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Abstract: The star sensor is widely used in attitude control systems of spacecraft for attitude
measurement. However, under high dynamic conditions, frame loss and smearing of the star image
may appear and result in decreased accuracy or even failure of the star centroid extraction and
attitude determination. To improve the performance of the star sensor under dynamic conditions, a
gyroscope-assisted star image prediction method and an improved Richardson-Lucy (RL) algorithm
based on the ensemble back-propagation neural network (EBPNN) are proposed. First, for the frame
loss problem of the star sensor, considering the distortion of the star sensor lens, a prediction model
of the star spot position is obtained by the angular rates of the gyroscope. Second, to restore the
smearing star image, the point spread function (PSF) is calculated by the angular velocity of the
gyroscope. Then, we use the EBPNN to predict the number of iterations required by the RL algorithm
to complete the star image deblurring. Finally, simulation experiments are performed to verify the
effectiveness and real-time of the proposed algorithm.
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1. Introduction

Along with the development of navigation technology, the requirement for a spacecraft attitude
measurement is becoming higher and higher [1,2]. In general, star sensors and gyroscopes are often
used in spacecraft to measure the attitude information. The star sensor is supposed to be the most
accurate attitude-measuring device in stable conditions [3]. However, under dynamic conditions,
frame loss and blurring of the star image may occur, which leads to decreased accuracy or even failure
of the star centroid extraction and attitude determination. Therefore, only by solving the frame loss
and blurring problem of the star image, can the star sensor maintain good performance under dynamic
conditions. Because gyroscopes have a relatively high measurement accuracy and excellent dynamic
performance in a short period, using the gyroscope to assist in improving the dynamic performance of
the star sensor has become a hot topic [4–9].

In the process of spacecraft motion, due to the influence of external interference and the limitation
of the star sensor, the star sensor is prone to frame loss, which can result in a lack of coherence in the
process of moving image tracking and even loss of key motion features. Therefore, how to eliminate
the frame loss error has become a research hotspot in the field of image processing. Currently, the
primary methods for eliminating frame loss error includes the frame loss error elimination based
on the support vector machine (SVM) [10,11], frame loss error elimination based on iterative error
compensation [12,13] and frame loss error elimination based on adaptive minimum error threshold
segmentation [14]. These methods eliminate the interference noise in the image and compensate the
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frame loss error, but still cannot avoid the frame loss. To overcome the shortcomings of the above
methods, a method for eliminating the frame loss by using a motion image-tracking model is presented
in [15], since the frame loss of the star image is mainly affected by the exposure time and readout time
of the star sensor [2]. Therefore, in [16–18], parallel processing is used to overlap exposure time and
readout time to reduce the frame loss of the star image. In [19,20], the authors used image intensifiers
to increase the sensitivity of the image sensor, thereby reducing the occurrence of the frame loss in the
star sensors. In [21], Wang et al. proposed using field programmable gate arrays (FPGAs) to improve
the processing ability of the star sensor to reduce the readout time. Yu et al. [22] proposed a method to
reduce the occurrence of the frame loss by using an intensified star sensor. Although FPGAs and image
intensifiers can assist the star sensor in reducing the occurrence of the frame loss, the additional FPGA
and image intensifier lead to an increase in the weight and power consumption of the star sensor and
limit its application in micro-spacecraft.

The motion blur of the star image is another important reason that affects the dynamic performance
of the star sensor. To improve the dynamic performance of the star sensor, many scholars have done a
lot of research in the field of image processing, especially on the star image deblurring algorithms [23].
According to whether the point spread function (PSF) is known or not, the deblurring methods can be
classified into two typical forms: Blind image deblurring (BID) with unknown PSF, and non-blind
image deblurring (NBID) with known PSF [24]. Mathematically, the process of NBID is an inverse
problem, and an NBID algorithm has a good real-time performance. Currently, most BID algorithms
perform blur kernel estimation and image deblurring simultaneously, and recursively to approach the
sharp image [25–30]. Therefore, BID methods have poor real-time performance. Because star sensors
are widely used in spacecraft, the real-time requirements are high. Therefore, we intend to study an
NBID algorithm for star image deblurring.

Two problems should be solved in the process of restoring the blurred star image. One is how to
determine the blur kernel, and the other is to choose which deblurring method to use. The gyroscope
can be used to measure the angular rates of the carrier and is easy to integrate, and the blur kernel
parameters (blur angle and blur length) can be calculated according to the angular rate information
output by the gyroscope. In this paper, a gyroscope is used to assist in the calculation of blur kernels.
For the star image deblurring, there are two commonly used NBID algorithms. One is the Wiener
filter [31,32]. Quan et al. [31] proposed a Wiener filter based on the optimal window technique for
recovering the blurred star image. Ma et al. [32] proposed an improved one-dimensional Wiener
filtering method for star image deblurring. Although the two methods are better in real time, they also
amplify the noise in the image. The other is the Richardson–Lucy (RL) algorithm, which can effectively
suppress the noise in the deblurred star image [33,34]. However, the iterative convergence criterion is
not given in the RL algorithm, and the optimal number of iterations needs to be obtained through
constant-trying with large time-consumption. If the amount of blurred star image to be processed is
enormous, this is a disadvantage that cannot be ignored.

In this paper, to solve the shortcomings of the above methods and further improve the performance
of the star sensor under highly dynamic conditions, we propose an improved gyroscope-assisted
star image prediction method and RL non-blind deblurring algorithm. In the star image prediction
method, considering the second-order distortion of the star sensor lens, a prediction model between
the angular rates of the gyroscope and the position of the star spot is established. For the improved RL
algorithm, first, we analyze the point spread function (PSF) model of the star sensor under different
motion conditions, and then the ensemble back-propagation neural network (EBPNN) prediction
model based on the improved bagging method is constructed to predict the number of termination
iterations required by the conventional RL algorithm, which is used to overcome the disadvantage of
traditional RL algorithm that needs to set the number of iterations manually.

The rest of this paper is organized as follows. In Section 2, we introduce the star image prediction
model in the case of the frame loss of the star image. The improved RL algorithm is described in
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Section 3. In Section 4, simulation results are shown to demonstrate the effectiveness of our method.
Finally, we give a conclusion in Section 5.

