ﬂ SCNSors m\py

Article
Dynamic Flying Ant Colony Optimization (DFACO)
for Solving the Traveling Salesman Problem

Fadl Dahan 1@, Khalil El Hindi *©, Hassan Mathkour 2 and Hussien AlSalman 2

1 Department of Information System, College of Computer Engineering and Science, Prince Sattam Bin

Abdulaziz University, Al Kharj 11942, Saudi Arabia; f.naji@psau.edu.sa

Department of Computer Science, College of Computer and Information Sciences, King Saud University,
Riyadh 11543, Saudi Arabia; Mathkour@KSU.EDU.SA (H.M.); halsalman@KSU.EDU.SA (H.A.)

* Correspondence: khindi@ksu.edu.sa

check for
Received: 21 March 2019; Accepted: 14 April 2019; Published: 17 April 2019 updates

Abstract: This paper presents an adaptation of the flying ant colony optimization (FACO) algorithm to
solve the traveling salesman problem (TSP). This new modification is called dynamic flying ant colony
optimization (DFACO). FACO was originally proposed to solve the quality of service (QoS)-aware
web service selection problem. Many researchers have addressed the TSP, but most solutions could
not avoid the stagnation problem. In FACO, a flying ant deposits a pheromone by injecting it from
a distance; therefore, not only the nodes on the path but also the neighboring nodes receive the
pheromone. The amount of pheromone a neighboring node receives is inversely proportional to
the distance between it and the node on the path. In this work, we modified the FACO algorithm
to make it suitable for TSP in several ways. For example, the number of neighboring nodes that
received pheromones varied depending on the quality of the solution compared to the rest of the
solutions. This helped to balance the exploration and exploitation strategies. We also embedded the
3-Opt algorithm to improve the solution by mitigating the effect of the stagnation problem. Moreover,
the colony contained a combination of regular and flying ants. These modifications aim to help the
DFACO algorithm obtain better solutions in less processing time and avoid getting stuck in local
minima. This work compared DFACO with (1) ACO and five different methods using 24 TSP datasets
and (2) parallel ACO (PACO)-30pt using 22 TSP datasets. The empirical results showed that DFACO
achieved the best results compared with ACO and the five different methods for most of the datasets
(23 out of 24) in terms of the quality of the solutions. Further, it achieved better results compared with
PACO-30pt for most of the datasets (20 out of 21) in terms of solution quality and execution time.

Keywords: traveling salesman problem (TSP); ant colony optimization (ACO); flying ant colony
optimization (FACO); dynamic flying ant colony optimization (DFACO)

1. Introduction

The traveling salesman problem (TSP) [1] involves finding the shortest tour distance for a
salesperson who wants to visit each city in a group of fully connected cities exactly once. TSP is a
discrete optimization problem. It is a classic example of a category of computing problems known
as NP-hard problems [2,3]. Although there are simple algorithms for solving these problems, these
algorithms require exponential time, which makes them impractical for solving large-size problems.
Hence, metaheuristic optimization algorithms are usually applied to find good solutions, although
these solutions may not be optimal.

The TSP problem can be used for modeling several wireless sensor network (WSN) problems [4].
In a WSN, the sensors are located in a sensing field to collect data, and send these data to the source
node wirelessly. There are two ways to increase the lifetime of the sensors: first, by reducing the size

Sensors 2019, 19, 1837; d0i:10.3390/s19081837 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5975-0696
https://orcid.org/0000-0003-2457-9961
http://dx.doi.org/10.3390/s19081837
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/8/1837?type=check_update&version=2

Sensors 2019, 19, 1837 2 of 28

and number of data [5,6], and second, by reducing the cost of transferring the data [4]. For example,
a good solution to the TSP problem can also be considered an efficient diffusion method for reducing
the transferring cost.

Many methods, including heuristic or hybrid, have been proposed for solving the TSP, but most
of them were unable to avoid the stagnation problem, or they may have obtained good solutions but
took a long execution time to do so [7]. In this work, we enhanced the ant colony optimization (ACO)
algorithm based on imaginary ants that can fly. These ants deposit their pheromones with neighboring
nodes while flying by injecting them from a distance. This allows not only the nodes on a good path to
receive some pheromones but also the neighboring nodes. The algorithm also makes use of the 3-Opt
algorithm to help avoid reaching a local minimum.

The main contributions of this work on the flying ACO (FACO) algorithm are as follows:
(1) proposing a dynamic neighboring selection mechanism to balance between exploration and
exploitation, (2) reducing the execution time of FACO by making flying ants equal to half the ants, and
(3) adapting the flying process to work with the TSP problem.

The main contributions of this work in general are as follows: (1) obtaining better-quality solutions,
(2) significantly reducing the execution time, and (3) avoiding getting stuck at a local minimum.

The paper is organized as follows: in Section 2, we discuss related works; Section 3 presents
the proposed enhancement of the ACO algorithm; Section 4 shows the experimental results; and the
conclusion is shown in Section 5.

2. Related Work

This section reviews some important and more recent works in this area.

2.1. Metaheuristic Solutions

The TSP has been widely used as a benchmark problem to evaluate many metaheuristic and
nature-inspired algorithms. Chen and Chien [8] presented a hybrid method using simulated genetic
annealing, ACO, and particle swarm optimization. Each algorithm performs a specific task, where ACO
generates the initial solutions for the genetic simulated annealing algorithm, which searches for better
solutions based on the initial solutions. Then, the better solutions are used to update the pheromone
trails. Finally, the particle swarm optimization algorithm exchanges the pheromone information after
a predefined number of cycles. Deng et al. [9] presented a hybrid method that combined a genetic
algorithm and ACO. They used a multipopulation strategy to enhance the local search. In addition,
they used chaotic optimization to avoid the ACO slow convergence problem. They controlled the
trade-off between exploration and exploitation by using an adaptive control strategy to distribute the
pheromones uniformly. Eskandari et al. [10] proposed a local solution enhancement for ACO based
on mutation operators. The local solution is mutated to generate a new solution and keeps it if it
is better than the original solution. The mutation operators include swap, insertion, and reversion.
A comparison between ACO and cuckoo search (CS) algorithms was conducted in [11] for solving
the TSP. In this comparison, only five city plans were used. Mavrovouniotis et al. [12] used local
search operators to support the ACO algorithm. This new method was used for dynamic TSP. The best
solution from ACO is passed to local search operators for removing and inserting cities to generate a
new solution. Alves et al. [13] introduced an adapted ACO algorithm based on social interaction called
social interaction ant colony optimization (SIACO). The social interaction was introduced to enhance
pheromone deposition. Han et al. [14] proposed a niching ant colony system (NACS) algorithm.
This algorithm enhances the ACO algorithm in two ways: it applies a niching strategy and uses
multiple pheromone deposition. Pintea et al. [15] introduced an enhancement for ACO based on
clustering, where the cities are divided into clusters and ACO is used to find the minimum cost for
each cluster. Xiao et al. [16] proposed a multistage ACO algorithm that reduces the initial pheromone
concentration based on the nearest-neighbor method. Then, the mean cross-evolution strategy is used

Sensors 2019, 19, 1837 3 of 28

to enhance the solution space. Zhou et al. [17] proposed an ACO algorithm for large-scale problems
that utilizes graphics processing units.

