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Abstract: Handshaking is a common technique used to avoid collisions in terrestrial and underwater
content-based networks. However, due to the long propagation delay of the underwater acoustic
channel, the conventional handshaking mechanism, which only allows one successful handshake
and one pair of nodes to communicate per transmission cycle, becomes less effective in underwater
acoustic networks. This paper proposes a new distributed scheduling method for underwater acoustic
networks that supports multiple handshakes and concurrent transmissions in one transmission cycle
for one-hop clusters. A deterministic scheduling algorithm was developed to optimize the sending
sequence and time of the source nodes jointly so that the total data transmission time is shortened
while avoiding collisions among multiple concurrent transmissions. The deterministic scheduling
algorithm can also reduce the scheduling overhead and enables the synchronization of the data
concurrent transmissions in a distributed manner via the standard two-way handshaking. Simulation
results show that the proposed method outperforms several conventional underwater medium access
control protocols in normalized throughput, packet delivery rate, average end-to-end delay, and
average energy consumption.
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1. Introduction

As the need for monitoring the marine environment for scientific exploration, commercial
exploitation and coastline protection continues to grow, underwater acoustic communication and
networking are receiving considerable attention [1–3]. Underwater acoustic channels, which are
characterized by limited bandwidth, high and variable propagation delay, time-varying multi-path
and fading, resulting in high bit error rates and temporary losses of connectivity, creates challenges for
underwater acoustic networking [3]. The medium access control (MAC) protocol, which controls the
nodes in a network to share a common broadcast channel, is one of the key techniques for underwater
acoustic networking.

Many MAC protocols for underwater acoustic networks have been proposed [1–3]. They can be
broadly classified into three categories: contention-free, contention-based and hybrid protocols [2].
In the contention-free protocols, a node does not need to compete with other nodes when accessing
the medium. Collisions are avoided by assigning different frequency bands, time slots, or spreading
codes to different users. Typical contention-free schemes include frequency division multiple access
(FDMA), time division multiple access (TDMA), and code division multiple access (CDMA). In the
contention-based protocols, the nodes compete for the opportunity to access the medium. Because
contention causes collisions which significantly reduce the efficiency of the communication, minimizing
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the collisions is the key task for contention-based protocols. Besides, the required overheads for the
contentions should also be considered and minimized. Random access and handshaking are two
major schemes used in contention-based protocols. Usually, contention-free protocols are suitable
for continuous transmission, whereas contention-based protocols are more efficient for burst data
transmission. To take the advantage of both techniques, the hybrid MAC protocols integrate different
medium access techniques so that better performance can be achieved in underwater environments.

Handshaking is a technique widely used to avoid collision in contention-based terrestrial networks
and was standardized in IEEE 802.11i. However, the conventional handshaking mechanism, which
only allows one successful handshake and one pair of nodes to communicate per transmission cycle,
becomes less effective in underwater environments due to the long propagation delay of underwater
acoustic channels. Exchanging request-to-send (RTS) and clear-to-send (CTS) packets in the underwater
environment requires much more time than in terrestrial radio channels, so the transmission efficiency
decreases significantly. Many modified handshake-based protocols have been proposed to address
this problem. One of the most effective methods is to exploit the opportunity of the temporal and/or
spatial reuse of the acoustic channel that is created by the long propagation latency to allow multiple
concurrent packets to propagate in the same contention domain [4]. In the previous research, several
handshake protocols with temporal and/or spatial reuse techniques have been developed in sender- or
receiver-initiated modes for centralized or distributed underwater acoustic networks [4–10]. However,
little attention has been paid to using this technique to implement multiple handshakes and multiple
concurrent transmissions in one transmission cycle for distributed underwater acoustic networks.
Besides, the sending sequence of the source node affects the transmission efficiency due to the different
propagation delays between the source and destination nodes, which has not been mentioned in
previous studies.

In this paper, we propose a new distributed scheduling method for underwater acoustic networks
that supports multiple handshakes and concurrent transmissions in one transmission cycle for one-hop
clusters using the temporal reuse technique. The contributions of our work include:

• A new synchronization method for distributed scheduling was developed, whose basic
idea involves scheduling using a deterministic algorithm. Because deterministic algorithms
can generate the same results independently when given identical initial conditions, the
synchronization for distributed scheduling can be achieved via a two-way handshake, which is
the simplest form of the handshaking protocol and has the least overhead.

• The influence of the sending sequence of the source nodes on the concurrent transmission efficiency
was discussed. A scheduling method based on dynamic programming for the joint optimization
of the node’s sending sequence and time is proposed. By considering the sending sequence of the
source nodes, the transmission efficiency can be further improved.

• Based on the above two methods, we propose a new distributed scheduling MAC protocol for
underwater acoustic networks that supports multiple handshakes and concurrent transmissions
in one transmission cycle for one-hop clusters. By supporting more concurrent transmission in a
transmission cycle, the proposed method outperforms several conventional underwater MAC
protocols in the simulations.

The rest of this paper is organized as follows: in Section 2, the works related to underwater MAC
protocols are reviewed. In Section 3, the new distributed scheduling method for underwater acoustic
networks is proposed. Sections 4 and 5 present and discuss the simulation results, respectively. Finally,
Section 6 concludes the paper.