2. Prediction Model of the Star Image

The star sensor is a vision sensor that can be used to measure the attitude of a spacecraft [35]. To
obtain the high-precision attitude information of the spacecraft, we must ensure that the image sensor
of the star sensor can output the star image continuously. Due to the highly dynamic motion of the
spacecraft, frame loss of the star image often occurs. Therefore, it is especially important to ensure that
the star sensor can output the high-precision attitude information under the condition of the frame loss
of the star image. In this section, we will show how to predict the position of the star spot based on the
angular rates of the gyroscope in the presence of distortion of the star sensor lens. In Figure 1, the
star sensor obtains the direction vector of the navigation star in the celestial inertial coordinate system
by observing the stars on the celestial sphere. At time t, the attitude matrix of the star sensor in the
celestial coordinate system is A(t), the star sensor can detect the direction vector vi of the navigation
star in the celestial coordinate system, and its image vector can be represented as Wi in the star sensor
coordinate system. The image coordinate of the principal point of the lens of the star sensor is (x0, y0),
the coordinates of the navigation star Si on the image plane is (xi, yi). Since the optical lens of the star
sensor mainly has a second-order radial distortion, the ideal image coordinate (x′i , y′i ) of the navigation
star Si can be expressed as, {

x′i − x0 = (xi − x0)(1 + k′x · r2),
y′i − y0 = (yi − y0)(1 + k′y · r2),

(1)

where, r =
√
(xi − x0)

2 + (yi − y0)
2, k′x and k′y represent the second-order radial distortion coefficients

in the X and Y directions, respectively.
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Figure 1. Star image model of the star sensor. 
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Figure 1. Star image model of the star sensor.

Assuming that the focal length of the star sensor is f , the direction vector Wi can be given by

Wi =
1√

[(xi − x0)(1 + k′x · r2)]2 +
[
(yi − y0)(1 + k′y · r2)

]2
+ f 2


(xi − x0)(1 + k′x · r2)

(yi − y0)(1 + k′y · r2)

− f

. (2)

According to the attitude matrix A(t) of the star sensor, the relationship between the vectors Wi
and vi can be obtained,

Wi = A(t) · vi, (3)

where, the attitude matrix A(t) can be solved by the N vector method, Trial method, Quest method,
Q-method and Least square method [36]. In this paper, we use the angular velocity information of the
gyroscope to calculate the attitude matrix A(t).

In Figure 2, OSXYZ represents the star sensor coordinate system, OCuv represents the image plane
coordinate system, the projection point of the principal point OS of the lens of the star sensor on the
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image plane is OC, OCOS is consistent with the principal optical axis of the star sensor lens and its
length is equal to the focal length f . wx, wy and wz represent the three-axis angular rates of the star
sensor at instant t, which can be measured by the gyroscope. P denotes the position of the navigation
star on the star image at instant t, OCP denotes the direction vector of the navigation star under the
coordinate system of the star sensor, and the star spot P shifts to P′ at instant t + ∆t. According to

Equation (3), the direction vectors
→

OSP and
→

OSP′ can be expressed as,
→

OSP = Wi(t) = A(t) · vi,
→

OSP′ = Wi(t + ∆t) = A(t + ∆t) · vi,
(4)

where, A(t + ∆t) = At+∆t
t ·A(t), A(t + ∆t) denotes the attitude matrix at instant t + ∆t.

At+∆t
t = I − (w(t)×) · ∆t = I −


0 −wz(t) wy(t)

wz(t) 0 −wx(t)
−wy(t) wx(t) 0

 · ∆t

=


1 wz(t) · ∆t −wy(t) · ∆t

−wz(t) · ∆t 1 wx(t) · ∆t
wy(t) · ∆t −wx(t) · ∆t 1

,
(5)

where (w(t)×) represents the cross-product matrix of the star sensor angular rates vector w(t).
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According to Equations (4) and (5), the relationship between Wi(t) and Wi(t+ ∆t) can be obtained,

Wi(t + ∆t) = At+∆t
t ·Wi(t), (6)

where, we can calculate Wi through the star image. According to Equations (1) and (6), we can obtain
the position prediction model as follows,

x′i (t + ∆t) =
(xi(t)−x0)(1+k′x·r2)+x0+((yi(t)−y0)(1+k′y·r2)+y0)·wz(t)·∆t+ f ·wy(t)·∆t

(−((xi(t)−x0)(1+k′x·r2)+x0)·wy(t)·∆t+((yi(t)−y0)(1+k′y·r2)+y0)·wx(t)·∆t)/ f+1

y′i (t + ∆t) =
((yi(t)−y0)(1+k′y·r2)+y0)−((xi(t)−x0)(1+k′x·r2)+x0)·wz(t)·∆t− f ·wx(t)·∆t

(−((xi(t)−x0)(1+k′x·r2)+x0)·wy(t)·∆t+((yi(t)−y0)(1+k′y·r2)+y0)·wx(t)·∆t)/ f+1

. (7)

3. Improved Star Image Deblurring Algorithm

Generally, establishing a PSF under a specific motion is the key to star image recovery. In this
section, first, we analyze the PSF model of the blurred star image caused by the rotation of the star
sensor around the optical axis and non-optical axis and calculate the PSF in the corresponding motion
condition through the angular velocity information of the gyroscope. Then, we introduce an improved
RL algorithm to recover the blurred star image.
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3.1. Motion Blur Model of the Star Image

To better recover the blurred star image, the primary task is to obtain the PSF. Therefore, it is
necessary to analyze the mechanism of the star image blurs. The star sensor is a navigation device that
acquires the attitude by utilizing star observations. Because the star sensor needs to photograph the
sky with a dark background, in order to increase the number of navigation stars in the star image, it
needs to increase the exposure time appropriately. If the star sensor has a wide range of motion during
the exposure time, the same star will be imaged at different locations on the star image, which will
result in blurring of the star image. Mathematically, the model of star image blurring can be written as,

g(x, y) = f (x, y) ⊗ h(x, y) + n(x, y), (8)

where f (x, y), g(x, y), and h(x, y) denote the sharp star image, the blurred star image, and the PSF,
respectively; ⊗ represents two-dimensional convolution operator, and n(x, y) denotes the image noise.

Due to the different motion types of the star, sensors produce different PSFs, so PSF is important
for describing the model of the blurred star image. Since the distance from the navigation star to the
earth is much larger than the distance from the star sensor to the earth, the linear motion has less effect
on the star image blur, and this effect can be ignored. Therefore, we mainly analyze the model of the
blurred star image generated by the angular motion.