The 3-Opt algorithm is widely used to enhance the local search of metaheuristic algorithms.
Mabhi et al. [18] presented a hybrid algorithm using particle swarm optimization and ACO. The particle
optimizes the & and 3 parameters, which affect the performance of ACO. The 3-Opt algorithm is then
used to avoid the stagnation problem. Giilcii et al. [7] introduced a parallel cooperative method, which
is a hybridization of the parallel ACO (PACO) and the 3-Opt algorithm. The proposed algorithm is
named as PACO-30pt and it uses a parallel set of colonies. These multiple colonies have a master-slave
paradigm. The 3-Opt algorithm is used by these colonies based on a predefined number of iterations.
Khan et al. [19] used 2-Opt and 3-Opt with an artificial bee colony (ABC) algorithm. Also, they created
a new different path by combing swap sequences with ABC.

Ouaarab et al. [20] proposed a discretized version of the CS algorithm and also added a new
cuckoo category. This new category aims to manage the exploration and exploitation by using Lévy
flights and multiple searching methods. Osaba et al. [21] presented a discrete version of the bat
algorithm where each bat moves based on the best bat. If a bat is located far from the best bat, then
the movement will be large, but if it is close to the best bat, the step will be small. Choong et al. [22]
introduced a hybrid algorithm of the ABC algorithm and modified choice function. The modified
choice function is used to regulate the neighborhood selection of employed and onlooker bees.

Many works in the literature present improvements on existing algorithms by suggesting methods
to control the tradeoff between exploitation and exploration, which are the two main steps that form
the basis of many metaheuristic approaches and nature-inspired algorithms. In exploitation, the
accumulated knowledge about the search space is used to guide the search, while in exploration, risk
is taken to explore the unfamiliar region of the search space, in the hope that this region may contain a
solution better than the known solutions [23].

Researchers usually use hybrid methods to merge different algorithms’ capabilities; however,
new methods can become too complex and sometimes even incomprehensible. By contrast, we aimed
in this work to enhance the ACO algorithm by adding extra procedures while keeping the method
understandable and easy to use.

2.2. Opt Algorithm

The 3-Opt algorithm was introduced to solve the TSP. It exchanges three edges from the old tour
by another three edges to produce a new tour [24] and retains the new tour if it is better. The process is
repeated until no further improvement is found. 3-Opt is a local search algorithm; therefore, it is used
to help ACO avoid local minima [7] by optimizing the solutions locally [25].

There are (g) possible combinations to replace three edges from the tour with n cities [26].

For instance, from three edges, we can obtain eight possible combinations, as shown in Figure 1 where

(a) to (h) represent these eight combinations [27].
: Q Q : \ - : >\

\

VAR 0220 c'—o o —>
(a) (b) (c) (d) (e) (f) (9) (h)

Figure 1. 3-Opt possible combinations.
The experiments reported in [26,28] show that combining the 3-Opt algorithm with other

metaheuristic algorithms improves the solutions found by these algorithms. This is because the 3-Opt
algorithm mitigates the effect of local minima [28].

Sensors 2019, 19, 1837 4 of 28

2.3. Ant Colony Optimization

ACO was inspired by the way real ants forage for food. Initially, real ants forage for food randomly,
depositing a chemical substances called pheromones on their paths. The path between the colony and
the nearest food source tends to receive more pheromones, which attracts more ants to follow the same
path. Once the food source is exhausted, the ants abandon the path and the pheromones evaporate,
forcing the ants to start searching for another food source randomly.

The ACO algorithm [28-30] simulates the foraging behavior of real ants. It initializes all ants
randomly, and each ant searches for a potential solution. In addition, ACO assigns an amount of
pheromone to each edge of the solution path that is proportional to the quality of the solution.

In each iteration, each ant moves to unvisited nodes in order to construct a potential solution.
The next node to visit is selected according to a probability distribution that favors the nodes with large
amounts of pheromones (z;;). ACO also takes into account a local heuristic function (7;;). Equation (1)
shows the solution generation formula which computes the probability of selecting the edge from

nodes i to J: o
P (t) = o] 1]

=——————— ifjeNf 1
Lowlal il

where a and f are coefficient parameters that determine the importance of the pheromone value (7;})
and the value of the local heuristic (1;;). The local heuristic 7);; is problem dependent. For the TSP, it is
defined as 1 divided by the length of the edge between nodes i and j. Ni¥ is the list of unvisited nodes
from node i by ant k.
The ants update the pheromones locally using Equation (2). This update is called the local
pheromone update:
Tij(t+1) = (1-p)7i(t) + p1y @)

where 7 is the initial pheromone value, and p is the evaporation rate.
ACO selects the best solution greedily. The best ant updates the pheromone trails on its path
using Equation (3). This process is called the global pheromone update:

Tij(t+1) = (1-p)7ij(t) + pATij(t) ®)

Atjj(t) is defined as

4)

Aty () = { Lshl(t) if arc(i, j) € thfz best tour
0 otherwise
where L8?(t) is the tour length for the best ant.

These ACO algorithm processes are illustrated in Figure 2 [31]. The ACO algorithm suffers from a
stagnation problem [32] because the amounts of pheromone are accumulated on the explored paths,
and as a result, the chances of exploring other paths decrease. The FACO algorithm, discussed next,
addresses this issue.

Sensors 2019, 19, 1837 5 of 28

[Initialize the Parameters]
¥
[Construct Solutions Using Probabilistic Distribution]

|

[Update Local Pheromone]

Iteration < All Nodes
Are Visited

No

l Yes
[Compute Solutions’ Length]
[Update Global Pheromone]

v

Termination Condition
Satisfied?

[Return Best Solution]

Figure 2. Ant colony optimization (ACO) flowchart.

2.4. Flying Ant Colony Optimization

In [33], a flying ant colony algorithm was proposed to solve the quality of service (QoS)-aware
web service composition problem. Web service composition involves selecting the best combination of
web services, where each service is selected from a set of candidate services that fulfill a certain task.
The solutions are evaluated according to a set of QoS properties, such as reliability, cost, response time,
and availability.