2. Related Work

Many MAC protocols have been proposed for underwater acoustic networks [1–3]. In Chen et al. [2],
these protocols were divided into three categories: contention-free, contention-based, and hybrid
protocols. Contention-free MAC protocols divide the spectral resources into discrete channels and
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separately assign them to nodes to avoid contentions. FDMA assigns different frequency bands to
individual users. However, the limited bandwidth of underwater acoustic channels greatly restricts
the scale of network. To overcome this problem, orthogonal frequency division multiple access
(OFDMA) techniques [11,12] for underwater acoustic networks were proposed to improve the use
of the limited bandwidth. OFDMA allows multiple user symbols to transmit simultaneously using
different subcarriers with mutually orthogonal overlapping frequency bands so that more users can
be supported. CDMA [13,14] is a physical and MAC layer technique that allows multiple users
to communicate simultaneously in the same frequency band by spreading the user messages with
pseudo-noise (PN) codes. The CDMA-based MAC protocols in underwater acoustic networks mainly
focus on spreading code assignment, power control and energy efficiency. TDMA allows users to
occupy the whole channel in non-overlapping time intervals. It is simple in implementation, so it is
widely used in practical underwater acoustic networks. However, due to the large propagation delay
in acoustic channels, the conventional TDMA protocol has lower channel use in underwater acoustic
networks. Therefore, some modified TDMA protocols were proposed to improve the efficiency of the
conventional TDMA through temporal and/or spatial reuse [15–19].

In the contention-based protocols, all nodes compete to assess a shared channel, which means
that a node has the chance to exploit the full bandwidth of the channel when it wins in the contention,
but will lose the chance for communication in the current transmission cycle when it fails in the
contention. The contention-based protocols can be further divided into random access and handshaking
protocols [2]. Random access protocols allow a node to transmit its data when needed. The ALOHA
based protocols are typical random access protocols. In the basic version of ALOHA, a node sends
data whenever it needs without any control. It is simple and easy to implement but many collisions
occur when the traffic load is heavy. Some variances based on ALOHA have been proposed to
improve its performance in underwater environments, such as Slotted ALOHA, propagation delay
tolerant ALOHA, ALOHA with carrier sense, and ALOHA with advance notification [1–3]. Another
type of widely used random access protocol is Carrier Sense Multiple Access (CSMA), in which all
nodes have to sense the channel before sending data to reduce collisions. Improvements can be
achieved by optimizing sensing duration, back-off window, scheduling, enabling interleaving, and
energy-efficiency [1–3]. Without careful transmission controls, collisions become severe in the ALOHA-
and CSMA-based protocols as the traffic loads increase.

To reduce collision, handshaking protocols use channel reservation to control the transmission of
each node, in which a node has to capture the channel by handshaking before sending data. Floor
Acquisition Multiple Access (FAMA) and Multiple Access Collision Avoidance (MACA) are two
of the earliest handshaking protocols that use RTS and CTS for handshaking. New protocols were
proposed based on FAMA and MACA by leveraging long propagation delays, improving handshaking
efficiency, and improving handshaking success [2]. Among these improvements, using the long
propagation delay to accommodate concurrent transmissions by scheduling or reservation is an
effective method to improve overall performance. The MAC protocols using this technique include
Reverse Opportunistic Packet Appending (ROPA) [5], Hybrid Sender- and Receiver-initiated (HSR) [6],
Bidirectional-Concurrent MAC (BiC-MAC) [7], Delay-aware Opportunistic Transmission Scheduling
(DOTS) [8], Receiver Initiated Packet Train (RIPT) [9], and Decoupled and Suppressed Handshaking
(DSH-MAC) [10]. These protocols improve the transmission efficiency effectively; however, they still
lack the ability to support multiple handshakes and concurrent transmissions for multiple pairs of
senders and receivers in distributed networks.

In the hybrid MAC protocols, different medium access techniques are employed and can switch
to each other on demands. Because the hybrid MAC protocols can take advantage of different
medium access techniques, they usually produce better performance, so have become attractive
research topics in underwater acoustic networks. Many hybrid MAC protocols have been proposed,
which include the hybrid of contention-free protocols like the Hybrid Spatial Reuse Time-Division
Multiple-Access (HSR-TDMA) [19], which combines the TDMA and CDMA techniques; the hybrid
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of contention-based protocols like the Underwater Practical MAC (UPMAC) [20], where ALOHA-
and receiver-based protocols are used for low load mode and high load mode, respectively; and
the hybrid of contention-free and contention-based protocols like Data-Collection-Oriented MAC
(DCO-MAC) [21], where a contention-based MAC protocol is used in the sub-network with a light
traffic load, whereas a reservation-based MAC protocol is used in the sub-network with a heavy
traffic load.

3. Concurrent Transmission Based on Distributed Scheduling

3.1. System Description and Problems

Consider a one-hop cluster in a distributed underwater acoustic network, where all nodes in the
cluster are static, randomly distributed and can reach each other directly using an omnidirectional and
half-duplex underwater acoustic modem. The clocks in all nodes are synchronous. A delay table that
contains the inter-node propagation delays in the cluster is stored by each node, which is obtained in
the network initialization stage by measuring the round-trip time or exchanging information with
its neighbors.