In Figure 3a, the star image blur caused by the angular motion is shown. Since the exposure time
of the star sensor is short, the angular velocity of the star sensor can be considered to be constant during
the exposure time. Moreover, the star sensor coordinate system is coincident with the body-fixed
frame. In Figure 3b, the model of the blurred star image generated by the star sensor rotating around
the X-axis is shown, the initial angle between the starlight direction and the principal optical axis of the
star sensor is α, and the projection of the navigation star is P in the star image. When the star sensor
rotates clockwise around the X-axis at an angular velocity wx, and during the exposure time ∆t, the
rotational angle is ∆α = wx∆t, and the star spot moves from P to P′ in the image plane. The geometric
relationship between P and P′ is,

LPP′ = f · [tan(α+ ∆α) − tanα]/dccd, (9)

where LPP′ represents the distance from P to P′ quantized by pixels, dccd denotes the pixel size, and f is
the focal length of the star sensor.
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Figure 3. Motion blur star image model. (a) Blurred star image generated by the angular motion;
(b) blurred star image generated by the rotation of the star sensor around the X-axis; (c) blurred star
image generated by the rotation of the star sensor around the Y-axis; (d) blurred star image generated
by the rotation of the star sensor around the Z-axis.
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As a result of the short exposure time of the star sensor, ∆α is quite small, the first order
Taylor-expansion for tan(α+ ∆α) can be obtained.

tan(α+ ∆α) ≈ tanα+ (tanα)′ · ∆α

= tanα+
(

sin2 α+cos2 α
cos2 α

)
· ∆α

= tanα+ (tan2 α+ 1) · ∆α.

(10)

Substituting Equation (10) into (9), we have

LPP′ = f · (tan2 α+ 1) · ∆α/dccd. (11)

In general, the rotational motion characteristics of the star sensor in the OSX and OSY directions
are the same. As shown in Figure 3c, during the exposure time ∆t, the star sensor rotates clockwise
around the Y-axis at an angular velocity wy, the rotational angle is ∆α′ = wy∆t, the star spot shifts
along the u axis in the image plane, and its translation vector can be obtained.

LPP′ = f · (tan2 α+ 1) · ∆α′/dccd. (12)

When the star sensor rotates around the X-axis and Y-axis with angular rates wx and wy, respectively,

and after the exposure time ∆t, the rotation angle of the star sensor is ∆α′′ = wxy · ∆t =
√

w2
x + w2

y∆t,
and the translation vector of the star spot is

LPP′ = f · (tan2 α+ 1) · ∆α′′/dccd. (13)

In general, when the star sensor rotates around the cross bore-sight direction (OSX and OSY
directions), the blur kernel angle θ of the star image can be given by

θ = arctan
[

tan(α+ ∆α) − tanα
tan(α+ ∆α′) − tanα

]
. (14)

Then, the PSF of the blurred star image is expressed as [37,38],

h1(x, y) =
{

1/LPP′ , i f y/x = sin|θ|/cos|θ|, 0 ≤ x ≤ LPP′ · cos|θ|
0, otherwise

. (15)

In Figure 3d, the star sensor rotates clockwise around the Z-axis at an angular rate wz, point P(u, v)
does a circular motion with OC as the center and r =

√
u2 + v2 as the radius. The rotation angle of the

star sensor is ∆α′′′ = wz · ∆t during the exposure time ∆t. Since the exposure time of the star sensor is
short, the arc length PP′ can be approximated as the chord length ∆PP′. Inspired by reference [39], the
motion of the star spot can be regarded as a uniform linear motion on the focal plane. The displacement
of the star spot in the direction of the X- and Y-axis can be expressed as,{

∆PP′u ≈ −v ·wz · ∆t,
∆PP′v ≈ u ·wz · ∆t.

(16)

The star image blur kernel angle θ and the ∆PP′ are given by

θ = arctan(∆PP′u/∆PP′v), (17)

∆PP′ =
√

∆PP′2u + ∆PP′2v

=
√

v2 ·w2
z · ∆t2 + u2 ·w2

z · ∆t2

= |wz| · ∆t · r.

(18)



Sensors 2019, 19, 1890 7 of 23

According to the geometric relation in Figure 3d,

tanα = r · dccd/ f . (19)

Substituting Equation (19) into Equation (18), Equation (18) can be rewritten as

∆PP′ = |wz| · ∆t · f · tanα/dccd. (20)

Therefore, when the star sensor rotates around the Z-axis, the PSF of the blurred star image is
expressed as,

h2(x, y) =
{

1/∆PP′, i f y/x = sin|θ|/cos|θ|, 0 ≤ x < ∆PP′ · cos|θ|
0, otherwise

. (21)

In summary, according to Equations (15) and (21), the model of the multiple-blurred star image is
given by

g(x, y) = f (x, y) ⊗ h1(x, y) ⊗ h2(x, y) + n(x, y), (22)

where the h1(x, y) and h2(x, y) need to be calculated based on the angular velocity wx, wy and wz of
the star sensor. In this paper, we use a gyroscope to provide the angular velocity [wbx wby wbz] of the
spacecraft. Therefore, the angular velocity [wx wy wz] of the star sensor is expressed as,[

wx, wy, wz
]T

= Cs
b

[
wbx, wby, wbz

]T
, (23)

where Cs
b denotes the rotation matrix from the body coordinate system to the star sensor coordinate

system. Because the star sensor is fixed on the spacecraft, Cs
b can be calibrated in advance.

After obtaining the PSF, the NBID algorithm is used to recover the blurred star image.

3.2. Richardson-Lucy (RL) Algorithm

The NBID algorithm includes both linear and nonlinear algorithms. The most common linear
NBID algorithms include the inverse filtering algorithm, Wiener filtering algorithm, and least squares
algorithm [3]. Compared with the linear NBID algorithm, nonlinear NBID algorithm has a better
effect in suppressing noise and preserving image edge information. Currently, the RL algorithm [40]
is the most widely used non-linear iterative restoration algorithm. The RL algorithm is a blurred
image deconvolution algorithm that extends from the maximum a posteriori probability estimate.
This method assumes that the noise in the image follows a Poisson distribution, and the likelihood
probability of the image is

p(g/ f ) =
∏
x,y

(( f (x, y) ⊗ h(x, y))g(x,y)e−( f (x,y)⊗h(x,y))

g(x, y)!
, (24)

where, (x, y) denotes the pixel coordinate, g(x, y) represents the blurred image, h(x, y) denotes the PSF,
and ⊗ denotes the two-dimensional convolution operator.

To get the maximum likelihood solution of the sharp image f (x, y), we minimize the
energy function.