The algorithm assumes that, in addition to walking normal ants, there are also flying ants.
Flying ants inject their pheromones from a distance, so that not only the nodes on the path receive
some pheromones but also their neighboring nodes. The amount of pheromone a neighboring node
receives is inversely proportional to the distance between it and the node on the path. This makes the
ants more likely to explore these nodes during future iterations, which encourages exploration.

Since determining the nearest nodes might be an expensive iteration in terms of execution time,
we only considered the ant that finds the best solution as a flying ant in each iteration. The rest of the
ants are dealt with in the usual way. The flying ant then determines the nearest neighboring nodes (web
services) by using Equation (5) to calculate the distance between two web services x and y. Equation (5)
considers two web services that are similar (close to each other) if they have similar QoS properties:

iy = \/ (Cx- Cy)z +(RT, - RTy)Z +(Ax - Ay)Z +(Re - Ry)Z)

where C, RT, A, and R are the cost, response time, availability, and reliability, respectively; x is the best
web service obtained by the best ant in task t;,1; y is one of the neighboring web services to x in task
tizy;and x #y.

Sensors 2019, 19, 1837 6 of 28

The nearest neighbors receive an amount of pheromone that is inversely proportional to their
distance from the best node. Equation (6) describes how much pheromone a node receives:

(i1, (+10) (1)
Ciaeyionn (E+ 1) = Tapp e () + | el 6)

(1 4 \/d’(ﬂ(i+1,x’>(i+1'l)))

where [is the neighbor’s number where | € [1, NS]. NS is the number of neighbors. T(ix) (i+107) (t+1)

represents the pheromone trails from the global pheromone update. d’(’](i,x')(i,l)) is the normalized
distance between web services in task i + 1 and its neighbor web service [in the same task.
The distance (local heuristic) ;. is normalized according to Equation (7):

) T(i+1,x") (i+1,])
d (’7(1‘+1,x')(i+1,l)) BEE v
g=1"T1(+1x") (i+1,9)

Figure 3 illustrates the process of the FACO algorithm [33], which was added to the process
of ACO.

[Initialize the Parameters]
N|
v
Construct Solutions Using Probabilistic
Distribution
Update Local Pheromone]

'

Iteration < All Nodes
Are Visited

l Yes
[Compute Solutions’ Length]
[Update Global Pheromone]

Compute the Distance of the Best
Solution’s neighbors

'

Choose the Nearest Neighbors

!

Inject Pheromone on the Nearest
Neighbors

Termination
Condition Satisfied?

[Return Best Solution]

Figure 3. Flying ACO (FACO) flowchart.

Sensors 2019, 19, 1837 7 of 28

3. Dynamic Flying Ant Colony Optimization (DFACO) Algorithm

Many methods, including heuristic or hybrid, have been proposed for solving the TSP, but most
of them cannot avoid the stagnation problem, or they may obtain solutions but take a long execution
time [7]. In this work, we proposed an enhanced ACO algorithm that finds better solutions in less
computation time and a robustness mechanism to avoid the stagnation problem.

In this section, we present a modification of the FACO algorithm to make it suitable for the TSP
problem in the following ways.

First, the number of neighboring nodes in FACO were static based on the experiments. However,
the number of neighbors in DFACO that may be injected with pheromones was dynamic. The number
of neighboring nodes varied in each iteration depending on the quality of the best solution reached so
far compared to the other solutions. The number of neighbors was determined based on two cases:
(1) If the best solution is slightly better than the other solutions, then the number of neighbors should
be large to obtain more neighbors. This encourages exploration in future iterations. (2) If the best
solution is considerably better than the other solutions, then the number of neighbors should be small
to encourage exploitation in future iterations.

The number of nearest neighbors, NS, was determined according to the following formula:

L8b(t)
Ykes LE(t)) N

where L8() is the tour length of the global best tour at time t, L¥(t) is the tour length of ant k at time t,
S is the number of ants, and N is the number of cities.

The second modification aimed to reduce the execution time. If all ants were flying ants (such as
in FACO), we would have to determine many neighbors for each node on the best path, which may
substantially increase the execution time. Therefore, here, only 50% of the ants were flying ants and
the rest were normal walking ants.

The third modification aimed to encourage exploration at early stages and exploitation at later
stages. This modification is similar to the FACO algorithm, but we modified the process to adapt
it to the TSP problem. The intuition behind this is that at early stages, we have no idea about the
location of the best solution in the search space; and therefore, ants should be encouraged to explore
the search space. On the other hand, at later iterations, the region that contains the best solution is more
likely to have been located, and therefore, exploitation should be encouraged. This was achieved by
injecting pheromones at farther neighbors during early iterations, while at later iterations, we injected
the pheromones at only the nearest neighbors. Equation (6) was used to determine the amount of
pheromone for each neighbor.

As a final modification, we embedded the 3-Opt algorithm in FACO to reduce the chances of
getting stuck at a local minimum.

Figure 4 shows the complete algorithm in detail, and Figure 5 illustrates the process of the
DFACO algorithm.

NS = ((8)

Sensors 2019, 19, 1837 8 of 28

Input: Algorithm parameters, TSP dataset, number of cities N, the threshold 7%
Output: Shortest path
begin
Initialize swarm size S, maximum iterations Z
fori=1..Zdo
Place the S ants on the N cities
Generate a random number r € [0, 1]
If (r <0.5) then
| Greedy tour construction

else
for city=1.. N do

forant=1.. Sdo

Each ant builds its tour using Equation (1)

Apply the local pheromone update using Equation (2)
end

end

Apply the global pheromone update on the best bath using Equation (3)

Generate the number of neighbors NS using Equation ()

if (i <Th) then

Search for farthest SN neighbors

Inject pheromone on them using Equation (6)

Else

Search for Nearest SN neighbors

Inject pheromone on them using Equation (6)

end

Execute the 3-opt algorithm

end

end

end

Figure 4. The dynamic FACO (DFACO) algorithm.

Sensors 2019, 19, 1837 9 of 28

Initialize the Parameters]

!

Construct Solutions Using Probabilistic }

Distribution

|

Update Local Pheromone]

Iteration < All Nodes
Are Visited

l Yes
[Compute Solutions’ Length]
[Update Global Pheromone]

|

Generate the NS Neighbors

'

Compute the Distance of the Best
Solution’s NS Neighbors

Iteration < No
Threshold
\ 4
[Choose the Farthest Neighbors] [Choose the Nearest Neighbors
Inject Pheromone on the Farthest Inject Pheromone on the Nearest
Neighbors Neighbors

'

[Execute the 3-opt algorithm J‘

Termination
Condition Satisfied?

[Return Best Solution]

Figure 5. DFACO flowchart.