The basic idea of the proposed method is to allow multiple handshakes and concurrent
transmissions in one transmission cycle so that the channel resource can be used more effectively.
There are two major problems in designing such a MAC protocol:

• How to implement the scheduling algorithm in a distributed manner with the least overhead.
Because there is no central node to broadcast the scheduling information, synchronizing the
sending time of each source node to avoid collision is difficult.

• How to optimize the sending time of the source nodes to shorten the total data transmission time.
The scheduling algorithm should ensure that a packet sent by an arbitrary source node will not
overlap with other packets at its corresponding destination node (as a result, all destination nodes
will receive their packets correctly), while ensuring the whole data transmission time is as short as
possible. Note that overlaps of packets at their non-destination nodes are allowed.

3.2. Protocol Description

To solve the two problems addressed in Section 3.1, we propose a new distributed scheduling
method that has the following features: (1) a deterministic scheduling algorithm is adopted to calculate
the sending time table for each source node, through which a node can calculate its sending time table
independently and obtain the same result when the input parameters of the scheduling algorithm
are identical. This feature means that if the handshaking can provide all the input parameters for
the scheduling algorithm, it is possible to synchronize the concurrent transmitted in distributed
environments using a two-way handshake, which is the simplest form of the handshaking protocol
and has the least overhead. (2) The sending sequence and time of the source nodes are optimized
jointly using dynamic programming to ensure the packets sent by a source node do not conflict with
other packets at its corresponding destination, while ensuring the data transmission time is as short as
possible. This optimization algorithm is presented in Section 3.3.

The proposed method follows the basic handshaking mechanism where the channel is reserved by
the control packets of RTS and CTS. Time stamps are added to each control packet for synchronization.
Because there is no central node to control the transmission, the source and destination nodes are
synchronized through dedicated control packets, whose time stamps are unique in the transmission.
A transmission cycle consists of four stages: the RTS stage, CTS stage, data stage, and acknowledgement
(ACK) stage, as shown in Figure 1. In Figure 1, S1, S2, and S3 are the source nodes and D1, D2 and D3

are the corresponding destination nodes. The solid arrows represent the transmission to the recipient
of a packet and the dashed arrows represent the transmissions to the other nodes that will also listen
the packet.
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Figure 1. Timing diagram of the proposed protocol. 
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3.2.1. RTS Stage

The transmission starts from the RTS stage which is triggered by the first RTS packet sent by an
arbitrary node in the cluster when the cluster is idle. Different from the conventional handshaking
protocols, each node in the cluster can send out an RTS packet in this stage when it has data to transmit.
It means that multiple RTS packets can be sent in the RTS stage. To reduce the collision of the RTS
packets, the sending time of the following RTS packets are uniformly distributed in the time interval
of [Trts

−Drts
i , T0], where Trts denote the time stamp of the last received RTS packet, Drts

i denotes
the propagation delay of this RTS packet to the source node si, and T0 is a constant used to control
the length of the time interval, which is larger than the maximum propagation delay in the cluster.
Each source node is allowed to send an RTS packet once in a transmission cycle to avoid a long RTS
stage. When a node that sends an RTS does not receive the corresponding CTS, it waits for another
transmission cycle instead of resending the RTS packet. The RTS stage ends after a fixed delay when
the last RTS packet in the cluster is sent out.

3.2.2. CTS Stage

When the RTS stage ends, all nodes in the cluster enter the CTS stage. In the CTS stage, the nodes
that receive the RTS requests and are ready for receiving data will send out the CTS packets to their
corresponding source nodes. The proposed method also allows multiple CTS packets to be sent in this
stage. The CTS packets are sent out randomly within a time interval to reduce collisions. The CTS
stage ends after a fixed delay when the last CTS packet is sent out.

3.2.3. Data Stage

In the data stage, the source nodes that succeed in handshaking calculate their sending time and
wait for transmission. Each source node independently executes a copy of the proposed scheduling
algorithm. Because the proposed scheduling algorithm is deterministic and its input parameters are
the node pairs that successfully shake hands in the current transmission cycle, all the source nodes can
obtain the same sending time table for each source node through the proposed scheduling algorithm if
they receive all the CTS packets correctly. When the sending time of a node arrives, it starts to transmit
data to the corresponding destination node. Each node can independently calculate the ending time
of the data stage using the proposed deterministic scheduling algorithm. Note that overlaps of data
packets at their non-destination nodes are allowed in this stage, as shown in Figure 1, where the data
packets from the source nodes S1 and S2 are allowed to overlap at the destination node D3.
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3.2.4. ACK Stage

The ACK/Negative ACKnowledgment (NACK) packets are sent using the same method as the
data packets in the ACK stage. When all ACK/NACK packets are sent, the cluster turns idle and is
ready for another new transmission cycle.