E( f ) =
∑
x,y

{
( f (x, y) ⊗ h(x, y)) − g(x, y) · log( f (x, y) ⊗ h(x, y))(x, y)}. (25)
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By deriving the E( f ) and normalizing the blur kernel h(x, y), the RL algorithm iteratively updates
the image by

f n+1(x, y) = [
g(x, y)

f n(x, y) ⊗ h(x, y)
⊗ h(−x,−y)] f n(x, y), (26)

where n represents the iteration number.
The RL algorithm has two important properties [40]: Non-negativity and energy preserving. It

constrains the non-negative of estimated values of the sharp image and preserves the total energy
of the image in the iteration so that the RL algorithm has excellent performance in the star image
deblurring. However, the iterative convergence criterion is not given in the RL algorithm, and the
optimal number of iterations need to be obtained through constant-trying with large time-consumption.
This shortcoming of the RL algorithm cannot be ignored if we are dealing with a large number of the
blurred star image. Therefore, it is necessary to study an improved RL algorithm which automatically
sets the number of iterations.

3.3. Improved RL Algorithm

To overcome the shortcomings of the RL algorithm, we propose an improved RL algorithm, and
the flow diagram is shown in Figure 4. First, we set the parameters of the star sensor including the field
of view, focal length, star magnitude limit, resolution of the star image, etc. We use these parameters
to simulate a large number of sharp star image and the corresponding blurred star image. Second,
according to the angular rates of the gyroscope output, we calculate the PSF of each blurred star image
and use the RL algorithm to deblur the star image and record the optimal number of iterations used.
The optimal number of iterations and the sum of the Magnitude of Fourier Coefficients (SUMFC) of
the PSF of the blurred star image are used for the training of the ensemble back-propagation neural
network (EBPNN) [41]. After the training is completed, the optimal iteration number prediction model
of the RL algorithm can be obtained. Finally, when the navigation system is used, the PSF of the blurred
star image is obtained according to the angular velocity of the gyroscope, and the SUMFC of the PSF is
used as the input of the prediction model. The star image is deblurred according to the number of
iterations required by the RL algorithm of the prediction model output. Especially, when predicting the
number of iterations, the ensemble back-propagation neural network (EBPNN) prediction model based
on the improved bagging method uses the SUMFC of the PSF of the blurred star image as the input.
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Figure 4. Flow diagram of the improved Richardson-Lucy (RL) algorithm for star image deblurring.

We use different PSFs to blur the sharp star image (Figure 5a). The relationship between the
SUMFC of PSFs and the corresponding number of iterations required by the RL algorithm is shown in
Figure 6. We can see that there is an obvious non-linear relationship between them, which prompts us
to use EBPNN to predict the optimal number of iterations of the RL algorithm.
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Figure 5. Original sharp star image and its gray distribution. (a) Original sharp star image; (b) gray
distribution of star spot.
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Figure 6. The relationship between the magnitude of Fourier coefficients (SUMFC) of the point spread
function (PSF) and the corresponding optimal number of iterations.

The performance of a single back-propagation (BP) neural network is limited. It takes a long
time to learn, and its objective function is easy to fall into a local minimum. Therefore, we use the
integration strategy based on the improved bagging method to integrate the single neural network.
The bagging method [42] is based on the re-sampling and self-help technology. The self-help learning
sample set Di(i = 1, 2, . . .) is retrieved from the original training set D, the size of each self-learning
sample set is equivalent to the original training set, and each self-learning sample trains a single BP
neural network. The bagging method increases the diversity of neural network by re-selecting the
training set, thereby improving the generalization ability and prediction accuracy of the EBPNN.

In order to further improve the prediction accuracy of the ensemble neural network, we introduce
a just-in-time learning algorithm to optimize the sample sets Di(i = 1, 2, . . .) obtained by the bagging
method. Suppose two input samples xi and xq, where xq is the currently acquired input sample and xi
is a training sample in Di(i = 1, 2, . . .). The distance and angle between them can be calculated by the
following equation. 

d(xi, xq) =
√
‖xi − xq‖

2,

θ(xi, xq) = arccos
xT

i xq

‖xi‖
2
‖xq‖

2 .
(27)

The similarity between xi and xq is

S(xi, xq) = αe−d(xi,xq) + (1− α) cos(θ(xi, xq)), (28)

where, α is the weighting factor, the larger the S(xi, xq) value, the higher the similarity between
xi and xq.
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We select the k-group data closest to the currently acquired one sample xq from the training
sample set Di(i = 1, 2, . . .) and arrange the new sample set in descending order. D′i =

{
(x1,i, y1,i), (x2,i, y2,i), · · · , (xk,i, yk,i)

}
, i = 1, 2, . . . ,

S(x1, xq) > S(x2, xq) > · · · > S(xk, xq),
(29)

where yk,i denotes the expected output value corresponding to xk,i in training sets Di(i = 1, 2, . . .).
Therefore, the local modeling problem is transformed into an optimization problem.

J(δ) = min
δ

k∑
i=1

(yi − ŷ(δ, xi))
2
· S(xi, xq). (30)

Minimize J(δ) to obtain the model parameter δ at the current moment, and then obtain its
local model:

yq = ŷ(δ, xq). (31)

In particular, we find that the computational complexity of the EBPNN model increases with the
increase of the number of BPNN models, but the prediction accuracy of the EBPNN model does not
always increase with it, sometimes it even decreases. Therefore, after considering the computational
complexity and prediction accuracy of the EBPNN model, we decide to use three sub-BP neural
network models to construct the EBPNN model. As shown in Figure 7, three BP neural networks
are trained by different sample sets D′i (i = 1, 2, 3), and the integrated prediction model is obtained
by aggregating the three BP neural networks. When the EBPNN is used for prediction, we use the
weighted method to integrate the output of each neural network and take the integrated result as the
output of EBPNN. In the process of integrating the output of each BP neural network, first, we calculate
the average training errors ei(i = 1, 2, 3) of three sub-models on their respective training sample set.
Then, we construct a weighting vector w of 1× n dimensions, the value of n is the same as the number
of sub-BP neural network models, so n = 3, wi = 1/ei, (i = 1, 2, 3). Finally, we calculate the prediction
results of three sub-models for the input data xq by Equation (31) and form a 1× 3-dimensional output
vector y′q. The final prediction result of the EBPNN is expressed as,

y =
w · y′qT

3∑
i=1

wi

. (32)
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network adopts a three-layer structure. The nodes of the input layer, hidden layer, and output layer 

Figure 7. The ensemble back-propagation neural network.