Sensors 2019, 19, 1837 10 of 28

4. Experimental Results

We conducted empirical experiments using TSP datasets from TSPLIB [34] to test the performance
of the proposed algorithm. We performed three comparisons. First, we compared DFACO combined
with the 3-Opt algorithm with ACO combined with the 3-Opt algorithm using 24 datasets. Second, we
compared DFACO performance with PACO-30pt [7] in detail using 21 datasets. Third, we compared
DFACO performance with five more recent methods [8,9,18,20,21] using 24 datasets.

We implemented DFACO in Java and used the ACOTSPJava (http://adibaba.github.io/
ACOTSPJava/) implementation of ACO.

We compared the methods with respect to the average of the best solutions for all runs (Mean),
the standard deviation (SD), and the best solution for each run (Best). We also compared DFACO,
PACO-30pt, and ACO with respect to execution time in seconds.

Table 1 lists the parameter values of both algorithms, which were empirically determined. These values
were also used to compare DFACO to all of the other methods.

Table 1. Control parameters for ACO and DFACO.

Parameters Value

a 1
B 2
p 0.1
T0 0.1
S 100
V4 100

Th (for DFACO) 80

Both ACO and DFACO were run for 100 iterations (Z) and each dataset was used in 30 independent
experiments. Table 2 lists the comparison results for DFACO and ACO. The first column shows the
name of the TSP datasets. The second column shows the best-known solution (BKS) as reported on
the TSPLIB website (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html). Bold font
indicates the best results.

Table 2. Experimental results of ACO and DFACO.

TSP BKS ACO with 3-Opt The Proposed Method
Instance Mean SD Best Time Mean SD Best Time
eil51 426 426.00 0.00 426.00 1 426.00 0.00 426.00 1
eil76 538 538.00 0.00 538.00 3 538.00 0.00 538.00 3
eil101 629 629.00 0.00 629.00 10 629.00 0.00 629.00 12

berlin52 7542 7542.00 0.00 7542.00 1 7542.00 0.00 7542.00 1
bier127 118,282 118,282.00 0.00 118,282.00 56 118,282.00 0.00 118,282.00 47
ch130 6110 6110.00 0.00 6110.00 16 6110.00 0.00 6110.00 13
ch150 6528 6528.00 0.00 6528.00 17 6528.00 0.00 6528.00 24
rd100 7910 7910.00 0.00 7910.00 2 7910.00 0.00 7910.00 2
1in105 14,379 14,379.00 0.00 14,379.00 2 14,379.00 0.00 14,379.00 2
1in318 42,029 42,243.70 52.27 42,135.00 349 42,228.03 48.30 42,123.00 381
kroA100 21,282 21,282.00 0.00 21,282.00 2 21,282.00 0.00 21,282.00 2
kroA150 26,524 26,524.07 0.25 26,524.00 83 26,524.03 0.18 26,524.00 57
kroA200 29,368 29,378.73 11.09 29,368.00 211 29,368.00 0.00 29,368.00 168
kroB100 22,141 22,141.00 0.00 22,141.00 2 22,141.00 0.00 22,141.00 2
kroB150 26,130 26,130.00 0.00 26,130.00 9 26,130.00 0.00 26,130.00 7
kroB200 29,437 29,443.20 7.07 29,437.00 137 29,441.60 5.16 29,437.00 185
kroC100 20,749 20,749.00 0.00 20,749.00 2 20,749.00 0.00 20,749.00 2
kroD100 21,294 21,294.00 0.00 21,294.00 3 21,294.00 0.00 21,294.00 3
kroE100 22,068 22,068.00 0.00 22,068.00 2 22,068.00 0.00 22,068.00 2
rat575 6773 6384.87 7.21 6368.00 443 6367.3 8.48 6348.00 126.2
rat783 8806 10,524.60 13.36 10,483.00 922 10,491.9 14.62 10,455.00 151.6
rl1323 270,199 273969.57 515.57 272,639.00 2267 273,367.9 484.78 272,487.00 2285
{11400 20,127 20,291.77 29.01 20,225.00 2471 20,300.77 35.27 20,239.00 2452

d1655 62,128 63,722.20 95.53 63,520.00 1754 63,707.87 114.84 63,428.00 1523

http://adibaba.github.io/ACOTSPJava/
http://adibaba.github.io/ACOTSPJava/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html

Sensors 2019, 19, 1837 11 of 28

Table 2 indicates that DFACO was able to find the BKS in all runs for 16 datasets with zero SD,
while ACO was able to find the BKS in all runs for 15 datasets with zero SD. However, the proposed
method obtained the BKS in all runs faster than ACO for four datasets (bier127, ch130, kroB150, and
kroA200), while ACO obtained the BKS faster than DEACO for two datasets (eil101 and ch150).

Figure 6 shows the average of the best solutions, while Figure 7 presents the execution time in
seconds for all datasets in the table. As can be seen in Figure 6, DFACO was better than ACO in terms
of the average of the best solutions and obtains a shorter distance on average for all datasets. Also,
DFACO was faster than ACO by 54.7 s for all datasets.

33275.0

, 332700 -

& 33265.0 N

":',' AR

S 332600 ok

b SR

% _ 33255.0 —

v c

o ® SR

o © 33250.0 X

2 .

& = 332450 e

o ASRAN —=

00 33240.0 ROREN fo

© Y bt

E 33235.0 e Z
33230.0 W 2

ASRAN oy

33225.0 =

ACO DFACO

Figure 6. DFACO and ACO comparison in terms of Mean as shown in Table 2.

370.0 365.2
360.0 A
" RERRRAN
RERRAR
e 350.0 RERRAN
o A
@ 340.0 RERXAR
n RERXAN
c RERRAR
o 330.0 SRTEREN
£ RERXAR
= 3200 RERNAN
5 Nevee 3105
2 AR
5 310.0 AR
o RERNAN
£ 300.0 RRRNXN
w RERRAN
290.0 Neveey
RERRAN
280.0 RN
ACO DFACO

Figure 7. DFACO and ACO comparison in terms of execution time in seconds as shown in Table 2.

For the remaining eight datasets, DFACO found the best Mean solution for seven datasets, while
ACO found the best Mean solution for one dataset (f11400). These results were found to be statistically
significant according to the Wilcoxon signed-rank test, with N = 8 and p < 0.05. A t-test was used to see
if the results were statistically significant in the 30 independent runs for each one of the eight datasets.
The results indicate that the proposed method’s results were statistically significant for four out of
eight datasets, namely, for the datasets rat575, rat783, rl1323, and d1655. We did not perform a t-test
for the remaining 16 datasets because both algorithms achieved the BKS.