The fundamental difference between the proposed scheme and the basic RTS/CTS mechanism is
that the former supports multiple successful handshakes and concurrent transmissions per transmission
cycle, whereas the latter only allows one successful handshake and one pair of nodes to communicate.
In the RTS and CTS stages, multiple RTS and CTS packets can be sent in the proposed scheme, which
means that multiple successful handshakes are allowed. In the data and ACK stage, the data and ACK
packets are transmitted concurrently at an optimized time. This batch transmission mode effectively
makes use of the long propagation delay in underwater acoustic channels so that the total transmission
time can be shortened when there is more than one node that has data to transmit. So, the proposed
scheme is superior to the basic RTS/CTS mechanism in most cases.

3.3. Joint Optimization of Sending Sequence and Time

In previous studies, scheduling was usually implemented in a sender- and/or receiver-initiated
manner for content-based networks, where a sender or receiver can receive multiple packets from
different nodes. In these protocols, the effect of the sending sequence was insignificant. However, in
the proposed protocol, multiple senders send packets to their corresponding receivers in a transmission
cycle, which means the sending sequence is important to the transmission efficiency due to the unequal
propagation delays among nodes. Figure 2 provides an example of two concurrent transmissions with
different sending sequences. The total transmission time is much shorter when S1 sends the packet
before S2. Therefore, in the proposed protocol, the sending sequence and times of the source nodes
both must be optimized. In this section, we first consider the optimization of the sending time of the
source node when the sending sequence is given. Then, a dynamic programming-based algorithm is
proposed for the joint optimization of the sending sequence and time of the source nodes. To satisfy
the synchronization requirement, no stochastic algorithm is used in the optimization.
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3.3.1. Sending Time Optimization

Assume that the sending sequence of the source nodes is given. Let si and sj denote two arbitrary
source nodes in a transmission cycle, di and dj are their corresponding destinations. Assume that
si sends out its data packet before sj and the data packet from si arrives at di and dj earlier than the
data packet from sj. Although this assumption might lead to sub-optimal solutions, it simplifies
the discussion. To avoid collisions at di and dj, the sending time of si and sj should satisfied the
following constraints:

• The data packets sent by si and sj should not overlap at di, which leads to:

Tdata
i + Ldata

i + Dsidi ≤ Tdata
j + Ds jdi , (1)
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where Tdata
i and Tdata

j denote the sending time of the data packets from si and sj, respectively. Ldata
i

is the length of the data packet from si; and Dsidi and Ds jd j denote the propagation delays from si
to di and sj to di, respectively.

• The data packets sent by si and sj should not overlap at dj, which leads to:

Tdata
i + Ldata

i + Dsid j ≤ Tdata
j + Ds jd j , (2)

where Dsid j and Ds jd j denote the propagation delay from si to dj and sj to dj, respectively.

Let s1 and sj denote the first and the i-th source nodes to send data packets in the current
transmission cycle, respectively. At the beginning of the data stage, all source nodes reset their data
stage clocks to the time stamp of the last CTS packet. s1 starts its transmission at time D, where D is a
constant that is larger than the maximum propagation delay in the cluster. Based on equations (1) and
(2), the minimal collision-free sending times of all source nodes can be calculated by: Tdata

1 = D
Tdata

j = max{Tdata
i + Ldata

i + max
{
Dsid j −Ds jd j , Dsidi −Ds jdi

}
|i = 1 ∼ j− 1}+ C . (3)

where C is the guard time required to accommodate the variations of the propagation delays. Note that
each node can obtain the same sending time table for all source nodes using Equation (3) if they receive
all the CTS packets in the CTS stage correctly. Therefore, each source node can calculate its sending
time independently without central control.

Similarly, all destination nodes reset their ACK stage clocks to the sending time of the last data
packet which can be calculated using Equation (3). Then the sending time of the ACK/NACK packets
can be calculated by: Tack

1 = D

Tack
j = max{Tack

i + Lack
i + max{Ddis j −Dd js j , Ddisi −Dd jsi }

∣∣∣∣i = 1 ∼ j− 1}+ C
, (4)

where Tack
1 and Tack

i denote the sending time of the ACK/NACK packets from d1 and di, respectively;
Lack

i is the length of the ACK/NACK packet from di; and Ddisi , Ddis j , Dd js j and Dd jsi denote the delays
from di to si, di to sj, dj to sj and dj to si, respectively.

3.3.2. Sending Sequence Optimization

In Section 3.3.1, the optimized data sending time of each source node can be obtained using
Equation (3) when the sending sequence is given. However, the total transmission time changes with
the sending sequence due to the unequal propagation delays among different nodes. Therefore, the
sending sequence should also be optimized to achieve better performance. If there are N pairs of nodes
that succeed in handshaking in a transmission cycle, there will be N! sending sequence combinations,
which requires a huge amount of computation when N becomes large. So, we propose a dynamic
programming-based method to jointly optimize the sending sequence and time.