To verify the effectiveness of the EBPNN prediction model, we analyzed the accuracy of the
iteration times estimated by the model. In the training stage of the EBPNN model, each BP neural
network adopts a three-layer structure. The nodes of the input layer, hidden layer, and output layer
are set to 1, 10 and 1, respectively. The sigmoid function is used as the activation function. The original
training set D contains 1708 samples. In Figure 8, we show the number of iterations predicted by the
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EBPNN model and compare it with the optimal number of iterations. We can see that the number of
iterations estimated by the EBPNN almost coincides with the optimal number of iterations, and the
error between them is small. Therefore, the performance of the EBPNN prediction model can meet
our requirements.
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After EBPNN predicts the number of iterations, we use the improved RL algorithm to obtain
the sharp star image, and then we can accurately estimate the attitude information by the star image
segmentation, star extraction, star identification, star matching, and other operations [43].

4. Simulation Results and Analysis

In order to prove the effectiveness of the star image prediction method and the improved RL
algorithm in the highly dynamic environment, we compare and analyze the prediction accuracy of the
star spot, and the accuracy of the attitude estimation before and after the star image deblurring in the
following section.

4.1. Star Image Prediction Experiment

In this section, to validate the star image prediction method, we need to simulate the star image
acquired by the star sensor at a different time. In the process of star image simulation, we determine the
position of the navigation star in the star image based on the bore-sight direction of the star sensor and
the right ascension and declination of the navigation star. Since the star sensor is fixed on the spacecraft,
it can obtain different star images as the spacecraft moves. We assume that the exposure time of the
star sensor is 0.01 s, the field of view is 20◦ × 20◦, the image sensor size is 865 pixels × 865 pixels, the
pixel size is 20 µm, the focal length is 49 mm, and select the stars brighter than 3m in Yale Bright
Star Catalogue as the guide star catalog. We use these parameters and the spacecraft trajectory to
simulate the images at different times and use them as the ground truth of the star image. According
to the above parameters, the resolution of the star image we simulated is 865× 865. To speed up the
processing of the star image, we intercept the 512 × 512 size as the star image to be processed. The
trajectory of the spacecraft we simulated is shown in Figure 9. And 1500 frames of consecutive star
images are simulated, the first and the 1500th frame star image are shown in Figure 10.

To validate the star image prediction method, we predict the star image based on the first frame
star image and the angular velocity of the gyroscope, and compare it with the ground truth of the
star image. Figure 11a,b show the ground truth of the 1500th frame star image and the 1500th frame
star image predicted by the proposed algorithm. To more intuitively demonstrate the accuracy of the
prediction algorithm, in Table 1, the centroid coordinates of the star spot in the real and predicted
1500th frame star image is shown, where (x, y) represents the centroid coordinate of the star spot in the
real star image, (x′, y′) is the centroid coordinate of the predicted star spot. ∆x and ∆y represent the
difference of the horizontal and vertical coordinates between the true star spot and the predicted star
spot, respectively. As seen from Table 1, the maximum error of the horizontal and vertical coordinates
of the star spot predicted by our method within 15 s is 0.89 and 0.50 pixels, respectively.
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Table 1. Comparison of the coordinates between the ideal and the predicted star spots in the 1500th 

star image. 

Star 

Number 

Ideal Star Spot 

Coordinate 

Predicted Star Spot 

Coordinate 
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Table 1. Comparison of the coordinates between the ideal and the predicted star spots in the 1500th
star image.

Star Number
Ideal Star Spot

Coordinate
Predicted Star Spot

Coordinate
Predicted Star Spot

Coordinate Error

x y x
′

y
′

∆x ∆y

1 24 63.50 23.25 63.62 0.75 −0.12
2 46.5 19 45.62 19.25 0.87 −0.25
3 54.50 371.50 54.23 371.76 0.26 −0.26
4 277 336.50 276.60 336.60 0.39 −0.10
5 290.50 305 290.11 305.27 0.38 −0.27
6 336.50 502.71 336.50 502.71 0 0
7 386.50 340 386 339.64 0.50 0.35
8 400.50 170 400 169.78 0.50 0.21
9 420.71 409.50 420.50 409.00 0.21 0.50
10 425.72 225.88 425.40 225.60 0.32 0.28
11 431.64 351 431.50 350.71 0.14 0.28
12 455 130.50 454.23 130.23 0.76 0.26
13 486.40 131.60 485.50 131.50 0.89 0.09

To further analyze the prediction algorithm, according to the first frame star image shown in
Figure 10a, we successively predicted the position of stars in 1500 star images, and analyze the mean
value of the estimation error of the star spot position in each predicted star image. As shown in
Figure 12, the mean value of the coordinate errors of the predicted star spot increases with the increase
of the estimated number of frames, but the mean errors could stay in a small range. Therefore, in
the case of the short-term frame loss, the proposed method can achieve an accurate prediction of the
star spot.
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4.2. Experiments on Star Image Deblurring

In this section, we present some examples to validate the proposed gyro-assisted improved RL
algorithm. First, we analyze the blurring of the star image when the star sensor rotates around the
X-axis, the Y-axis, the Z-axis, the X- and Y-axis, and the three axes simultaneously. Then, we add the
Gaussian white noise with zero mean and variance 0.01 to the blurred star images. Finally, the blurred
star image is deblurred by our proposed algorithm, and we compare the deblurred star image with
the original sharp star image. Figure 13 shows the magnified original star image, blurred star images
caused by the star sensor rotate around the X- and Y-axis, (wx = 10◦/s, wy = 10◦/s), deblurred star
image, and the gray distribution of the star spot in them. As can be seen from Figure 13, the gray value
of the star spot in the blurred star image decreases significantly, and after deblurring the star image,
the smearing phenomenon is obviously suppressed, the gray value and the gray distribution of star
spot are closer to those in original star image.
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Figure 13. The magnified star image and the gray distribution of the star spot in the case of Gaussian
white noise. (a) The magnified original star image; (b) gray value distribution of star spot in
the original star image; (c) the magnified blurred star image (wx = wy = 10◦/s); (d) gray value
distribution of star spot in the blurred star image (wx = wy = 10◦/s); (e) the magnified deblurred
star image (wx = wy = 10◦/s); (f) gray value distribution of star spot in the deblurred star image
(wx = wy = 10◦/s).

The star sensor is an attitude measurement device. To more intuitively reflect the deblurring
performance of the proposed algorithm, we compare the attitude information of the spacecraft estimated
by the star image before and after deblurring. The star image observed by the star sensor at a certain
time is shown in Figure 14. First, we perform an angular motion blurring on the observed star image,
then we use the proposed algorithm and the automatic iterative RL algorithm to deblur the star image,
and compare the attitude information estimated by the deblurred images. The automatic iterative RL
algorithm calculates the mean square error (MSE) of the currently restored image by automatically
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increasing the number of iterations, and compares it with the MSE of the image restored by the last
iteration. If the MSE of the currently restored image is higher than the last iteration recovery result, the
last iteration number is considered to be the optimal number of iterations, and the restored image is
the optimal restoration result. The attitude estimation results are shown in Tables 2–6, and the “Fail”
indicates that the attitude information of the spacecraft cannot be estimated by the star image because
the degree of blurring of the star image is too high.
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Figure 14. Star spots observed by a star sensor.

