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Abstract: The accuracy of X-ray pulsar-based navigation is greatly affected by the Doppler effect
caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional
error, spacecraft-borne clock error, etc. In this paper, an innovative navigation method simultaneously
employing the pulse phase (PP), the difference of two neighbor PPs (DPP) and the Doppler frequency
(DF) of X-ray pulsars as measurements is proposed to solve this problem. With the aid of the spacecraft
orbital dynamics, a single pair of PP and DF relative to the spacecraft’s state estimation error can
be estimated by using the joint probability density function of the arrival photon timestamps as the
likelihood function. The systematic biases involved to the PP is proved to be nearly invariant over
two adjacent navigation periods and the major part of it is eliminated in the DPP; therefore, the DPP
is also exploited as additional navigation measurement to weaken the impact of systematic biases on
navigation accuracy. Results of photon-level simulations show that the navigation accuracy of the
proposed method is remarkably better than that of the method only using PP, the method using both
PP and DF and the method using both PP and DPP for Earth orbit.

Keywords: X-ray pulsar-based navigation; Doppler effect; systematic biases; DPP; photon-level
simulation

1. Introduction

Pulsars are strongly magnetized and rapidly rotating neutron stars emitting signals that are unique
and highly periodical [1,2]. Along with their spatial diversity about the galactic disk, pulsars have been
suggested as a natural lighthouse for spacecraft navigation. Among all pulsars, X-ray pulsar are more
suitable for spacecraft navigation due to the much smaller detector size required compared to that for
radio or optical sources [3]. X-ray pulsar-based navigation (XPNAV) has been suggested as a potential
approach for autonomous spacecraft navigation [4–6]. Unlike some current applications for spacecraft
navigation, such as Deep Space Network and Global Navigation Satellite System, which suffer from
low performance outside their effective coverage and rely extensively on ground-based operations, the
XPNAV has the same accuracy throughout the solar system and has much more autonomy [7,8]. It can
also be used to augment the current navigation systems to improve their performance by introducing
pulsar measurements [9,10].

In XPNAV, a key task is the estimation of pulse phase (PP), which requires conversion of the
measured photon time-series to the coordinate time at the Solar System Barycenter (SSB) using the
initial position estimate of the spacecraft and various ephemeris parameters [6,11,12]. Many studies of
XPNAV, such as [13,14], have assumed the spacecraft position is invariable within a filtering period
and have no consideration of the ephemeris errors and the satellite-borne clock error. Reference [13]
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presents an XPNAV augmentation method which utilizes both pulsar observation and X-ray ranging
observation for navigation filtering. Reference [14] shows how the problem of pulsar phase estimation
can be recast as a cyclic shift parameter estimation problem under multinomial distributed observations,
whose maximum likelihood solution can be implemented by means of a fast, Discrete Fourier Transform
based procedure. However, the un-modeled effects caused by the orbital motion of the spacecraft
would severely degrade the PP estimation accuracy and therefore lower the navigation performance;
furthermore, ephemeris errors and spacecraft-borne clock error can introduce systematic biases that
cannot be effectively suppressed by navigation filtering [9,15,16].

To eliminate the spacecraft orbital motion effect, some researchers proposed to use the digital
phase-locked loop to track the Doppler frequency (DF) over a sufficiently short interval. This strategy
suffers from relatively poor accuracy due to the limited observation duration and strong background
noise [17,18]. Some researchers proposed to estimate the spacecraft’s velocity by minimizing the
distortion of the pulse profile and have achieved inspiring estimation accuracy [19]. Reference [20]
formulated an approximation to the phase evolution at the spacecraft by utilizing the orbit dynamic
model and then parameterized a correction to this approximation. This method uses both the PP and
the DF as navigation measurements and outperforms the method which only use the PP measurement.
Reference [21] proposes a Doppler compensation method for the interplanetary trajectory cruise phase
under the assumption that the acceleration of the explorer is constant during a pulsar signal observation
period. Reference [22] introduces a pulsar phase and Doppler frequency estimation method using
on-orbit epoch folding, in which a framework called on-orbit epoch folding is provided, consisting of
removal of vehicle orbital motion effect, search for the period of converted photon time of arrivals, and
estimation of the initial phase.

All above mentioned methods haven’t consider the systematic biases. Reference [23] proposes a
time-differenced technique to get rid of the systematic biases for spacecraft in constellations. Since this
technique requires the pulse time-of-arrival (TOA) measurements of several spacecraft simultaneously,
it cannot be applied to a single spacecraft. Reference [24] handles the systematic biases by including
them as a part of the state vector, but since it establishes the systematic biases as constant, this method
is only appropriate to treat the nearly invariant biases. Assuming the spacecraft is stationary within a
filtering period, [9] utilizes the time-differenced pulse TOAs as additional measurements to augment
the traditional star angle based navigation and has achieved a good robustness to the spacecraft-borne
clock error and the pulsar directional error.

