|k+1))+ ˆ̂x

n1−1
1 (k+1|k+1)

(32)

where

φ( ˆ̂xi
1(k + 1|k + 1)) = ˆ̂xi

1(k + 1|k + 1) + K∗1(k + 1)(y(k + 1) − h( ˆ̂xi
1(k + 1|k + 1))), i = 0, 1, · · · , n1 (33)

φ((φ( ˆ̂xi
1(k + 1|k + 1))) = φ( ˆ̂xi

1(k + 1|k + 1) + K∗1(k + 1)(y(k + 1) − h((φ( ˆ̂xi
1(k + 1|k + 1)))), i = 0, 1, · · · n1 (34)

If
∣∣∣∣ ˆ̂xn1

1 (k + 1|k + 1 ) − ˆ̂xn1−1
1 (k + 1|k + 1)

∣∣∣∣ < ε, take ˆ̂xn1
1 (k + 1|k + 1 ) as the state estimate of the

fixed-point filter with the filter gain K∗1(k + 1).
Similarly, the filter gain can be updated by

K∗j(k + 1) =
ˆ̂x
n j−1

j−1 (k + 1|k + 1) − ˆ̂x
n j−1−1
j−1 (k + 1|k + 1)

y(k + 1) − h( ˆ̂x
n j−1

j−1 (k + 1|k + 1 ), k + 1)
(35)

The fixed-point filter is constructed as

ˆ̂x(k + 1|k + 1 ) = ˆ̂x(k + 1|k + 1 ) + K∗j(k + 1)[y(k + 1) − h( ˆ̂x(k + 1|k + 1 ), k + 1) − E
{
v(k + 1)

}
] (36)
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Steffensen’s iterative solution of the fixed-point filter above is obtained by

ˆ̂x1
j (k + 1|k + 1) = ˆ̂x0

j (k + 1|k + 1) −
(φ( ˆ̂x0

j (k+1|k+1))− ˆ̂x0
j (k+1|k+1))

2

φ((φ( ˆ̂x0
j (k+1|k+1)))−2φ( ˆ̂x0

j (k+1|k+1))+ ˆ̂x0
j (k+1|k+1)

...

ˆ̂x
n j−1
j (k + 1|k + 1) = ˆ̂x

n j−2
j (k + 1|k + 1) −

(φ( ˆ̂x
nj−2

j (k+1|k+1))− ˆ̂x
nj−2

j (k+1|k+1))
2

φ((φ( ˆ̂x
nj−2

j (k+1|k+1)))−2φ( ˆ̂x
nj−2

j (k+1|k+1))+ ˆ̂x
nj−2

j (k+1|k+1)

ˆ̂x
n j

j (k + 1|k + 1) = ˆ̂x
n j−1
j (k + 1|k + 1) −

(φ( ˆ̂x
nj−1

j (k+1|k+1))− ˆ̂x
nj−1

j (k+1|k+1))
2

φ((φ( ˆ̂x
nj−1

j (k+1|k+1)))−2φ( ˆ̂x
nj−1

j (k+1|k+1))+ ˆ̂x
nj−1

j (k+1|k+1)

(37)

where

φ( ˆ̂xi
j(k + 1|k + 1)) = ˆ̂xi

j(k + 1|k + 1) + K∗j(k + 1)(y(k + 1) − h( ˆ̂xi
j(k + 1|k + 1))), i = 0, 1, · · · , n j (38)

φ((φ( ˆ̂xi
j(k + 1|k + 1))) = φ( ˆ̂xi

j(k + 1|k + 1) + K∗j(k + 1)(y(k + 1) − h((φ( ˆ̂xi
j(k + 1|k + 1)))), i = 0, 1, · · · , n j (39)

If
∣∣∣∣ ˆ̂xn j

j (k + 1|k + 1 ) − ˆ̂x
n j−1
j (k + 1|k + 1)

∣∣∣∣ < ε, take ˆ̂x
n j

j (k + 1|k + 1 ) as the solution of the fixed-point
filter with the filter gain K∗j(k + 1).

If
∣∣∣K∗t(k + 1) −K∗t−1(k + 1)

∣∣∣ < εK, the state estimate ˆ̂xnt
t (k + 1|k + 1) obtained by the fixed-point

iteration process with the filter gain K∗t(k + 1) is the final solution of the fixed-point filter.

Remark 4. Compared with the nested iterative solution method in Section 3.3, Steffensen’s iterative method
can accelerate the solution process of the fixed-point function (8). Because of this, the filtering result of the two
fixed-point filters may be slightly different.

Remark 5. It should be noted that the conditions for judging whether the iterative process ends in the solution
methods of the fixed-point function are to compare the differences between the results of two adjacent iterations.
However, the final purposes of the updating methods are reducing the differences between the estimates and the
active values of the system states. It is a pity that the active values of the system states are unavailable. Therefore,
the difference between the active value and the prediction values of the measurement by different methods are
compared in the simulation to determine whether the updating is necessary.

4. Simulation

In this section, two comparison simulation examples are provided to illustrate the feasibility and
the effectiveness of the proposed EKF-based fixed-point iterative filters (the one provided in Section 3.3
is denoted as FEKF, while the one provided in Section 3.5 is denoted SFEKF), which are compared with
the classical EKF and UKF methods.