From Tables 2–6, it can be seen that the attitude estimation failed when the angular velocity
of the star sensor rotating around the X-axis, the Y-axis, the Z-axis, the X-and the Y-axis, and the
three axes exceeds wx = 25◦/s, wy = 30◦/s, wz = 25◦/s, w = [20, 20, 0]◦/s and w = [15, 15, 15]◦/s,
respectively. After the blurred star image is restored by the proposed algorithm and the automatic
iterative RL algorithm, the maximum angular velocity of the attitude can be estimated to be expanded
to wx = 75◦/s, wy = 75◦/s, wz = 80◦/s, w = [75, 75, 0]◦/s, and w = [55, 55, 55]◦/s, respectively, these
two methods have a similar performance, and the attitude errors are kept in a small range. This is
because with the increase of the angular velocity of the star sensor, the blur extent of the star image gets
bigger, and the gray value of the star spot decreases significantly. When the gray value of a blurred star
is lower than the threshold for star image segmentation and the blurred star can hardly be detected.
However, after the restoration of the blurred star image, the gray value of the star spot is improved,
and the gray distribution of the star spot is closer to the true distribution so that the star spot can also
be extracted under high dynamic conditions. Finally, the attitude of the spacecraft can be estimated by
these star spots.

Table 2. Comparison of attitude estimation in the case of Gaussian white noise (Vary wx).

wx (deg/s)
Attitude Errors (Blurred
Star Image) (arc-second)

Attitude Errors (Restored
Star Image by our Method)

(arc-second)

Attitude Errors (Restored
Star Image by Iterative RL

Algorithm) (arc-second)

Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw Roll

1 14.61 14.59 10.28 14.61 14.59 10.28 14.61 14.59 10.28
5 14.63 13.02 2.33 14.61 14.59 10.28 14.61 14.59 10.28

10 141.49 159.97 17.98 32.05 17.39 5.26 58.82 22.07 4.94
15 26.76 4.71 7.07 24.77 11.80 5.09 14.61 14.59 10.28
20 181.60 136.94 5.69 24.77 11.80 5.09 24.04 19.74 0.04
25 Fail Fail Fail 31.08 67.23 5.44 48.33 69.82 0.37
35 Fail Fail Fail 43.03 6.38 5.03 14.61 14.59 10.28
45 Fail Fail Fail 14.61 14.59 10.28 14.61 14.59 10.28
55 Fail Fail Fail 14.61 14.59 10.28 31.08 67.23 5.44
65 Fail Fail Fail 64.17 34.57 10.08 75.65 45.95 4.80
75 Fail Fail Fail Fail Fail Fail Fail Fail Fail
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Table 3. Comparison of attitude estimation in the case of Gaussian white noise (Vary wy).

wy (deg/s)
Attitude Errors (Blurred
Star Image) (arc-second)

Attitude Errors (Restored
Star Image by Our Method)

(arc-second)

Attitude errors (Restored Star
Image by Iterative RL

Algorithm) (arc-second)

Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw Roll

1 31.08 67.23 5.44 31.08 67.23 5.44 31.08 67.23 5.44
5 115.63 61.76 52.20 43.03 6.38 5.03 43.03 6.38 5.03

10 11.50 76.89 2.08 14.61 14.59 10.28 14.61 14.59 10.28
15 11.67 61.47 6.26 14.61 14.59 10.28 24.77 11.80 5.09
20 154.24 149.17 10.11 136.04 113.32 0.70 82.09 103.43 0.50
25 104.74 147.65 0.63 14.61 14.59 10.28 43.60 79.70 20.88
30 Fail Fail Fail 220.53 211.73 8.91 56.75 92.69 9.77
40 Fail Fail Fail 80.44 65.31 4.72 81.32 67.23 5.44
50 Fail Fail Fail 49.10 34.30 4.87 53.03 33.80 5.03
60 Fail Fail Fail 131.35 108.60 30.05 134.43 105.09 30.27
70 Fail Fail Fail 58.07 57.61 0.29 80.44 65.31 4.72
75 Fail Fail Fail Fail Fail Fail Fail Fail Fail

Table 4. Comparison of attitude estimation in the case of Gaussian white noise (Vary wz).

wz (deg/s)
Attitude Errors (Blurred
Star Image) (arc-second)

Attitude Errors (Restored
Star Image by Our Method)

(arc-second)

Attitude Errors (Restored
Star Image by Iterative RL

Algorithm) (arc-second)

Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw Roll

1 14.61 14.59 10.28 14.61 14.59 10.28 14.61 14.59 10.28
5 103.24 73.51 12.20 4.38 40.73 5.28 14.61 14.59 10.28

10 60.43 55.49 25.06 14.61 14.59 10.28 14.61 14.59 10.28
15 157.89 162.40 15.28 14.61 14.59 10.28 14.61 14.59 10.28
20 84.80 136.06 3.85 14.61 14.59 10.28 14.61 14.59 10.28
25 Fail Fail Fail 14.61 14.59 10.28 14.61 14.59 10.28
35 Fail Fail Fail 14.61 14.59 10.28 34.94 19.01 19.09
45 Fail Fail Fail 30.03 66.27 20.87 14.61 14.59 10.28
55 Fail Fail Fail 14.61 14.59 10.28 91.86 76.68 4.65
65 Fail Fail Fail 75.67 96.89 0.44 112.50 111.72 16.04
75 Fail Fail Fail 92.57 106.52 5.68 170.85 140.59 4.22
80 Fail Fail Fail Fail Fail Fail Fail Fail Fail

Table 5. Comparison of attitude estimation in the case of Gaussian white noise (Vary wx and wy).