In this paper, inspired by the study in [9], we develop an innovative X-ray pulsar-based navigation
method considering both the spacecraft orbital motion effect and the systematic biases introduced
by the ephemeris errors and the satellite-borne clock error, of which the PP, the difference of two
neighbor PPs (DPP) and the DF of X-ray pulsars observed at the spacecraft are utilized as the navigation
measurements. With the aid of the orbit dynamic model, a single pair of PP and DF relative to the
spacecraft’s state estimation error can be extracted by recognizing the joint probability density function
(pdf) of the arrival photon timestamps as the likelihood function. The systematic biases involved to
PP and DF by the ephemeris errors and the satellite-borne clock error are discussed; based on this,
the DPP is also introduced as navigation measurement to weaken the impact of systematic biases on
navigation accuracy since the major part of systematic biases is eliminated in the DPP. In addition,
since the previous PP estimate and the previous state are needed to formulate the DPP measurement
equation, which fails to meet the requirements of the standard Kalman filter, a modified unscented
Kalman filter (UKF) is deduced to fuse the different measurements; however, it is worthwhile to notice
that this modification strategy is flexible, any existing nonlinear estimation approaches can be merged
into it. For example, particle filtering is capable of attaining asymptotically optimal estimation of the
state of a nonlinear and/or non-Gaussian discrete-time dynamical system [25,26], which is exactly a
good choice for the XPNAV. The modification strategy can also be extended to the various state of the
art particle filters [27,28].
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The rest of the paper is organized as follows. In Section 2, mathematical models of X-ray pulsar
signals observed at the spacecraft are deduced based on the ones established at the SSB. In Section 3,
the models of the proposed navigation system are developed. The PP, DF and DPP measurements
are detailed in this section. Section 4 gives the algorithms needed to estimate the spacecraft’s state
utilizing the detected photon timestamps, including a maximum likelihood (ML) estimator used
to estimate the navigation measurements and a modified unscented Kalman filter used to fuse the
different measurements. A series of photon-level simulations are performed in Section 5 to evaluate
the performance of this new navigation method. Finally, Section 6 concludes the study.

2. Signal Models of X-Ray Pulsars

The fundamental data provided to the XPNAV system are the observed TOAs of X-ray photons
from the pulsar sources and cosmic X-ray background. The foregone photon arrival model of X-ray
pulsars is established at a hypothetical reference location usually chosen as the SSB. The photon arrival
model at the spacecraft can be obtained by transferring the one at the SSB to the spacecraft according
to the spacecraft’s position and velocity.

2.1. Photon Arrival Rate Function at the SSB

Assume there exists an X-ray detector at the SSB. Let (t0, t f ) be the observation interval. Let ti

be the TOA of the i-th photon, and the set {t0, t1, · · · , tK}, denoted by {ti}
K
i=1, be a random sequence

in increasing order. The number of the detected photons, K, is also a random variable. Let t0= 0,
N0= 0, and Nt be the number of detected photons in the interval (0, t). The detected X-ray photon
event timestamps {Nt, t > 0} can be modeled as the arrival times of a Non-Homogeneous Poisson
Process (NHPP) with a time varying rate function λSSB(t) ≥ 0 [2]. In other words, {Nt, t > 0} satisfies
the following conditions [2]:

(1) The probability of detecting one photon in a time interval ∆t is λSSB(t)∆t when ∆t→ 0 .
(2) The probability of detecting more than one photon in ∆t is 0 when ∆t→ 0 .
(3) Nonoverlapping increments are independent.

For a fixed time interval (s, e), the number of arrival photons Ns,e is a Poisson random variable
with parameter

∫ e
s λSSB(t)dt. Its distribution law is:

P(Ns,e = k) =

(∫ e
s λSSB(t)dt

)k
exp

(
−

∫ e
s λSSB(t)dt

)
k!

(1)

The rate function λSSB(t) align includes all the arriving photons from the X-ray pulsar and the
background. It has the form:

λSSB(t) = βSSB + αSSBh(φSSB(t)) (ph/s) (2)

where αSSB ≥ 0 and βSSB ≥ 0 are respectively the known effective source and background arrival rates
in unit of photons per second, and h is the normalized pulsar profile, which is unique to a particular
pulsar, defines the characteristic shape of the rate function, and is a continuous and nonnegative real

function, periodic with period 1 (h(φ+ n) = h(φ) for ∀n ∈ Z) and with unit area
∫ 1

0 h(φ)dφ = 1 [2].
φSSB(t) is the observed phase at the SSB with respect to the coordinate time t seen at the SSB. It is
expressed as the Taylor series:

φSSB(t) = φ0 + f (t− t0) +

.
f
2
(t− t0)

2 +

..
f
6
(t− t0)

3 (3)

where f ,
.
f and

..
f are respectively the source frequency and its first and second derivatives, and φ0 the

initial phase at a reference time t0.
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2.2. Photon Arrival Rate Function at the Spacecraft

Let r(t) and v(t) respectively denote the spacecraft’s coordinate and velocity in the SSB coordinate
frame at the spacecraft proper time t, and n is the directional vector from the SSB to the pulsar.
The photon arrival rate function at the spacecraft λ(t) can be written as:

λ(t) = (1 + (n · v(t))/c)(βSSB + αSSBh(φSSB(t + τ(t)))) (4)

with τ(t) the offset of proper time a photon arrives at the spacecraft compared to the arrival SSB-based
coordinate time of the same photon at the SSB. For Earth-orbiting spacecraft, assuming that the
spacecraft proper time is chosen as the Terrestrial Time (TT), τ(t) can be expressed as [29,30]:

τ(t) =
n·r(t)

c + 1
2cD

[
(n · r(t))2

−

∣∣∣r(t)∣∣∣2 + 2(n · r(t))(n · b) − 2(bT
· r(t))

]
−

2µs
c3 ln(1 +

(n+bT)·(r(t)+b))

|r(t)+b|
∣∣∣n+bT

∣∣∣ ) + 1
c2 (ν(t) − νE/SSB(t))

T
· vE/SSB(t) + P

(5)

where c is the speed of light, D is the distance between the Sun and the pulsar, b is the position of
SSB with respect to the Sun, µs is the gravitational constant of Sun, νE/SSB(t) is the velocity vector of
Earth with respect to the SSB and P represents the total periodic correction items. The first term on the
right-hand side of Equation (5) is the geometric time delay between the spacecraft and the SSB along
the line-of-sight to the pulsar, the second term is due to the effects of parallax, and the third term is the
Sun’s Shapiro delay. The last two terms are the Einstein delay, which accomplishes the conversion of
spacecraft proper time to SSB-based coordinate time. It is noteworthy that the Sun’s Shapiro delay
and the Einstein delay in the Equation (5) is referenced to the ones employed by the Heasoft v6.11.1
software platform provided by NASA [31].