Simulation I. Considering the following non-linear system x(k + 1) = 0.5x(k) + 2.5x(k)/(1 + x2(k)) + w(k + 1, k)
y(k + 1) = x2(k + 1) + v(k + 1) + 0.2 cos(k/π

) (40)

where w(k + 1, k), v(k + 1) are respectively the process noise and the measurement noise, which
satisfy the zero-mean Gaussian distributions with the variances Q = 0.1, R = 0.001. The initial state
estimation and its error variance are respectively x(0) = 2, p(0) = 0.01.

In order to reduce the effects of random noise on the comparison results, a Monte Carlo simulation
was repeated 50 times. The simulation results were as follows.
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As shown in Figure 2, compared with the absolute error curves of the classical EKF and UKF,
the error curves of the proposed iterative fixed-point filters were lower at almost all 80 simulation
time instants. The main cause of the higher absolute error curve of the EKF was the discarded higher
order terms of the Taylor series in the linearization processes. Since the proposed fixed-point filters
iteratively updated the estimates of the EKF, the absolute error curve was lower than that of the EKF.
The UKF approximated the statistics of the state estimates by using unscented transformation, and
the estimate accuracy of UKF was related to the filter parameters. The estimate accuracy of the UKF
was the lowest, although several possible filter parameters were tested. The mean weightings Wm

i

and variance weightings Wc
i of the UKF were respectively set as Wm

i =

{
λ/(n + λ), i = 1
1/(2n + 2λ), i = 2, 3

,

Wc
i =

{
λ/(n + λ) + (1− α2 + β), i = 1
1/(2 + 2λ), i = 2, 3

, where λ = α2(n + κ) − n, α = 1, β = 2, κ = 3− n, n = 1.
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The fixed-point iterative filter based on the extended Kalman filter can compensate the influence
of discarded higher order terms of the Taylor series. As a result, the filtering results of the methods
proposed in this paper were better than others. The mean values of the absolute error of the four
comparison methods in Table 1 illustrated the feasibility and effectiveness of the proposed methods.
In the same simulation conditions, the mean absolute error of the FEKF was 0.0178 and the mean
absolute error of the SFEKF was 0.0141, while the others were 0.0278 for the EKF, and 0.1426 for the
UKF, respectively. As shown in Table 2, the computation complexity of the EKF was the smallest, and
that of the UKF was the largest, due to the computation of the sigma points. The FEKF and SFEKF were
designed to update the estimation results of the EKF, and accordingly, their computation complexities
were larger than that of the EKF. Steffensen’s iterative method was used to accelerate the solution of the
fixed-point function (8), therefore, the CPU time cost of repeating Monte Carlo simulations 50 times
was smaller with the SFEKF than with the FEKF.

Table 1. The mean absolute errors (MAEs) of four comparison methods.

Methods EKF UKF FEKF SFEKF

MAEs 0.0278 0.1426 0.0178 0.0141

Table 2. The CPU time cost of 50 Monte Carlo simulations for the four comparison methods.

Methods EKF UKF FEKF SFEKF

CPU time 0.1406 2.4063 2.2656 0.3594

It is noted that the estimates obtained by the proposed methods were the closest to the actual
values, as shown in Figure 3. Due to the influence of the discarded higher order items of the Taylor



Sensors 2019, 19, 1893 11 of 14

series system functions, the estimate accuracy of the EKF method was relatively poor. The influence
was reduced using a fixed-point iterative filter. The measurement prediction results in Figure 4 also
illustrated the feasibility and the effectiveness of the proposed fixed-point iterative filters.Sensors 2019, 19, x FOR PEER REVIEW 11 of 14 
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Simulation II. Consider the following target tracking system, in which the target is in nearly
constant velocity:

x(k + 1)
.
x(k + 1)
y(k + 1)
.
y(k + 1)

 =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1




x(k)
.
x(k)
y(k)
.
y(k)

+


T2/2 0
T 0
0 T2/2
0 T


[

wx(k + 1, k)
wy(k + 1, k)

]
(41)

The target was initially located at (0, 1400), with an initial velocity of (1.8, −9.5). A radar was
located at the origin of the polar coordinate. The measurement equation was given by θ(k) = arctan

(
y(k)
x(k)

)
+ vθ(k)

r(k) =
√
(x(k))2 + (y(k))2 + vr(k)

(42)

The variances of
[

wx(k + 1, k)
wy(k + 1, k)

]
and

[
vθ(k)
vr(k)

]
were

[
10−4 0

0 10−4

]
and

[
10−2 0

0 10

]
.

The sampling period was 1. The simulation results are shown in Figures 5 and 6.
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Figure 6. The real position and estimates for the four methods.

As shown in Figure 6, the proposed FEKF and SFEKF methods effectively tracked the target with
the radar measurements. The two proposed methods obtained more accurate estimates of the target
than the EKF for the updating method with the fixed-point theory, as shown in Figure 5 and Table 3.

Table 3. The mean distances between the real value and estimates for the four comparison methods.

Methods EKF UKF FEKF SFEKF

Mean Distance 1.1913 0.5573 0.5530 0.5530

5. Conclusions

As a development of the classic extended Kalman filter, the fixed-point iterative updating method
was studied in this paper, drawing on fixed-point theory. On the basis of the extended Kalman filter,
a fixed-point function was provided to update the state estimate obtained by the EKF and reduce
the influence of the discarded higher order items of the Taylor series. The fixed-point function was
solved by the nested iterative method and Steffensen’s iterative method and resulted in two fixed-point
iterative filters. The convergence conditions of the fixed-point function were also studied, as were the
existing conditions of fixed-point iterative filters.
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