For the second set of comparisons, we followed the comparison method of PACO-30pt [7]. In the
PACO-30pt experiments, the TSP datasets were divided based on the problem size into small-scale
and large-scale datasets (the size of the large-scale datasets was between 400 and 600). The small-size

Sensors 2019, 19, 1837 12 of 28

datasets used 10 TSP datasets (shown in Table 3), and for the large size, 11 TSP datasets were used
(shown in Table 4). Table 3 presents the experimental results of comparing DFACO with PACO-30pt
for small-scale TSP instances. The table shows the best, worst, and average values of both algorithms
for comparison. Boldface text indicates the better results for both algorithms. The results reveal that
the DFACO obtained the optimum distances for all datasets in terms of best, worst, and average values.
Meanwhile, PACO-30pt obtained the optimum distances for only six datasets, one dataset, and one
dataset in terms of best, worst, and average, respectively. With regard to execution time, Table 3
shows that DFACO significantly reduced the execution time and obtained better results faster than
PACO-30pt for all TSP instances.

Table 3. DFACO and PACO-30pt comparison on small-scale datasets.

TSP BKS Best Tour Length Worst Tour Length Average Tour Length Time (s)
Instance DFACO PACO-30pt DFACO PACO-30pt DFACO PACO-30pt DFACO PACO-30pt
Eil51 426 426 426 426 427 426 426.35 1 2.39
Berlin52 7542 7542 7542 7542 7542 7542 7542 1 21
Rat99 1211 1211 1213 1211 1225 1211 1217.1 4 19.79
Eil76 538 538 538 538 542 538 539.85 3 8.18
St70 675 675 676 675 679 675 677.85 5.6 6.97
KroA100 21,282 21,282 21,282 21,282 21,382 21,282 21,326.8 2 21.1
Lin105 14,379 14,379 14,379 14,379 14,422 14,379 14,393 2 14.57
KroA200 29,368 29,368 29,533 29,368 29,721 29,368 29,644.5 168 213.12
Ch150 6528 6528 6570 6528 6627 6528 6601.4 24 79.35
Eil101 629 629 629 629 639 629 630.55 12 20.79

Table 4. DFACO and PACO-30pt comparison for large-scale datasets.

TSP BKS Best Tour Length Worst Tour Length Average Tour Length Time (s)
Instance DFACO PACO-30pt DFACO PACO-30pt DFACO PACO-30pt DFACO PACO-30pt
rd400 15,281.0 15,321.0 15,578.0 15,428.0 15,667.0 15,384.0 15,613.9 133.1 1496.0
1417 11,861.0 11,867.0 11,972.0 11,900.0 12,000.0 11,880.3 11,987.4 95.2 2046.0
pr439 107,217.0 107,310.0 108,482.0 107,698.0 108,973.0 107,515.9 108,702.0 142.6 2132.0
pcb442 50,778.0 50,910.0 51,962.0 51,186.0 52,283.0 51,047.4 52,202.4 129.4 2088.0
d493 35,002.0 35,124 35,735.0 35,380 35,982.0 35,266.4 35,841.0 137.59 3175.0
ub74 36,905.0 37,168.0 37,981.0 37,518.0 38,165.0 37,366.8 38,030.7 116.9 5460.0
rat575 6773.0 6348.0 7003.0 6380.0 7037.0 6367.3 7012.4 126.2 5004.0
p654 34,643.0 34,695.0 35,045.0 34,864.0 35,116.0 34,740.6 35,075.0 101.7 9105.0
d657 48,912.0 49,250.0 50,206.0 49,618.0 50,386.0 49,462.7 50,277.5 135.1 8715.0
u724 41,9100 42,284.0 42,764.0 42,634.0 43,272.0 42,437.8 43,122.5 137.0 11,458.0
rat783 8806.0 10,455.0 9111.0 10,522.0 9152.0 10,491.9 9127.3 151.6 14,277.0

Table 4 presents the results of comparing DFACO with PACO-30pt for large-scale TSP instances.
It also shows the best, worst, and average values of both algorithms for comparison. Boldface text
indicates the better results for both algorithms. The results reveal that DFACO obtained better
distances for all datasets in terms of best, worst, and average values, except for rat783. With regard
to execution time, Table 4 shows that DFACO significantly reduced the execution time and obtained
better results faster than PACO-30pt for all TSP instances except for rat783, where DFACO was faster
than PACO-30pt but did not obtain better results.

Table 5 shows the third type of comparison between DFACO and five recent methods [5-9]. In this
set of experiments, we used 24 TSP datasets and 30 independent runs.

The table reveals that the proposed algorithm achieved the best results for all datasets except
one (rat783), for which Deng’s method [9] achieved the best result. Also, DFACO found the BKS for
18 datasets, and for one dataset (rat575), it found an even better solution than the BKS.

Figures 8-31 show the average of the best solutions for each TSP instance obtained by different
algorithms. These figures visualize the results of the 24 datasets shown in Table 5. From these figures,
it is clear that DFACO’s performance was better than that of the other algorithms for most datasets
except rat783.

Sensors 2019, 19, 1837

Table 5. Experimental results of proposed method compared with recent research (NA indicates that results were not reported in the original source).