In practical navigation, letting r̃(t) and ṽ(t) respectively denote the position and velocity of
the spacecraft predicted by the orbit dynamics and letting ∆r(t) and ∆ν(t) respectively denote the
corresponding position and velocity errors, the accurate position and velocity of spacecraft can be
expressed as:

r(t) = r̃(t) + ∆r(t) (6)

ν(t) = ṽ(t) + ∆ν(t) (7)

Substituting Equations (6)–(7) into Equation (4) and regarding the pulsar frequency as invariant

within a time duration of n·∆r(t)
c , we can expand the estimated phase model at the spacecraft φSSB(t +

τ(t)) as [20]:

φSSB(t + τ(t)) = φSSB(t +
n·̃r(t)

c +
n·∆r(t)

c + p(̃r(t) + ∆r(t)) + s(̃r(t) + ∆r(t)) + e(̃v(t) + ∆ν(t)))

= φ̃(t) +
.
φSSB(t +

n·̃r(t)
c + p(̃r(t)) + s(̃r(t)) + e(̃v(t))) n·∆r(t)

c

(8)

in which:

φ̃(t) = φSSB(t +
n · r̃(t)

c
+ p(̃r(t)) + s(̃r(t)) + e(̃v(t))) (9)

is the pulsar phase model at the spacecraft derived by the spacecraft state with errors, p(̃r(t) + ∆r(t)),
s(̃r(t) + ∆r(t)) and e(̃v(t) + ∆ν(t)) respectively represent the parallax delay, Sun’s Shapiro delay and
Einstein delay. The effects of spacecraft state error on them are extremely small and therefore they
have been neglected.

3. Dynamic and Measurement Models of Proposed Navigation Method

The spacecraft’s position x(t) and velocity ε(t) in the J2000.0 Earth Centered Inertial (ECI)
coordinate system are selected as the state vector to be estimated. Letting [ts, te] denote the time
interval of a filtering period, the navigation measurements are the estimated phase φ̂(te) and Doppler
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frequency
.
φ̂(te) at the time te as seen at the spacecraft, and the difference of φ̂(te) and the estimated

phase of the previous filtering period, φ̂(ts). In what follows, the Dynamic model and measurement
models of the proposed navigation method are formulated in detail.

3.1. Dynamics Model

In the Earth-centered inertial coordinate system, the dynamic model of earth-orbit spacecraft can
be expressed as: [ .

x
.
ε

]
=

[
ε

a

]
+

[
wε

wa

]
(10)

where X = [ xT εT ]
T

is the state vector of spacecraft with respect to the Earth,W = [ wT
ε wT

a ]
T

is
the process noise which can be characterized as a zero-mean Gaussian white noise process, and the
acceleration of spacecraft a can be written as:

a = aearth + asun + amoon + aJ2 (11)

considering the two-body effect of Earth aearth, the third-body effects from the Sun and the Moon,
respectively denoted by asun and amoon, and the Earth non-spherical perturbation acceleration aJ2 [10].

3.2. Measurement Models

3.2.1. PP and DF Measurements

Within a filtering period seen at the spacecraft, regarding ∆ν(t) and
.
φSSB(t +

n·̃r(t)
c + p(̃r(t)) +

s(̃r(t))+ e(̃v(t))) as invariant and equal to the one at the time ts, Equation (8) can be further simplified as:

φSSB(t + τ(t)) = φ̃(t) + ∆p + ∆ f (t− ts), (12)

where ∆p = fs
n·∆r(ts)

c , ∆ f = fs
n·∆v(ts)

c and:

fs =
.
φSSB(ts +

n · r̃(ts)

c
+ p(̃r(ts)) + s(̃r(ts)) + e(̃v(ts))). (13)

∆p and ∆ f are respectively the pulse phase delay and Doppler frequency offset which can be estimated
from the detected photon event timestamps. The PP measurement equation is given as:

φ̃(te) + ∆p̂ + ∆ f̂ · Tobs = φSSB(te +
n·(x(te)+rE/SSB(te))

c + p(x(te) + rE/SSB(te))

+s(x(te) + rE/SSB(te)) + e(ε(te) + νE/SSB(te))) + up(te)
, (14)

with rE/SSB(t) being the Earth position vector relative to the SSB, Tobs= te − ts the integration interval
of navigation filter and up(te) the phase noise. φ̂(te) = φ̃(te) + ∆p̂ + ∆ f̂ · Tobs is the PP measurement,
where ∆p̂ and ∆ f̂ are respectively the estimated pulse phase delay and Doppler frequency offset.

The DF measurement equation is obtained by differentiating Equation (14) and is written as:

.

φ̃(te) + ∆ f̂ =
.
φSSB(te +

n·(x(te)+rE/SSB(te))
c + p(x(te) + rE/SSB(te)) + s(x(te) + rE/SSB(te))

+e(ε(te) + νE/SSB(te)))
(
1 + n·(ε(te)+vE/SSB(te))

c

)
+ u f (te)

(15)

where u f (te) is the frequency noise. The term
.
φ̂(te) =

.