In the proposed method, the optimization problem is modeled by a state machine with N + 2 states.
These states include the starting state, ending state, and state {STi|1 ≤ i ≤ N} which correspond to the N
source nodes. The state machine starts from the starting state and ends at the ending state. The starting
state can transfer to state STi. State STi can transfer to the ending state. State STi can transfer to state STj,
where i , j, without any loops in the state transfer sequence. Define the cumulative weight of a state
transfer sequence as the total transmission time. Then, the sending sequence optimization problem is
equivalent to determine a state transfer sequence with the minimum cumulative weight. To simplify
the discussion, we assume that all the data packets have the same sizes of Ldata. The proposed method
can be implemented using the following steps:
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1. Create N transition paths from the starting state to state STi, 1≤ i≤N, and initialize the cumulative
weights of these transition paths to 0. Set the iteration time r = 1.

2. For each surviving path, the states contained in this path are deleted from the state set
Q = {ST1, ST2, . . . , STN} to obtain a new state set Qk,r, where k is the index of the surviving path.
Transfer the state machine from the current state to a new state in Qk,r. The sending time of the
corresponding new node is given by:

Tdata
k,r =

 D, r = 1

max{Tdata
k,l + Ldata + max{Dskldkr

−Dskrdkr
, Dskldkl

−Dskrdkl
}

∣∣∣∣l = 1 ∼ r− 1}+ C, r > 1
, (5)

where Tdata
k,l denotes the sending time of the l-th source node in the k-th surviving path. skl and dkl

denote the l-th source node and its corresponding destination node in the k-th surviving path,
respectively; and Dskidkj

denote the propagation delay from ski to dkj. The cumulative weight of
the new path can be given by:

Wdata
k,r = max{Tdata

k,i + Ldata + D + C
∣∣∣∣i = 1 ∼ r}. (6)

3. Select the path with the least cumulative weight from all the paths that transfer to state STi,
1 ≤ i ≤ N, as the surviving path and delete the others. Set the current state of each surviving path
to the new state added in the r-th iteration.

4. If r < N, then r = r + 1 and repeat steps 2–4 for another iteration. Otherwise, all surviving paths
transfer from the current state to the ending state. The state sequence in the surviving path with
the smallest cumulative weight is the optimized sending sequence.

The proposed method only has N iteration steps, so the calculation complexity is low. However,
because the increased weight is not fixed as many dynamic programming problems and will change
with the prior state sequence in a path, the proposed method does not guarantee obtaining the
best solution.

3.4. Collisions

Although the calculation of the sending sequence and time of the source nodes can ensure that
the data packets sent by a source node will not overlap with other packets at the corresponding
destination node if the source nodes know the correct information about the source and destination
node pairs in the current transmission cycle, collisions will still occur when a node loses one or more
CTS packets. Assume that there are M destination nodes in the current transmission cycle and each
destination node selects a time in [0, T0] to send its CTS packet uniformly and independently. Then for
a source node si, the arrival time of the CTS packets from the destination node dj will follow a uniform

distribution in
[
Dd jsi , T0 + Dd jsi

]
, i.e., Tcts

d jsi
∼ U

(
Dd jsi , T0 + Dd jsi

)
, where Tcts

d jsi
= Tcts

j + Dd jsi denotes the

arrival time of the CTS packets from dj to si; Tcts
j and Dd jsi are the sending time of the CTS packets from

dj and the propagation delay from dj to si, respectively; and U(a, b) denotes the uniform distribution.
An approximate lower bound of the no-collision probability at si is given in Appendix A as

P(no collision at si) > 1−M(M− 1)

Lcts

T0
−

1
2

(
Lcts

T0

)2 (7)

Equation (7) shows that the collision probability at si is proportional to the second-order polynomial
of M and become less when Lcts/T0 decreases.
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When one or more CTS packets are missing, a source node will miscalculate its sending time
table, which will cause collisions in the current transmission cycle. Let Tdata

i−err denote the miscalculated
sending time of si. Then, the data packet from si will conflict with the packet from sj when:

Tdata
i_err > Tdata

j + Ds jdi −Dsidi − Ldata (8)

or:
Tdata

i_err < Tdata
j + Ldata + DsJdJ −DsidJ . (9)

This miscalculation only affects the current transmission cycle and will not accumulate.

3.5. Multi-Hop Extension

Although the proposed method is designed for one-hop clusters, it can also be applied to multi-hop
networks. When two clusters overlap each other, the nodes belong to both clusters can only joint
the communication of one cluster, which will affect the communication of the other if they send out
packets. So the simplest application of the proposed method to the multi-hop network is to stop
the transmission of a cluster if the communication of any other overlapping clusters will affect it.
This scheme can be summarized as:

1) When the nodes that belong to multiple clusters are idle, all clusters can communicate
independently.

2) If a node that belongs to multiple clusters has data to send to a destination node in one cluster,
it must wait for the nodes in other clusters to be idle and then joins a transmission cycle in the
destination cluster. The nodes in the other clusters stop trying to communicate when they receive
the RTS packet from the overlapping node and wait until it finishes sending the data packet,
or timeout.

3) If a node that belongs to multiple clusters receives an RTS packet from one cluster, it needs to
check the state of the other clusters. The CTS packet can only be sent out when all the other
clusters are idle. The nodes in the other clusters stop trying to communicate when they receive
this CTS packet and wait until they receive the ACK/NACK packet sent by the overlapping node.