Angular
Velocity (deg/s)

Attitude Errors (Blurred
Star Image) (arc-second)

Attitude Errors (Restored
Star Image by Our

Method) (arc-second)

Attitude Errors (Restored
Star Image by Iterative RL

Algorithm) (arc-second)

wx wy Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw Roll

1 1 31.30 28.17 16.23 14.61 14.59 10.28 14.61 14.59 10.28
5 5 203.95 191.12 22.83 13.14 30.54 0.11 14.61 14.59 10.28

10 10 29.66 18.84 4.72 14.61 14.59 10.28 14.61 14.59 10.28
15 15 335.46 369.20 31.02 14.61 14.59 10.28 14.61 14.59 10.28
20 20 Fail Fail Fail 14.61 14.59 10.28 14.61 14.59 10.28
30 30 Fail Fail Fail 58.82 22.07 4.94 56.75 92.69 9.77
40 40 Fail Fail Fail 14.61 14.59 10.28 4.68 39.04 15.47
50 50 Fail Fail Fail 49.10 34.30 4.87 41.74 9.47 10.16
60 60 Fail Fail Fail 14.61 14.59 10.28 31.08 67.23 5.44
70 70 Fail Fail Fail 126.33 125.57 0.77 120.24 97.62 0.61
75 75 Fail Fail Fail Fail Fail Fail Fail Fail Fail
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Table 6. Comparison of attitude estimation in the case of Gaussian white noise (Vary wx, wy and wz).

Angular Velocity
(deg/s)

Attitude Errors (Blurred
Star Image) (arc-second)

Attitude Errors (Restored
Star Image by Our Method)

(arc-second)

Attitude Errors (Restored Star
Image by Iterative RL Algorithm)

(arc-second)

wx wy wz Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw Roll

1 1 1 66.08 27.77 16.17 14.61 14.59 10.28 14.61 14.59 10.28
5 5 5 56.02 46.97 37.18 14.61 14.59 10.28 14..61 14.59 10.28

10 10 10 101.42 84.97 12.21 58.82 22.07 4.94 31.08 67.23 5.44
15 15 15 Fail Fail Fail 5.46 41.82 20.65 14.61 14.59 10.28
25 25 25 Fail Fail Fail 83.89 119.70 9.66 42.49 49.42 25.86
35 35 35 Fail Fail Fail 80.51 43.55 20.27 176.13 2014.12 29.58
45 45 45 Fail Fail Fail 148.94 104.19 29.98 132.07 131.26 30.66
55 55 55 Fail Fail Fail Fail Fail Fail Fail Fail Fail

To verify the real-time performance of the proposed algorithm in the case of Gaussian noise, we
use the proposed algorithm and the automatic iterative RL algorithm to restore the blurred star image
caused by the star sensor rotating around the Z-axis and compare the time consumed by the two
methods. As shown in Figure 15, the real-time performance of the proposed algorithm is significantly
better than the iterative RL algorithm. This is mainly because the proposed algorithm can use the
ensemble neural network based on the improved bagging method to quickly predict the number
of iterations required by the RL algorithm, while the iterative RL algorithm requires a step-by-step
iteration to optimize the number of iteration steps required.
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Figure 15. Comparison of running time between the proposed method and the iterative RL method in
the case of Gaussian noise.

Second, in the case where the blurred star image is contaminated by Poisson noise, we present
the deblurring performance of the proposed method and compare it with the automatic iterative RL
algorithm. Figure 16 shows the magnified original star image, blurred star images caused by star sensor
rotate around the X- and Y-axis, (wx = wy = 10◦/s), deblurred star image, and the gray distribution
of the star spot in the case of Poisson noise. Combined with Tables 7–11, we can see that in the case
of Poisson noise, the attitude estimation failed when the angular velocity of the star sensor rotating
around the X-axis, the Y-axis, the Z-axis, the X-and the Y-axis, and the three axes exceeds wx = 40◦/s,
wy = 35◦/s, wz = 35◦/s, w = [30, 30, 0]◦/s and w = [15, 15, 15]◦/s, respectively. After the blurred star
image is restored by the proposed algorithm and the automatic iterative RL algorithm, the maximum
angular velocity of the attitude can be estimated to be expanded to wx = 160◦/s, wy = 160◦/s,
wz = 170◦/s, w = [120, 120, 0]◦/s, and w = [80, 80, 80]◦/s, respectively, these two methods have a
similar performance, and the attitude errors are kept in a small range. Figure 17 shows the real-time
performance of the proposed algorithm and the iterative RL algorithm when dealing with the blurred
star image caused by the star sensor rotating around the Z-axis, and the result shows that the real-time
performance of our algorithm is better than the iterative RL algorithm when the degree of the blurred
star image is large.
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Figure 16. The magnified star image and the gray level distribution of the star spot in the case of 
Poisson noise. (a) The magnified original star image; (b) gray level distribution of star spot in the 
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Table 7. Comparison of attitude estimation in the case of Poisson noise (Vary xw ). 

Figure 16. The magnified star image and the gray level distribution of the star spot in the case of
Poisson noise. (a) The magnified original star image; (b) gray level distribution of star spot in the
original star image; (c) the magnified blurred star image (wx = wy = 10◦/s); (d) gray level distribution
of star spot in the blurred star image (wx = wy = 10◦/s); (e) the magnified deblurred star image
(wx = wy = 10◦/s); (f) gray level distribution of star spot in the deblurred star image (wx = wy = 10◦/s).

In summary, the proposed method and the iterative RL algorithm significantly improve the
dynamic performance of the star sensor and have similar performance. However, the real-time
performance of our algorithm is better than the iterative RL algorithm, especially in the case of
Gaussian white noise.
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Table 7. Comparison of attitude estimation in the case of Poisson noise (Vary wx).

wx (deg/s)
Attitude Errors (Blurred
Star Image) (arc-second)

Attitude Errors (Restored
Star Image by Our Method)

(arc-second)

Attitude Errors (Restored
Star Image by Iterative RL

Algorithm) (arc-second)

Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw Roll

1 14.61 14.59 10.28 14.61 14.59 10.28 14.61 14.59 10.28
20 32.73 32.90 15.31 14.61 14.59 10.28 14.61 14.59 10.28
35 47.34 86.91 27.38 14.61 14.59 10.28 15.05 16.10 14.61
40 Fail Fail Fail 14.61 14.59 10.28 14.61 14.59 10.28
55 Fail Fail Fail 108.82 137.30 5.82 65.28 94.19 26.05
70 Fail Fail Fail 81.34 73.45 5.61 2.64 12.00 20.58
85 Fail Fail Fail 5.77 37.94 0.10 33.45 76.93 15.70
100 Fail Fail Fail 14.61 14.59 10.28 24.77 11.80 5.09
115 Fail Fail Fail 32.61 11.32 30.77 58.32 14.25 15.18
130 Fail Fail Fail 77.30 40.39 20.17 155.73 162.04 11.18
155 Fail Fail Fail 43.03 6.38 5.03 115.90 122.36 10.87
160 Fail Fail Fail Fail Fail Fail Fail Fail Fail

Table 8. Comparison of attitude estimation in the case of Poisson noise (Vary wy).

wy (deg/s)
Attitude Errors (Blurred
Star Image) (arc-second)