φ̃(te) + ∆ f̂ = fs(1 + n · ν̃(te)/c) + ∆ f̂ is the
DF measurement, in which the differentials of p(̃r(t)), s(̃r(t)) and e(̃v(t)) are neglected since they are
extremely small compared to 1 and n · ν̃(te)/c.
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3.2.2. DPP Measurement

Taking the pulsar directional error, pulsar distance error and spacecraft-borne clock error into
consideration, the PP measurement equation can be rewritten as:

φ̂(te) ≈ φSSB(te +
ñ·̃r(te)

c + 1
2cD̃

[
(̃n · r̃(te))

2
−

∣∣∣̃r(te)
∣∣∣2 + 2(̃n · r̃(te))(̃n · b) − 2(bT

· r̃(te))
]

−
2µs
c3 ln(1 +

(ñ+bT)·(̃r(te)+b))

|̃r(te)+b|
∣∣∣̃n+bT

∣∣∣ ) + e(̃v(te))) + E(∆n) + E(∆D) + E(∆t)
(16)

where ñ is the measured pulsar direction vector, D̃ is the measured distance between the Sun and
the pulsar, ∆n the pulsar direction error, ∆D the pulsar distance error, ∆t the spacecraft-borne clock
error. E(∆n), E(∆D) and E(∆t) are the corresponding systematic biases caused by ∆n, ∆D and ∆t,
respectively. E(∆n) and E(∆D) can respectively be approximated by the first order Taylor series:

E(∆n) ≈ fs(
∆n·̃r(te)

c + 1
cD̃
[(̃n · r̃(te))(∆n · r̃(te)) + (̃n · r̃(te))(∆n · b) + (∆n · r̃(te))(̃n · b)]

−
2µs

c3

∆n
[̃
r(te) + b−

((̃
n + bT) · (̃r(te) + b)/

∣∣∣̃n + bT
∣∣∣)(d

∣∣∣̃n + bT
∣∣∣/dñ)

]
∣∣∣̃r(te) + b

∣∣∣∣∣∣̃n + bT
∣∣∣+ (̃

n + bT) · (̃r(te) + b)

≈ fs
∆n·̃r(te)

c

(17)

and:
E(∆D) ≈ − fs

∆D

2cD̃2

[
(̃n · r̃(te))

2
−

∣∣∣̃r(te)
∣∣∣2 + 2(̃n · r̃(te))(̃n · b) − 2(bT

· r̃(te))
]
. (18)

The derivation of E(∆n) satisfies:

.
E(∆n) ≈ fs

∆n · ṽ(te)

c
≤

fs
c
· ‖∆n‖ · ‖̃v(te)‖ ≤

fs
c
· vmax · ‖∆n‖ (19)

where vmax is the spacecraft’s maximum velocity in the SSB coordinate frame. Taking the PSR B1821-24
for example and assuming the maximum velocity of the spacecraft vmax is 30 km/s,

.
E(∆n) is smaller

than 2 × 10−9, meaning that the increment of E(∆D) is smaller than 7 × 10−6 within 1 h, which is
obviously ignorable. The derivation of E(∆D) satisfies:

.
E(∆D) ≈ fs

∆D

cD̃2

[̃
r(te)

Tṽ(te) − (̃n · r̃(te))(̃n · ṽ(te)) − (̃n · ṽ(te))(̃n · b) + bT
· ṽ(te)

]
≤ fs

2∆D

cD̃2
(‖̃r(te)‖+ ‖b‖) · ‖̃v(te)‖ ≈ fs 2∆D

cD̃2
(‖rE/SSB(te)‖+ ‖b‖) · ‖vE/SSB(te)‖

(20)

It can be known based on the JPL DE405 that the maximums of rE/SSB(te), vE/SSB(te) and b
are respectively 1.5 × 108 km, 30 km/s, and 5 × 105 km. In addition, based on the study of [32],
the minimum and uncertainty of D̃ are respectively assumed as 2 kpc and 30%. Therefore, for PSR
B1821-24,

.
E(∆D) ≤ 1 × 10−10, suggesting that the increment of E(∆D) within two adjacent navigation

periods can be neglected. Furthermore, it has been studied that the spacecraft-borne clock error
increases approximately by 36 ns/h [9], thus the variation of E(∆t) = fs∆t can also be neglected.

All the above analysis suggests that the DPP measurement can reduce the major part of E(∆n)
E(∆D) and E(∆t). Following from Equation (14), the DPP measurement equation can be written as:

∆φ̂(te) = φ̂(te) − φ̂(ts)

= φSSB(te +
ñ · (x(te) + rE/SSB(te))

c
+ p(x(te) + rE/SSB(te)) + s(x(te) + rE/SSB(te)) + e(ε(te) + νE/SSB(te)))

−φSSB(ts +
ñ · (x(ts) + rE/SSB(ts))

c
+ p(x(ts) + rE/SSB(ts)) + s(x(ts) + rE/SSB(ts)) + e(ε(ts) + νE/SSB(ts)))

+up(te) − up(ts)

(21)
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It is noteworthy that since the DPP measurement can only provide information about the relative
position, the PP measurement is necessary to acquire information about the absolute position.

4. Measurements Estimation and Fusion Filtering

In Section 3.2.1, we have modeled the arrival rate function at the spacecraft with respect to the
spacecraft’s foregone state information and state error, seen as Equation (12). It turns out that the
derivation of the rate function can be parameterized by a pulse phase delay ∆p and a Doppler frequency
offset ∆ f , which are respectively caused by the initial position error and velocity error of the spacecraft
and are essential for constructing the navigation measurements. In this section, based on the signal
models and navigation system models given in the previous sections, the ML estimator used to
estimate ∆p and ∆ f directly from the detected X-ray photon timestamps are presented, and then a
modified unscented Kalman filter used to fuse the different measurements to update the spacecraft
state are detailed.