This scheme does not need to synchronize the overlapping clusters, which is difficult to implement
in underwater environments. However, because the overlapping clusters cannot work concurrently
when there are nodes belonging to multiple clusters needing to join the communication of one cluster,
the transmission efficiency in the multi-hop situation is not as high as in the one-hop situation.
More sophisticated synchronization or using multi-channel may improve the performance of the
proposed method in multi-hop environments. These technologies are beyond the scope of this paper.

4. Simulations and Results

The simulations were implemented by Aqua-Sim [22], which is an NS-2 based simulator for
underwater sensor networks and developed at the Underwater Sensor Network (UWSN) Lab at
the University of Connecticut. In the experiment, the nodes are randomly located in a square area
1.5 × 1.5 km2 and 500m deep. All nodes in the cluster are static and can reach the other nodes
directly. In the network initialization stage, each node measures the round-trip time with other nodes,
and broadcasts this information to the others to obtain an inter-node propagation delay table. The
acoustic propagation speed is set to 1500 m/s. Data packet size, control packet size, and data rate
are 125 bytes, 10 bytes and 1200 bps, respectively. The powers of sending, receiving, and idle states
are set to 20, 1 and 0.5 Watt, respectively. Data packets generation for each node follows a Poisson
distribution with parameter λ packets/s, and the destination of each packet is selected randomly with
equal probability. Channel-related packet losses are ignored, i.e., packet losses only occur due to packet
collisions. In the simulations, the normalized throughput, packet delivery rate, average end-to-end
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delay, and average energy consumption of the proposed method are compared with underwater
ALOHA (UWALOHA), underwater carrier sense multiple access/collision avoidance (UW-CSMA/CA),
slotted floor acquisition multiple access (SFAMA) and ROPA protocols with different network loads
and node numbers. The normalized throughput, packet delivery rate, average end-to-end delay,
average energy consumption and normalized offered load are defined as [23]:

• Normalized throughput: The ratio of the average number of data bits successfully received by the
intended destinations per second to the transmission bit rate (dimensionless).

• Packet delivery rate: The ratio of the number of data packets successfully delivered at the intended
destinations to the total number of data packets generated (dimensionless).

• Average end-to-end delay: The average time interval between generation and successful delivery
of data packets at the intended destinations (in ms).

• Average energy consumption: The ratio of the total energy consumption to the number of data
packets successfully received by the intended destinations (in Joule/packet or J/pkt).

• Normalized offered load: The ratio of the average number of data bits sent per second to the
transmission bit rate (dimensionless).

UWALOHA, UW-CSMA/CA, slot SFAMA are typical ALOHA, CSMA, and handshaking based
MAC protocols respectively. ROPA is an underwater MAC protocol that employs the temporal reuse
technique to support multiple data transmissions in a transmission cycle.

4.1. Performance Under Different Network Loads

The performance of UWALOHA, UW-CSMA/CA, SFAMA, and ROPA protocols, and the
proposed method under different network loads are shown in Figure 3, where “DS” and “DS
without SO” denote the proposed distributed scheduling method with and without sending sequence
optimization, respectively.

Figure 3a shows the normalized throughputs of these protocols under different network loads.
Figure 3a shows that the proposed method reaches its maximum normalized throughput around 0.85
when the network load is higher than 2.8. The normalized throughputs of DS and DS without SO are
both higher than the four conventional MAC protocols. DS produces higher normalized throughput
than DS without SO, which shows the effectiveness of the proposed joint optimization method.
UWALOHA provides the highest normalized throughput when network load is 0.3–0.6, but decreases
rapidly as the network load increases due to the massive conflicts caused by uncontrolled transmission.
UW-CSMA/CA and SFAMA reach their maximum normalized throughputs around 0.35 and 0.56 under
the network loads of 1.5 and 2.3, respectively. The maximum normalized throughputs of UW-CSMA/CA
and SFAMA are much lower than those of the proposed method because, in UW-CSMA/CA and
SFAMA, only one pair of nodes can communicate in a transmission cycle. This means that a node needs
to compete for the transmission opportunity using the RTS/CTS handshake mechanism for each data
packet, which significantly reduces the channel use in underwater environments. When only one node
needs to transmit data, the proposed method provides the same performance as UW-CSMA/CA and
SFAMA. However, when there is more than one node that has data to send, the proposed method can
shorten the data transmission time by optimizing the transmission schedules of each source node, and
the concurrent handshaking also reduces the overhead. Therefore, the proposed method can support
heavier network loads and achieve higher maximum normalized throughput than UW-CSMA/CA
and SFAMA. ROPA has similar normalized throughputs as the proposed method when the network
load is around 0.3–1.3 but becomes lower as the network load increases because in ROPA, additional
concurrent transmissions only occur when other nodes have data to send to the source node, which
will sometimes reduce the concurrent transmission opportunity. The proposed method imposes no
constraints on the source and destination nodes and can support multiple transmissions with optimized
sequences and time in a transmission cycle, so that can provide better performance than ROPA.
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Figure 3b shows the delivery rates of the four conventional protocols and that of the proposed
method. The delivery rates of all methods drop as the network load increases. UWALOHA provides
the lowest delivery rate and tends to be zero when the network load is higher than 2.8. The delivery
rates of UW-CSMA/CA, SFAMA, and ROPA are higher than UWALOHA because they use handshaking
to avoid conflicts. The proposed method provides the highest delivery rate in the simulation because
collisions only occur when a node loses the CTS packets and the collision rate of the CTS packets is
usually low due to their small size. Concurrent transmission can also improve the total number of
transmitted data packets in a fixed time interval, which produces a higher delivery rate. DS had a
higher delivery rate than DS without SO because the former can transmit more data packets than the
latter in the same time interval under the same collision rates of the CTS packets.
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Figure 3. Performance of UWALOHA, UW-CSMA/CA, SFAMA, and ROPA protocols and that of the
proposed method under different network loads. (a) Normalized throughput; (b) Packet delivery rate;
(c) Average end-to-end delay; (d) Average energy consumption.