13 of 28

TSP BKS Chen and Chien (2011) [8] Ouaarab et al. (2014) [20] Mahi et al. (2015) [18] Osaba et al. (2016) [21] Deng et al. (2016) [9] DFACO
Instance Mean SD Best Mean SD Best Mean SD Best Mean SD Best Mean SD Best Mean SD Best
eil51 426 427.27 0.45 427 426 0 426 426.45 0.61 426 428.1 1.6 426 427.21 NA 426 426 0 426
€il76 538 540.2 2.94 538 538.03 0.17 538 538.3 0.47 538 548.1 3.8 539 540.302 NA 539.153 538 0 538
eil101 629 635.23 3.59 630 630.43 1.14 629 632.7 212 631 646.4 4.9 634 634.68 NA 630.01 629 0 629
berlin52 7542 7542 0 7542 7542 0 7542 7543.2 2.37 7542 7542 0 7542 NA NA NA 7542 0 7542
bier127 118,282 119,421.8 580.83 118,282 118,360 12.73 118,282 NA NA NA NA NA NA NA NA NA 118,282 0 118,282
ch130 6110 6205.63 43.7 6141 6136 21.24 6110 NA NA NA NA NA NA 6123.92 NA 6113.26 6110 0 6110
ch150 6528 6563.7 2245 6528 6549.9 20.51 6528 6563.95 27.6 6538 NA NA NA 6539.86 NA 6528 6528 0 6528
rd100 7910 7987.57 62.06 7910 NA NA NA NA NA NA NA NA NA 7934.69 NA 7910 7910 0 7910
1in105 14,379 14,406.37 37.28 14,379 14,379 0 14,379 14,379.2 0.48 14,379 NA NA NA 14,3941 NA 14,381.8 14,379 0 14,379
1in318 42,029 43,002.9 307.51 42,487 42,435 185.4 42,125 NA NA NA NA NA NA 42,3683 NA 42,2849 42,228.03 48.3 42,123
kroA100 21,282 21,370.47 123.36 21,282 21,282 0 21,282 21,4451 78.2 21,301 21,4453 116.5 21,282 NA NA NA 21,282 0 21,282
kroA150 26,524 26,899.2 133.02 26,524 26,569 56.26 26,524 NA NA NA NA NA NA NA NA NA 26,524.03 0.18 26,524
kroA200 29,368 29,738.73 356.07 29,383 29,447 95.68 29,382 29,646.1 115 29,468 NA NA NA 294347 NA 29,380.2 29,368 0 29,368
kroB100 22,141 22,282.87 183.99 22,141 22,142 2.87 22,141 NA NA NA 22,506.4 221.3 22,140 NA NA NA 22,141 0 22,141
kroB150 26,130 26,448.33 266.76 26,130 26,159 34.72 26,130 NA NA NA NA NA NA 26,1753 NA 26,139.4 26,130 0 26,130
kroB200 29,437 30,035.23 357.48 29,541 29,542 92.17 29,448 NA NA NA NA NA NA 29,5124 NA 29,502.6 29,441.6 5.161 29,437
kroC100 20,749 20,878.97 158.64 20,749 20,749 0 20,749 NA NA NA 21,050 164.7 20,749 NA NA NA 20,749 0 20,749
kroD100 21,294 21,620.47 226.6 21,309 21,304 21.79 21,294 NA NA NA 21,593.4 141.6 21,294 NA NA NA 21,294 0 21,294
kroE100 22,068 22,183.47 103.32 22,068 22,081 18.5 22,068 NA NA NA 22,349.6 169.6 22,068 NA NA NA 22,068 0 22,068
rat575 6773 6933.87 27.62 6891 NA NA NA NA NA NA NA NA NA 6901.25 NA 6859.85 6367.3 8.48 6348
rat783 8806 9079.23 52.69 8988 NA NA NA NA NA NA NA NA NA 8976.92 NA 8940.37 10,491.9 14.62 10,455
rl1323 270,199 280,181.5 1761.7 277,642 NA NA NA NA NA NA NA NA NA NA NA NA 273,367.9 484.8 272,487
11400 20,127 21,349.63 527.88 20,593 NA NA NA NA NA NA NA NA NA 20,7762 NA 20,683.8 20,300.77 35.27 20,239
d1655 62,128 65,621.13 1031.9 64,151 NA NA NA NA NA NA NA NA NA 64,1337 NA 63,615.6 63,707.87 114.84 63,428.00

14 of 28

Sensors 2019, 19, 1837

428.5

428

427.5
427
426.5
426

425.5
425

(ueaN) 1s9q aya jo o3euany

Computational algorithms

Figure 8. Average of best solutions obtained for instance eil51 by all algorithms.

o
wn
wn

0 O I N O
S 5 S <
n n wn wn wn

(uean) 3599 ays 4

0 O
m o
mn
0 a8e

3
532

JEYNY

Computational algorithms

Figure 9. Average of best solutions obtained for instance €il76 by all algorithms.

15 of 28

Sensors 2019, 19, 1837

o
n
]

n o n o n o
< < o™ o o [oN]
] O O (] O O

(uean)) 1s9q ay1 jo o3euany

Computational algorithms

Figure 10. Average of best solutions obtained for instance eil101 by all algorithms.

7543.4

7543.2

C
©

I

I

—

——

——

M O NN QO
TN g d
S S S S
N 0 N N N
~NNNN ~N NN
3INl) 1539 3Y3 Jo a8etany

Computational algorithms

Figure 11. Average of best solutions obtained for instance berlin52 by all algorithms.

Sensors 2019, 19, 1837

Figure 12. Average of best solutions obtained for instance bier127 by all algorithms.

Average of the best (Mean)

Average of the best (Mean)

119600
119400
119200
119000
118800
118600
118400
118200
118000
117800
117600

Computational algorithms

6220
6200
6180
6160
6140
6120
6100
6080
6060
NN TS S -
T N A O
S 5 I
N v o N ; &
Q NG N N7 Q (e} Q
T ELg
o v Y g
N N N m
& > > T %
S & & & ¢
LN P
s £ EFF S
s § S ¢
N}
& O

Computational algorithms

Figure 13. Average of best solutions obtained for instance ch130 by all algorithms.

16 of 28

17 of 28

Sensors 2019, 19, 1837

6620

I

I
I
I
.|

o O O O O o o
O o OV < o O o
© n Mn wm wmw wun <
O OV vV O v O o

(uealnl) 1s2q 2y Jo a3esany

Computational algorithms

Figure 14. Average of best solutions obtained for instance ch150 by all algorithms.

8000

I
I

o O O O o o o
0 VW g O O oo O
aa O OO O O o0 o
NS I~ NN N NN~

(uealAl) 31s2q ay3 Jo 93esany

Computational algorithms

Figure 15. Average of best solutions obtained for instance rd100 by all algorithms.

Sensors 2019, 19, 1837 18 of 28

14410
14405
14400
14395
14390
14385
14380
14375
14370
14365

Average of the best (Mean)

Computational algorithms

Figure 16. Average of best solutions obtained for instance 1in105 by all algorithms.

43200
o
3 43000
=
~ 42800
-
wv
8 42600
Q
= 42400
Y
o]
@ 42200
o
(]
$ 42000 |
z
41800
> S &> & & & 0O
SIIT ITEFE
SETFTF &P L
N AR RPN g
F 5588
s ¢ & 8 T F
() ~N ~ ~ o
$ ‘&;’b ® ‘&.’b Q‘T
o 3 & g

Computational algorithms

Figure 17. Average of best solutions obtained for instance 1in318 by all algorithms.

19 of 28

Sensors 2019, 19, 1837

21500

I

|

I

L |

o o o o o o
n o wn o n o
< < ™ ™ o~ ~N
— — i — — —
o (o] (o] (o] o (o]

(uealn) 31saq 9y Jo a3esany

Computational algorithms

Figure 18. Average of best solutions obtained for instance kroA100 by all algorithms.

27000

I

I
o O O O o o o
o O O O O o o
QO 0 N O 1N < o
o OV OV O vu O o
N N N &N N N N

(uealn) 1s2q 8y jo adesany

Computational algorithms

Figure 19. Average of best solutions obtained for instance kroA150 by all algorithms.