4.1. ML Estimator

Based on the characteristics of NHPP, the joint pdf of the arrival timestamps {ti}
K
i=1 during a

filtering period [ts, te] is derived as [2]:

p({ti}
K
i=1) = e−

∫ te
ts
λ(s)ds

K∏
i=1

λ(ti) (22)

Utilizing Equation (22) as likelihood function, the unknown parameter (∆p, ∆ f ) can be estimated
by:

(∆p̂, ∆ f̂ ) = argmax
∆p,∆ f


K∑

i=1
ln

{
βSSB + αSSBh

[
φ̃(t) + ∆p + ∆ f (ti − ts)

]}
+

K∑
i=1

ln(1 + ṽ(ti)·n
c +

∆v(ts)·n
c ) −

∫ te

ts
λ(s)ds

 (23)

For the second term on the right hand side of Equation (23), since the term (∆v(ts) · n)/c dependent
of the unknown parameter ∆ f is much smaller than the other two terms independent of (∆p, ∆ f ), the
overall second term can be approximately seen as independent of (∆p, ∆ f ). Furthermore, since the
third term

∫ te

ts
λSC(s)ds is also independent of (∆p, ∆ f ), we end up with the following estimator:

(∆p̂, ∆ f̂ ) = argmax
∆p,∆ f

K∑
i=1

ln
{
βSSB + αSSBh

[
φ̃(t) + ∆p + ∆ f (ti − ts)

]}
. (24)

The 3σ search ranges of ∆p and ∆ f are respectively:

range(∆p) =

−3 fs

∣∣∣σ(̃r(ts)) · n
∣∣∣

c
, 3 fs

∣∣∣σ(̃r(ts)) · n
∣∣∣

c

 and (25)

range(∆ f ) =

−3 fs

∣∣∣σ(̃v(ts)) · n
∣∣∣

c
, 3 fs

∣∣∣σ(̃v(ts)) · n
∣∣∣

c

, (26)

in which σ(̃r(ts)) and σ(̃v(ts)) are the root mean squared error of r̃(ts) and ṽ(ts) respectively.
When the observation time is sufficiently long, the estimation accuracy of the presented ML

estimator can achieve the Cramér-Rao lower bound (CRLB):

CRLB(∆p) =
4

(te − ts)I
and (27)
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CRLB(∆ f ) =
12

(te − ts)
3I

(28)

with I =
∫ 1

0
(αSSBh(φ))

2

βSSB+αSSBh(φ)dφ [20].
After ∆p and ∆ f have been estimated from the observed photon timestamps, the navigation

measurements PP, DF and DFF can be obtained according to Equation (14), Equation (15) and
Equation (21). Figure 1 shows the overall procedure of extracting navigation measurements from the
observed photon timestamps. 

s s( ), ( )t tr v

Orbit dynamic 

model

1{ ( )}K

i it =r Phase model at 

the spacecraaft 

1{ }K

i it =
1{ ( )}K

i it =
ML estimator

ˆˆ( , )p f e( )t
Eq.(12)

Eq.(13)
sfDF

PP
Eq.(19)

DPP

 

Figure 1. Flowchart of navigation measurements estimation. 
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=


=
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Figure 1. Flowchart of navigation measurements estimation.

4.2. Modified Unscented Kalman Filter

Since the orbit dynamic model and the measurement model of the proposed navigation method
are both nonlinear, the Kalman filter cannot be used. In the XPNAV, the filtering period is usually
several minutes. Under this condition, the EKF, which represents the nonlinear models by a first order
Taylor series expansion and neglects the second and higher order terms, cannot perform very well.
Since the UKF does not linearize the nonlinear equations, it does not cause the linearization error.
For this reason, the UKF is a good choice for the XPNAV [24]. In this section, a modified unscented
Kalman filter is deduced to upstate the spacecraft state. In order to reduce the time-correlation of the
DPP measurement equation, the previous state which is required in the DPP measurement equation is
replaced by the sum of its estimate and the corresponding estimation error, and the mean square error
matrix of the DPP measurement noise after the above transformation is derived.

The orbit dynamic model of the proposed navigation system can be rewritten as the following
matrix form:

Xk = f (Xk−1) + Wk. (29)

The measurement equations of PP and DF can be expressed in the matrix form:

Pk = h1(Xk) + Vk and (30)

Fk = h2(Xk) + Uk (31)

respectively, in which Pk and Fk are respectively the PP and DF measurement vectors, and Vk and Uk
are the noise vectors, satisfying E(VkUT

k ) = 0, E(VkWT
k ) = 0 and E(UkWT

k ) = 0.
Formulating state of the previous epoch Xk−1 as the sum of its estimate X̂k−1 and the corresponding

estimation error ∆Xk−1, the DPP measurement equation can be rewritten as:

Dk = h1(Xk) − h1(Xk−1) + Vk −Vk−1
= h1(Xk) − h1(X̂k−1 + ∆Xk−1) + Vk −Vk−1
≈ h1(Xk) − h1(X̂k−1) −Hk−1∆Xk−1 + Vk −Vk−1
= h1(Xk) − h1(X̂k−1)+Γk

(32)
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where Dk is the DPP measurement vector:

Hk−1 =
∂h1(X)