Figure 3c shows the average end-to-end delays of the four conventional protocols and that of
the proposed method. UWALOHA produced the lowest average delay when the network load was
below 0.6 but worsened in high network load environments due to the collisions and retransmission.
UW-CSMA/CA and SFAMA produced high average delays because handshaking is needed for each data
packet transmission. The average delay of ROPA was significantly smaller than those of UW-CSMA/CA
and SFAMA because it supports concurrent transmission of multiple nodes in a transmission cycle so
that the average handshaking overhead is reduced. However, the nodes whose destinations are not the
source node still need to wait for another transmission cycle, which limits the performance of ROPA.
Compared with ROPA, the proposed method increases the opportunity of concurrent transmission in a
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transmission cycle, so had the lowest average delay in the simulation. DS results in lower average
delay than DS without SO due to the more compatible transmission scheduling.

Figure 3d shows the average energy consumptions of the four conventional protocols and that of the
proposed method. UWALOHA consumes the highest average energy due to the retransmissions caused
by the frequent collisions. UW-CSMA/CA and SFAMA have medium average energy consumption
because handshaking reduces the collision while introducing the additional transmission of RTS and
CTS packet for each data packet. ROPA and the proposed method reduce the average overhead energy
consumption by supporting concurrent transmission in each transmission cycle. The increase in the
concurrent transmission opportunity in the proposed method leads to lower average overhead energy
consumption than ROPA. DS results in lower average energy consumption than DS without SO.

4.2. Performance with Different Network Sizes

The performance of UWALOHA, UW-CSMA/CA, SFAMA, and ROPA, and that of the proposed
method under different network sizes are shown in Figure 4. The arrival rates of the Poisson distribution
were set to 100 in all simulations.
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Figure 4a shows that UWALOHA achieves the highest throughput when the number of nodes
is less than 8 but drops quickly as the network size increases. UW-CSMA/CA, SFAMA, and ROPA
reach their maximum throughput of 0.30, 0.40, and 0.53, respectively, at the network size of 20.
The throughputs of DS and DS without SO become saturated after the network size reaches 26.
They achieved the maximum throughputs of 0.70 and 0.65, respectively, which were the highest in the
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simulation, because the proposed method provides more concurrent transmission opportunity so that
more nodes can transmit their data in one transmission cycle. DS also outperformed DS without SO in
the simulation results.

In Figure 4b, the delivery rates of all methods decrease as the network size increases because the
network load increases with the network size. UWALOHA had the lowest delivery rate and tended to
be zero when the network size was larger than 20. The delivery rates of UW-CSMA/CA, SFAMA and
ROPA were higher than that of UWALOHA. DS results in the highest delivery rate in the simulation.

Figure 4c shows the average end-to-end delays of the four conventional protocols and that of
the proposed method. The average delays of all methods drop as the network size increases because
larger networks introduce more collisions. UWALOHA works better than the others when the network
size is below four and better than UW-CSMA/CA and SFAMA when the network size is below
eight. This occurs because no overhead is needed in UWALOHA. However, when the network size
becomes large, its average delay increases significantly due to more collisions and retransmissions.
UW-CSMA/CA and SFAMA are worse than ROPA and the proposed method because of their serial
transmission modes. The proposed method outperforms ROPA in different network sizes.

Figure 4d shows the average energy consumption of the four conventional protocols and that
of the proposed method. UWALOHA has the highest average energy consumption, especially when
the network size becomes large. The handshaking can effectively reduce collision so that average
energy consumptions of the handshaking based protocols are much smaller than UWALOHA in
large-scale networks. Among the four handshaking-based protocols, DS resulted in the lowest energy
consumption in almost all the network sizes.

5. Discussion

The simulation results show that UWALOHA works well with low network loads and small
network sizes but performance worsens quickly as the network load or size increase. This occurs because
without control packets, UWALOHA can reduce the transmission overhead but produces more collisions
and retransmissions when the packet traffic increases. In UW-CSMA/CA and SFAMA, handshaking
effectively avoids collisions, so these protocols outperform UWALOHA under high network loads
and large network sizes. However, the RTS/CTS control packets introduce transmission overhead,
which reduces the performance under low network load and small network size. Handshaking also
increases the delay in transmission. ROPA allows additional concurrent transmission to the source
node after the source node transmits its data, so its performance is better than UW-CSMA/CA and
SFAMA under different network loads and network sizes. Compared with ROPA, the proposed method
supports arbitrary multi-pair concurrent transmission, which increases transmission opportunity in a
transmission cycle. Therefore, it produced the best performance in normalized throughput, delivery
rate, average end-to-end delay, and average energy consumption under different network loads and
network sizes in the simulations. The simulation results also show that the proposed method, with
sending sequence optimization, outperforms that without sending sequence optimization.