Attitude Errors (Restored
Star Image by Our Method)

(arc-second)

Attitude Errors (Restored
Star Image by Iterative RL

Algorithm) (arc-second)

Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw Roll

1 14.61 14.59 10.28 14.61 14.49 10.28 14.61 14.59 10.28
15 79.44 29.91 24.85 14.61 14.49 10.28 48.33 69.82 0.37
30 142.86 135.25 5.44 31.08 67.23 4.87 14.61 14.59 10.28
35 Fail Fail Fail 14.61 14.59 10.28 14.61 14.59 10.28
60 Fail Fail Fail 29.23 21.90 20.51 89.29 132.34 16.03
75 Fail Fail Fail 31.08 67.23 5.44 35.21 85.90 26.01
90 Fail Fail Fail 14.61 14.59 10.28 58.07 57.61 0.29
105 Fail Fail Fail 134.41 104.39 24.90 154.70 146.49 6.03
120 Fail Fail Fail 136.04 113.32 0.70 82.09 103.43 0.50
135 Fail Fail Fail 102.04 79.48 0.54 127.91 105.30 14.66
155 Fail Fail Fail 119.10 74.69 0.48 137.62 93.05 14.73
160 Fail Fail Fail Fail Fail Fail Fail Fail Fail

Table 9. Comparison of attitude estimation in the case of Poisson noise (Vary wz).

wz (deg/s)
Attitude Errors (Blurred
Star Image) (arc-second)

Attitude Errors (Restored
Star Image by Our Method)

(arc-second)

Attitude Errors (Restored
Star Image by Iterative RL

Algorithm) (arc-second)

Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw Roll

1 14.61 14.59 10.28 14.61 14.59 10.28 14.61 14.59 10.28
15 124.07 82.00 14.15 14.61 14.59 10.28 15.01 14.94 0.09
30 171.49 129.07 26.77 14.61 14.59 10.28 14.61 14.59 10.28
35 Fail Fail Fail 14.61 14.59 10.28 14.61 14.59 10.28
45 Fail Fail Fail 14.61 14.59 10.28 4.38 40.73 5.28
60 Fail Fail Fail 14.61 14.59 10.28 49.10 34.30 4.87
75 Fail Fail Fail 14.52 58.08 20.74 28.99 7.05 15.25
90 Fail Fail Fail 101.47 129.93 4.50 115.88 64.16 9.72
105 Fail Fail Fail 22.90 22.86 25.87 88.02 109.29 15.91
120 Fail Fail Fail 31.08 67.23 5.44 33.47 54.99 0.21
150 Fail Fail Fail 15.34 15.26 0.09 14.61 14.59 10.28
165 Fail Fail Fail 87.48 43.19 14.98 75.17 74.57 9.85
170 Fail Fail Fail Fail Fail Fail Fail Fail Fail
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Table 10. Comparison of attitude estimation in the case of Poisson noise (Vary wx and wy).

Angular
Velocity (deg/s)

Attitude Errors (Blurred
Star Image) (arc-second)

Attitude Errors (Restored
Star Image by Our

Method) (arc-second)

Attitude Errors (Restored
Star Image by Iterative RL

Algorithm) (arc-second)

wx wy Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw Roll

1 1 40.61 18.59 22.13 14.61 14.59 10.28 14.61 14.59 10.28
15 15 51.70 33.10 21.44 14.61 14.59 10.28 14.61 14.59 10.28
25 25 372.32 260.78 13.32 14.61 14.59 10.28 49.10 34.30 4.87
30 30 Fail Fail Fail 14.61 14.59 10.28 43.08 6.38 5.03
45 45 Fail Fail Fail 14.71 14.46 10.27 14.71 14.46 10.27
60 60 Fail Fail Fail 43.60 79.70 20.88 43.03 6.38 5.03
75 75 Fail Fail Fail 80.44 65.31 4.72 75.75 118.93 16.02
90 90 Fail Fail Fail 52.75 59.83 25.98 58.82 22.07 4.94
105 105 Fail Fail Fail 58.82 22.07 4.94 60.44 25.31 4.72
115 115 Fail Fail Fail 138.30 159.19 0.82 138.30 159.19 0.82
120 120 Fail Fail Fail Fail Fail Fail Fail Fail Fail

Table 11. Comparison of attitude estimation in the case of Poisson noise (Vary wx, wy and wz).

Angular Velocity
(deg/s)

Attitude Errors (Blurred
Star Image) (arc-second)

Attitude Errors (Restored
Star Image by Our Method)

(arc-second)

Attitude Errors (Restored Star
Image by Iterative RL Algorithm)

(arc-second)

wx wy wz Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw Roll.

1 1 1 59.74 47.73 20.42 14.61 14.59 10.28 14.61 14.59 10.28
5 5 5 67.70 46.17 16.68 14.61 14.59 10.28 14..61 14.59 10.28

10 10 10 88.61 125.45 16.57 14.61 14.59 10.28 14.61 14.59 10.28
15 15 15 Fail Fail Fail 14.61 14.59 10.28 80.44 65.31 4.72
25 25 25 Fail Fail Fail 17.43 10.02 5.16 40.75 11.52 15.49
35 35 35 Fail Fail Fail 53.52 24.12 25.38 53.52 24.12 25.38
45 45 45 Fail Fail Fail 93.01 128.85 36.48 150.77 171.60 0.99
55 55 55 Fail Fail Fail 87.19 79.21 0.45 97.60 67.91 30.26
65 65 65 Fail Fail Fail 42.59 42.40 0.16 47.73 83.74 10.54
75 75 75 Fail Fail Fail 42.34 71.39 41.44 42.34 71.39 41.44
80 80 80 Fail Fail Fail Fail Fail Fail Fail Fail Fail
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Figure 17. Comparison of running time between the proposed method and the iterative RL method in
the case of Poisson noise.

5. Conclusions

In this paper, we improve the dynamic performance of the star sensor by using the star image
prediction method and the star image deblurring method. Taking into account the distortion of the
star sensor lens, we use the information provided by the star sensor and the gyroscope to establish
a star spot prediction model. Also, for the blurred star image problem, we proposed an improved
Richardson-Lucy (RL) algorithm based on the EBPNN.
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Experimental results demonstrate that the proposed methods are effective in improving the
dynamic performance of the star sensor. The maximum error of the star image prediction algorithm is
0.89 pixels in 15 s and the attitude errors calculated from the star image restored by the improved RL
algorithm can be kept in a small range. Compared with the iterative RL algorithm, the improved RL
algorithm proposed in this paper has better real-time performance.
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