∂X

∣∣∣∣∣∣
X=X̂k−1

(33)

and Γk = −Hk−1∆Xk−1 + Vk −Vk−1 is the noise vector, satisfying E(ΓkWT
k ) = 0 and E(ΓkUT

k ) = 0.
It can be deduced that:

Ck = E(ΓkΓT
k )

= E((−Hk−1∆Xk−1 + Vk −Vk−1 )(−Hk−1∆Xk−1 + Vk −Vk−1 )
T)

= Hk−1E(∆Xk−1∆XT
k−1

)
HT

k−1 + E(VkVT
k ) + E(Vk−1VT

k−1) + Hk−1E(∆Xk−1VT
k−1

)
= Hk−1E(∆Xk−1∆XT

k−1

)
HT

k−1 + Qk + Qk−1 −Hk−1Kk−1Rk−1

(34)

where Kk−1 is the gain matrix and Qk = E
(
VkVT

k

)
.

After the above transformations, we can perform the procedures of standard unscented Kalman
filter to update the spacecraft’s position and velocity by recognizing Equation (10) as the orbit dynamic
model and recognizing Equation (30), Equation (31) and Equation (32) as the measurement equations.

5. Photon-Level Simulations and Discussion

In this section, some simulations are carried out to evaluate the performance of the proposed
navigation method, using photon event timestamps generated by the simulation method given in [33].

The pulsars PSR B1509-58, PSR B0540-69, PSR B0531+21 and PSR B0833-45 are selected as the
navigation pulsars and their parameters are listed in Table 1. Figure 2 shows the normalized profiles of
the selected four pulsars [20]. The initial orbit state is listed in Table 2. The simulation start time is
chosen as MJD 52557.1155893. The Earth’s position and velocity is predicted by the ephemeris JPL
DE405. The detector area is 1 m2 and the filtering period is 120 s. The background radiation flux for
PSP B0531+21 is 1.015 ph/cm2/s [4]. For the other three pulsars, the background flux is assumed as
0.005 ph/cm2/s based on the research of the Naval Research Laboratory. The uncertainty of pulsar
distance is set as 30% [32]. The initial clock error and the drift rate of clock frequency are respectively
set as 1 µs and 10−11 Hz [9].

Table 1. Parameters of navigation pulsars [20,29].

Name Declination
(◦)

Right
Ascension

(◦)
D (kpc) αSSB(ph/cm2/s) f (1/s)

.
f (1/s2)

Declination
Errorδθ (mas)

Right
Ascension

Errorδϕ (mas)

B0833-45 −2.79 263.55 3.9 1.59 × 10−3 11.197 −1.56 × 10−11 −44 128
B0540-69 −68.6684 85.0465 47.3 5.15 × 10−3 19.802 0.000 × 10+0 200 40
B1509-58 −58.8642 228.4818 4.3 1.62 × 10−2 6.629 −6.74 × 10−11 1000 90
B0531+21 22.0145 83.6332 2 1.12 × 10−1 29.982 −3.79 × 10−10 60 5

Table 2. Initial orbit state of the spacecraft.

Orbit State Value

x-axis position −7385277.8 m
y-axis position 34560765.34 m
z-axis position −22339513.83 m
x-axis velocity −1316.58 m/s
y-axis velocity −1702.40 m/s
z-axis velocity −2223.82 m/s

Considering that the filtering period is longer than the observation time required for the selected
four pulsars to achieve the Cramér-Rao lower bound (CRLB) and to account for other un-modeled error
sources, the noise levels of ∆p̂ and ∆ f̂ are set as two times the square-root of CRLB. The covariance matrix
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of the process noise is diag[q2
1, q2

1, q2
1, q2

2, q2
2, q2

2], where q1 = 2 × 10−5 m and q2 = 6 × 10−4 m/s [10].
The measurement update period is set as 120 s. The initial position and velocity errors of spacecraft are
respectively [100 km, 100 km, 100 km] and [100 m/s, 100 m/s, 200 m/s] and the covariance of the initial
state is diag[q2

3, q2
3, q2

3, q2
4, q2

4, q2
5], where q3 = 100 km, q4 = 100 m/s and q5 = 200 m/s.
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Figure 2. Normalized profiles of pulsar B1509-58 (a), B0540-69 (b), B0531+21 (c) and B0833-45 (d). 

First, we compare our proposed method with the traditional method which only uses the PP 

measurement and the method which uses both the PP and DF measurements. For clarity, Table 3 

gives the concepts of different measurements. When performing real-time photon level navigation 

simulations, the phase of the detected photons must be computed considering the dynamic motion 

of the spacecraft, otherwise the un-modeled Doppler effects caused by the motion of the spacecraft 

would result in the distortion of the folded pulse profiles of X-ray pulsars and severely degrade the 

pulse phase estimation accuracy which directly determines the navigation accuracy. Therefore, 

focusing on testifying the advantages of incorporating the DF and DPP measurements, in our 

experiments, we also use Equation (8) given in our article to compute the estimated phase of the 

detected photon timestamps for the traditional method which only uses the PP measurement. To 

focus on this purpose, we also use the UKF to update the spacecraft state for the latter two methods. 

Figure 3 shows the performance comparison of the three methods without systematic biases, 

and Figure 4 shows the results with systematic biases. For clarity, Table 4 lists the steady-state 

position and velocity estimation errors corresponding to the results shown in Figure 3 and Figure 4. 

It can be seen that no matter whether there are systematic biases, the method using the PP and DF 

measurements both obviously outperform the conventional XPNAV method which only uses the PP 

measurement, illustrating that the incorporation of the DF measurement in the navigation filter can 

yield better navigation accuracy. It is because that the modelling and estimation of the DF can 

eliminate the effect of the spacecraft orbital motion on the PP estimation accuracy to a large extent.  