Although the proposed method works well in the one-hop cluster, several aspects of its performance
can be further improved. First, in Equations (1) and (2), we assumed that if si sends out its data
packet before sj, then the data packets from si will arrive at di and dj earlier than the data packets from
sj. This assumption sets a constraint on the packet arrival sequence at the destination node, which
simplifies the question but leads to a sub-optimal solution. Further improvement can be expected
by removing this constraint. Second, in the proposed method, collisions of data packets still occur
if a node loses one or more CTS packets. Any method that can reduce or eliminate the collision of
CTS packets will improve the performance of the proposed method. Third, the proposed method is
developed for one-hop clusters. Although it can be extended to multi-hop situations, the performance
will worsen when nodes belonging to multiple clusters join the communication. Therefore, inter-cluster
optimization should be considered for multi-hop networks.
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6. Conclusions

In this paper we propose a new distributed scheduling method for underwater acoustic networks
that supports multiple handshakes and concurrent transmissions in one transmission cycle for one-hop
clusters. The proposed method is based on the two-way handshake mechanism; a deterministic
scheduling algorithm was developed to calculate the sending time table for each source node.
The proposed deterministic scheduling algorithm optimizes the sending sequence and time of the
source nodes jointly by dynamic programming to ensure packets sent by a source node do not conflict
with other packets at the corresponding destination node, while the whole data transmission time
is as short as possible. Using the deterministic scheduling algorithm can also effectively reduce the
scheduling overhead. Simulation results showed that the proposed method outperforms UWALOHA,
UW-CSMA/CA, slot SFAMA, and ROPA protocols in normalized throughput, packet delivery rate,
average end to end delay, and average energy consumption under different network loads and sizes.
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Appendix A

To simplify the expression, let tj denotes Tcts
d jsi

, aj denotes Dd jsi , b denotes T0, l denotes Lcts, where 1

≤ j ≤M. Then t1, t2, . . . , tM are M independent random variables that follow the uniform distributions
of U

(
a j, b + a j

)
. Therefore the point (t1, t2, . . . , tM) is located in a hypercube with the side length of b

in M-dimensional space and has a probability density function of p(t1, t2, . . . , tM) = 1
bM . Collisions

will occur when
∣∣∣t j − tk

∣∣∣ < l, where 1 ≤ j ≤ M, 1 ≤ k ≤ M and j , k. Then, the hypercube is divided
into two parts by the hyper-planes of tk − t j = l and tk − t j = −l. Part I is the union of the regions in
the hypercube that are sandwiched between tk − t j = l and tk − t j = −l. When (t1, t2, . . . , tM) falls into
this part, a collision will occur. Part II is the union of the regions in the hypercube that are outside
tk − t j = l and tk − t j = −l. (t1, t2, . . . , tM) belongs to this part, meaning it is collision-free. Figure A1
shows a section of these two parts on the t j − o− tk plane. The sectional area of part II in the t j − o− tk
plane will reach its minimum when the diagonal of the cube overlaps with line tk − t j = 0, i.e., a j = ak.

Let ΦI and ΦII denote parts I and II of the hypercube, respectively. Then, the probability of no
collision can be given by:

P(no collision) =
∫
. . .

ΦII

∫
1

bM dt1dt2 . . . dtM = 1−
∫
. . .

ΦI

∫
1

bM dt1dt2 . . . dtM (A1)

Because ΦI and ΦII are piecewise functions of aj, it is hard to obtain a closed expression for
this probability. However, the probability of no collision will reach a minimum when aj = A, where
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1 ≤ j ≤M and A is a constant. If we ignore the overlapping parts among the sandwiched regions of
tk − t j = l and tk − t j = −l in the hypercube, where 1 ≤ j ≤M, 1 ≤ k ≤M and j , k, there will be

P(no collision) > 1−
∑

1≤ j,k≤M, j,k


s

ΦI
jk

1
b2 dt jdtk

∫ A+b

A

1
b

dt1 · · ·

∫ A+b

A

1
b

dtl · · ·

∫ A+b

A

1
b

dtM︸                                                 ︷︷                                                 ︸
1≤l≤M,l, j,l,k


= 1−

∑
1≤ j,k≤M, j,k

2bl−l2
b2

= 1−C2
M

(
2l
b −

l2
b2

)
= 1− M!

(M−2)!2! ·
(

2l
b −

l2
b2

)
= 1−M(M− 1)

(
l
b −

l2
2b2

)

(A2)

where ΦI
jk denote the sectional region of part I in the t j − o − tk plane. Equation (A2) gives an

approximate lower bound for the no-collision probability at si.
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