20 of 28

Sensors 2019, 19, 1837

29800

I
|
|

o O O O o o o
o O O o o o o
~N O N < o N
aa O OO O O O O
N &N N N N N N

(uesn) 1s9q aya jo o8euany

Computational algorithms

Figure 20. Average of best solutions obtained for instance kroA200 by all algorithms.

22600

.|

I
I

o O O O o o o
o O O O O o o
n € o N 4 O O
N N N N N N 9«
N N N &N N N N

(uean) 1s9q ay1 jo o3euany

Computational algorithms

Figure 21. Average of best solutions obtained for instance kroB100 by all algorithms.

21 of 28

Sensors 2019, 19, 1837

26500

I
I
|
o o o o o o
o o o o o o
<t [32] [oN] i o [e2)
(o] [(s} (o] (o] (o] LN
(o] o~ o~ (o] (o] o~

(uesn) 1s9q aya jo o8euany

Computational algorithms

Figure 22. Average of best solutions obtained for instance kroB150 by all algorithms.

30100
30000
29900
29800
29700

o
o
wn
()]
o

29300
29200
29100

o o
o o
O <
(%] 2]
o o~
]]

(uean) 1s9q aya jo o8euany

Computational algorithms

Figure 23. Average of best solutions obtained for instance kroB200 by all algorithms.

Sensors 2019, 19, 1837

Figure 24. Average of best solutions obtained for instance kroC100 by all algorithms.

Figure 25. Average of best solutions obtained for instance kroD100 by all algorithms.

21100
21050
21000
20950
20900
20850
20800
20750
20700
20650
20600
20550

Average of the best (Mean)

Computational algorithms

21700
21600
21500
21400
21300

21200

Average of the best (Mean)

21100

Computational algorithms

22 of 28

23 of 28

Sensors 2019, 19, 1837

22400

I

I

I

O O O O O O O O o o
N O 1n O 1N O wm o wmo
N M AN AN - 4 0O O o O
N N N AN NN AN AN
N N AN AN AN NN NN

(uean) 1s2q ay3 jo a8esany

Computational algorithms

Figure 26. Average of best solutions obtained for instance kroE100 by all algorithms.

7200

7000
6800
6600
6400
6200
6000

(uean) 1s9q ay1 jo o3euany

Computational algorithms

Figure 27. Average of best solutions obtained for instance rat575 by all algorithms.

24 of 28

9150

Sensors 2019, 19, 1837

————— ——
O,uvw\

Q %)

——]y m

Og¢. =

O,uv\ m

— \«o\\ 4)

,QNQ ©

%, e EE

Yoy, T, S

S

\,m; W\.\m.& S

N\\ 9p =}

/e
\Q\\v& a.@ms S
——— \%\\N W\.\mxw

NQW\ e O 9 9 9 9 9 9 9
Us e S & & & & © © ©
o o o o o %y (0) S & © & © © & ©
=] N o n =) o N ©O 0 OV § 0 O ®
= o S o) S ©® O N N N N KN ©
[e)] [e)] (o)} [ee]] o o (o] (o] (o] (o] o o~

(uesn) 1s9q aya jo o8euany (uealn) 1s2q 8y jo adesany

Figure 28. Average of best solutions obtained for instance rat783 by all algorithms.

Computational algorithms

Figure 29. Average of best solutions obtained for instance r11323 by all algorithms.

Sensors 2019, 19, 1837 25 of 28

21600
21400
21200
21000
20800
20600
20400
20200
20000
19800
19600

Average of the best (Mean)

Computational algorithms

Figure 30. Average of best solutions obtained for instance f11400 by all algorithms.

66000
65500
65000
64500
64000
63500
63000

Average of the best (Mean)

62500

Computational algorithms

Figure 31. Average of best solutions obtained for instance d1655 by all algorithms.

Table 6 compares DFACO with five recent methods with respect to the percentage deviation of
the average solution to the BKS value (PDav) and the percentage deviation of the best solution to the
BKS value (PDbest) in the experimental results. PDav and PDbest were calculated using Equations (9)
and (10), respectively:

Mean — BKS
PDav = B—I<S x 100, (9)
pDbest — BEL=BKS 00 (10)

BKS

Sensors 2019, 19, 1837 26 of 28

The results revealed that the values of PDav and PDbest for DFACO were better than those for the
other methods on all datasets except one (rat783), for which Deng’s method [9] was better.

Table 6. Results of PDav and PDbest for DFACO compared with recent methods.

Chen and Quaarab et al. Mabhi et al. Osaba et al. Deng et al. DFACO
TSP BKks Chien (2011) [8] (2014) [20] (2015) [18] (2016) [21] (2016) [9]

Instance PDg, PDy,st PDgy, PDyest PDgy PDpest PDay PDpest PDay PDpest PDay PDpest
eil51 426 0.30 0.23 0.00 0.00 0.11 0.00 049 0.00 028 0.00 0.00 0.00
eil76 538 0.41 0.00 0.01 0.00 0.06 0.00 1.88 019 043 0.21 0.00 0.00
eil101 629 0.99 0.16 0.23 0.00 0.59 032 277 079 09 0.16 0.00 0.00

berlin52 7542 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 NA NA 0.00 0.00

bier127 118,282 0.96 0.00 0.07 0.00 NA NA NA NA NA NA 0.00 0.00
ch130 6110 1.57 0.51 0.42 0.00 NA NA NA NA 023 0.05 0.00 0.00
ch150 6528 0.55 0.00 0.34 0.00 0.55 0.00 NA NA 0.18 0.00 0.00 0.00
rd100 7910 0.98 0.00 NA NA NA NA NA NA 0.31 0.00 0.00 0.00

1lin105 14,379 0.19 0.00 0.00 0.00 0.00 0.00 NA NA 011 0.02 0.00 0.00
1in318 42,029 2.32 1.09 0.97 0.23 NA NA NA NA 081 061 047 0.22
kroA100 21,282 0.42 0.00 0.00 0.00 077 009 077 000 NA NA 0.00 0.00
kroA150 26,524 1.41 0.00 0.17 0.00 NA NA NA NA NA NA 0.00 0.00
kroA200 29,368 1.26 0.05 0.27 0.05 095 034 NA NA 023 004 do.oo 0.00
kroB100 22,141 0.64 0.00 0.00 0.00 NA NA 1.65 0.00 NA NA 0.00 0.00
kroB150 26,130 1.22 0.00 0.11 0.00 NA NA NA NA 017 0.04 0.00 0.00
kroB200 29,437 2.03 0.35 0.36 0.04 NA NA NA NA 026 022 0.02 0.00
kroC100 20,749 0.63 0.00 0.00 0.00 NA NA 145 0.00 NA NA 0.00 0.00
kroD100 21,294 1.53 0.07 0.05 0.00 NA NA 141 0.00 NA NA 0.00 0.00
kroE100 22,068 0.52 0.00 0.06 0.00 NA NA 128 0.00 NA NA 0.00 0.00
rat575 6773 2.38 1.74 NA NA NA NA NA NA 1.89 128 -5.85 =—6.19
rat783 8806 3.10 2.07 NA NA NA NA NA NA 1.94 153 1930 19.01
11323 270,199 3.69 2.75 NA NA NA NA NA NA NA NA 117 0.85
{11400 20,127 6.07 2.32 NA NA NA NA NA NA 323 277 086 0.56
d1655 62,128 5.62 3.26 NA NA NA NA NA NA 323 239 238 2.02