Figure 2. Normalized profiles of pulsar B1509-58 (a), B0540-69 (b), B0531+21 (c) and B0833-45 (d).

First, we compare our proposed method with the traditional method which only uses the PP
measurement and the method which uses both the PP and DF measurements. For clarity, Table 3
gives the concepts of different measurements. When performing real-time photon level navigation
simulations, the phase of the detected photons must be computed considering the dynamic motion of
the spacecraft, otherwise the un-modeled Doppler effects caused by the motion of the spacecraft would
result in the distortion of the folded pulse profiles of X-ray pulsars and severely degrade the pulse
phase estimation accuracy which directly determines the navigation accuracy. Therefore, focusing
on testifying the advantages of incorporating the DF and DPP measurements, in our experiments,
we also use Equation (8) given in our article to compute the estimated phase of the detected photon
timestamps for the traditional method which only uses the PP measurement. To focus on this purpose,
we also use the UKF to update the spacecraft state for the latter two methods.

Table 3. Concepts of different measurements.

Measurement Concept

PP PP Pulse phase φ̂(te)

DF DF Doppler frequency
.
φ̂(te)

DPP difference of φ̂(te) and φ̂(ts)

Figure 3 shows the performance comparison of the three methods without systematic biases, and
Figure 4 shows the results with systematic biases. For clarity, Table 4 lists the steady-state position
and velocity estimation errors corresponding to the results shown in Figures 3 and 4. It can be seen
that no matter whether there are systematic biases, the method using the PP and DF measurements
both obviously outperform the conventional XPNAV method which only uses the PP measurement,
illustrating that the incorporation of the DF measurement in the navigation filter can yield better
navigation accuracy. It is because that the modelling and estimation of the DF can eliminate the effect
of the spacecraft orbital motion on the PP estimation accuracy to a large extent.
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Table 4. Steady-state position and velocity estimation errors with different navigation measurements.

PP PP + DF PP + DF + DPP

Results without
systematic errors

Position error (m) 4906 3010 3297
Velocity error (m/s) 0.4355 0.2191 0.2214

Results with
systematic errors

Position error (m) 6591 5180 3820
Velocity error (m/s) 0.36 0.32 0.2301

It can also be observed that our proposed method which incorporates the DPP measurement
as well as the PP and DF measurements obviously outperforms the method which only uses the PP
measurement no matter whether there are systematic biases. Furthermore, when there are systematic
biases, the navigation accuracy of our proposed method is also obviously higher than the one of
method using the PP and DF measurements, which verifies that the incorporation of DPP measurement
can reduce the effect of the systematic biases on navigation accuracy. However, when there are no
systematic biases, it is observed that the performance of our proposed method is slightly worse than
the method which uses the PP and DF measurements. We attribute this to the reason that the DPP
measurement introduces more noise than useful information in this situation.

Figure 5 shows the performance comparison between the proposed method, the method with
augmenting state proposed in Ref. [24] and the conventional method which only uses the PP
measurement. It can be seen that compared with the conventional method, the other two methods
both can reduce the impact of systematic biases. Besides, the proposed method can achieve a more
accurate steady state compared to the method with augmenting state. We attribute this to the reason
that when focusing on compensating the composite impacts of various systematic biases, our proposed
method has a better robustness to measurement noise compared to the method with augmenting state.
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Figure 5. Performance comparison of the proposed method, the method with augmenting state and 

the conventional method. (a) Position estimation error; (b) Velocity estimation error. 

The performance of the proposed method is also studied under different initial velocity errors. 
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Finally, we investigate the effectiveness of the proposed method under different levels of 

systematic biases. Due to space limitations, here we only depict the impacts of pulsar directional 

errors on navigation performance. The impacts of pulsar distance error and spacecraft-borne clock 

error on navigation performance show the same regularity as that of pulsar directional errors. Figure 

6 shows the performance comparison of our proposed method and the method using the PP and DF 

measurements under different angular position errors. The declination errors and right ascension 
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position errors listed in Table 1 and n is the multiplication coefficient. We can see that as the pulsar 

Figure 5. Performance comparison of the proposed method, the method with augmenting state and
the conventional method. (a) Position estimation error; (b) Velocity estimation error.

The performance of the proposed method is also studied under different initial velocity errors.
Table 5 lists the steady-state position estimation errors of our proposed method and the method using
PP and DPP measurements under different initial velocity error, with the other parameters being set as
same as described above. It can be seen that the position error of the method using only PP and DPP
measurements rapidly grows as the initial velocity error increases; on the other hand, position error
of our proposed method only slightly grows as the initial velocity error increases and the advantage
of our proposed method compared to the method without DF measurements becomes more and
more notable.

Table 5. Steady-state position estimation errors with different initial velocity error.

Initial Velocity Error Position Error (m)
(PP + DPP)

Position Error (m)
(PP + DF + DPP)

[60 m/s, 60 m/s, 120 m/s] 4084 3565
[80 m/s, 80 m/s, 160 m/s] 4367 3687

[100 m/s, 100 m/s, 200 m/s] 5298 3824
[120 m/s,120 m/s, 240 m/s] 6496 4078
[140 m/s, 140 m/s, 280 m/s] 7930 4307
[160 m/s, 160 m/s, 320 m/s] 9477 4472

Finally, we investigate the effectiveness of the proposed method under different levels of systematic
biases. Due to space limitations, here we only depict the impacts of pulsar directional errors on
navigation performance. The impacts of pulsar distance error and spacecraft-borne clock error on
navigation performance show the same regularity as that of pulsar directional errors. Figure 6
shows the performance comparison of our proposed method and the method using the PP and DF
measurements under different angular position errors. The declination errors and right ascension
errors are respectively set as n ∗ δθ and n ∗ δϕ, of which δθ and δϕ are the actual values of the angular
position errors listed in Table 1 and n is the multiplication coefficient. We can see that as the pulsar
angular position error increases, our proposed method consistently outperforms the method which
uses the PP and DF measurements and the advantage becomes more and more notable. It is noteworthy
that the position estimation errors of the proposed method also increase as the pulsar angular position
error increases. We expect this phenomenon since though the time differential method can eliminate
the major part impact of the systematic biases on the DPP measurement, the PP and DF measurements
are still affected by the systematic biases, which can lead to a decrease in the navigation performance.
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6. Conclusion 
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APPENDIX 

Important parameters’ notation and meaning. 

SSB( )t  time varying photon arrival rate function at the SSB 

SSB  effective source arrival rate 
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6. Conclusions

This paper develops an innovative navigation method to eliminate the impact of Doppler effect
caused by the spacecraft orbital motion and the systematic biases introduced by the pulsar directional
error, spacecraft-borne clock error, etc. The method simultaneously employs the PP, the DF and the
DPP of X-ray pulsars as navigation measurements. The PP and DF relative to the spacecraft’s state
estimation error is estimated by using the joint probability density function of the arrival photon
timestamps as the likelihood function. Since the major part of systematic biases introduced by pulsar
directional error, pulsar distance error and spacecraft-borne clock error is eliminated in the DPP,
the DPP is also employed as navigation measurement to weaken the impact of systematic biases.
Results of photon-level simulations testify to the advantages of the proposed method and show
that simultaneously incorporating the PP, the DF and the DPP measurements can yield much better
navigation accuracy than the method only using PP, the method using both PP and DF and the method
using both PP and DPP for Earth orbit, and its advantage becomes more and more notable when the
systematic biases increase.

It is noteworthy that the correlation between the PP and DPP measurements will inappropriately
bias the filter, which is a shortcoming of the proposed method. If an effective method can be found
to eliminate the correlation between the PP and DPP measurements, the navigation accuracy can be
further improved, which is our next work. The batch least squares method can also be used to provide
the DPP measurement, which is also one of our next work.
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Appendix A

Important parameters’ notation and meaning.

λSSB(t) time varying photon arrival rate function at the SSB
αSSB effective source arrival rate
βSSB effective background arrival rate
h(φ) normalized pulsar profile
φSSB(t) observed phase at the SSB with respect to the coordinate time t seen at the SSB
φ0 initial phase at a reference time t0 seen at the SSB
r(t) spacecraft’s coordinate in the SSB coordinate frame at the spacecraft proper time t
v(t) spacecraft’s velocity in the SSB coordinate frame at the spacecraft proper time t
n directional vector from the SSB to the pulsar
λ(t) photon arrival rate function at the spacecraft

τ(t)
offset of proper time a photon arrives at the spacecraft compared to the arrival
SSB-based coordinate time of the same photon at the SSB

c speed of light
D distance between the Sun and the pulsar
b position of SSB with respect to the Sun
µs gravitational constant of Sun
νE/SSB(t) velocity vector of Earth with respect to the SSB
P total periodic correction items
r̃(t) position of the spacecraft predicted by the orbit dynamics
ṽ(t) velocity of the spacecraft predicted by the orbit dynamics
∆r(t) position error
∆ν(t) velocity error
p(̃r(t) + ∆r(t)) parallax delay corresponding to position r̃(t) + ∆r(t)
s(̃r(t) + ∆r(t)) Sun’s Shapiro delay corresponding to position r̃(t) + ∆r(t)
e(̃v(t) + ∆ν(t)) Einstein delay corresponding to velocity ṽ(t) + ∆ν(t)
φ̃(t) pulsar phase model at the spacecraft derived by the spacecraft state with errors
x(t) spacecraft’s position in the J2000.0 Earth Centered Inertial (ECI) coordinate system
ε(t) spacecraft’s velocity in the J2000.0 Earth Centered Inertial (ECI) coordinate system
[ts, te] time interval of a filtering period
φ̂(te) estimated phase at the time te as seen at the spacecraft
.
φ̂(te) estimated Doppler frequency at the time te as seen at the spacecraft

a acceleration of spacecraft
X state vector of spacecraft with respect to the Earth
W process noise vector
wε velocity noise vector
wa acceleration noise vector
∆p pulse phase delay
∆ f Doppler frequency offset
rE/SSB(t) Earth position vector relative to the SSB
up phase noise
∆p̂ estimated pulse phase delay
∆ f̂ estimated Doppler frequency offset
u f frequency noise
ñ measured pulsar direction vector
∆n pulsar direction error
D̃ measured distance between the Sun and the pulsar
∆D pulsar distance error
E(∆n) corresponding systematic biases caused by ∆n
E(∆D) corresponding systematic biases caused by ∆D
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E(∆t) corresponding systematic biases caused by ∆t
vmax spacecraft’s maximum velocity in the SSB coordinate frame
∆φ̂(te) the difference of φ̂(te) and the estimated phase of the previous filtering period, φ̂(ts)

P PP measurement vector of the navigation filter
F DF measurement vector of the navigation filter
V PP noise vector of the navigation filter
U DF noise vector of the navigation filter
D DPP measurement vector of the navigation filter
Γ DPP noise vector of the navigation filter
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