5. Conclusions

This paper proposed a modified FACO algorithm for the TSP. We modified FACO in several
ways to reduce the execution time and to better balance exploration and exploitation. For example,
the number of neighboring nodes receiving pheromones varied depending on the quality of the
solution compared to the other solutions. This helped to balance the exploration and exploitation
strategies. We also embedded the 3-Opt algorithm to improve the solution by mitigating the effect
of the stagnation problem. Moreover, the colony contained a combination of normal and flying ants.
These modifications aimed to achieve better solutions with less processing time and to avoid getting
stuck in local minima.

DFACO was compared with (1) ACO and five recent methods for the TSP [8,9,18,20,21] using
24 TSP datasets and (2) PACO-30pt using 22 TSP datasets. Our empirical results showed that DFACO
achieved the best results compared to ACO and the five different methods for most datasets (23 out of
24) in terms of solution quality. Also, DFACO achieved the best results compared with PACO-30pt for
most datasets (20 out of 21) in terms of solution quality and the execution time. Furthermore, for one
dataset, DFACO achieved a better solution than the best-known solution.

Author Contributions: ED. and K.E.H. proposed the idea and wrote the manuscript. All authors took part in
designing the solution. FD. implemented the algorithms and compared them. H.M. and H.A. validated the
implementation and analyzed the results. All authors reviewed and proofread the final manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for
funding this work through research group No. (RG-1439-35).

Acknowledgments: The authors thank the Deanship of Scientific Research and RSSU at King Saud University for
their technical support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; and in the decision to
publish the results.

Sensors 2019, 19, 1837 27 of 28

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Lenstra,] K.; Kan, A.R; Lawler, E.L.; Shmoys, D. The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization; John Wiley & Sons: Hoboken, NJ, USA, 1985.

Papadimitriou, C.H. The Euclidean travelling salesman problem is NP-complete. Theor. Comput. Sci. 1977, 4,
237-244. [CrossRef]

Garey, M.R.; Graham, R.L.; Johnson, D.S. Some NP-complete geometric problems. In Proceedings of the 8th
Annual ACM Symposium on Theory of Computing, Hershey, PA, USA, 3-5 May 1976; pp. 10-22.

Tito, J.E.; Yacelga, M.E.; Paredes, M.C.; Utreras, A.].; Wojcik, W.; Ussatova, O. Solution of travelling salesman
problem applied to Wireless Sensor Networks (WSN) through the MST and B&B methods. In Proceedings of
the Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments,
Wilga, Poland, 3-10 June 2018; p. 108082F.

Kravchuk, S.; Minochkin, D.; Omiotek, Z.; Bainazarov, U.; Weryniska-Bieniasz, R.; Iskakova, A. Cloud-based
mobility management in heterogeneous wireless networks. In Proceedings of the Photonics Applications
in Astronomy, Communications, Industry, and High Energy Physics Experiments, Wilga, Poland,
28 May—6 June 2017; p. 104451W.

Farrugia, L.I. Wireless Sensor Networks; Nova Science Publishers, Inc.: New York, NY, USA, 2011.

Giileti, S.; Mahi, M.; Baykan, O.K; Kodaz, H. A parallel cooperative hybrid method based on ant colony
optimization and 3-Opt algorithm for solving traveling salesman problem. Soft Comput. 2018, 22, 1669-1685.
[CrossRef]

Chen, S.-M.; Chien, C.-Y. Solving the traveling salesman problem based on the genetic simulated annealing
ant colony system with particle swarm optimization techniques. Expert Syst. Appl. 2011, 38, 14439-14450.
[CrossRef]

Deng, W.; Zhao, H.; Zou, L.; Li, G.; Yang, X.; Wu, D. A novel collaborative optimization algorithm in solving
complex optimization problems. Soft Comput. 2017, 21, 4387-4398. [CrossRef]

Eskandari, L.; Jafarian, A.; Rahimloo, P.; Baleanu, D. A Modified and Enhanced Ant Colony Optimization
Algorithm for Traveling Salesman Problem. In Mathematical Methods in Engineering; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 257-265.

Hasan, L.S. Solving Traveling Salesman Problem Using Cuckoo Search and Ant Colony Algorithms.
J. Al-Qadisiyah Comput. Sci. Math. 2018, 10, 59-64.

Mavrovouniotis, M.; Miiller, EM.; Yang, S. Ant colony optimization with local search for dynamic traveling
salesman problems. IEEE Trans. Cybern. 2017, 47, 1743-1756. [CrossRef]

de S Alves, D.R.; Neto, M.T.R.S,; Ferreira, Ed.S.; Teixeira, O.N. SIACO: A novel algorithm based on ant colony
optimization and game theory for travelling salesman problem. In Proceedings of the 2nd International
Conference on Machine Learning and Soft Computing, Phu Quoc Island, Viet Nam, 2—4 February 2018;
pp- 62—66.

Han, X.-C.; Ke, H.-W.; Gong, Y.-].; Lin, Y; Liu, W.-L.; Zhang,]. Multimodal optimization of traveling salesman
problem: A niching ant colony system. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, Kyoto, Japan, 15-19 July 2018; pp. 87-88.

Pintea, C.-M.; Pop, P.C; Chira, C. The generalized traveling salesman problem solved with ant algorithms.
Complex Adapt. Syst. Model. 2017, 5, 8. [CrossRef]

Xiao, Y,; Jiao, J.; Pei, J.; Zhou, K,; Yang, X. A Multi-strategy Improved Ant Colony Algorithm for Solving
Traveling Salesman Problem. In Proceedings of the IOP Conference Series: Materials Science and Engineering,
Shanxi, China, 18-20 May 2018; p. 042101.

Zhou, Y.; He, F; Qiu, Y. Dynamic strategy based parallel ant colony optimization on GPUs for TSPs. Sci. China
Inf. Sci. 2017, 60, 068102. [CrossRef]

Mahi, M.; Baykan, O.K.; Kodaz, H. A new hybrid method based on particle swarm optimization, ant colony
optimization and 3-opt algorithms for traveling salesman problem. Appl. Soft Comput. 2015, 30, 484—490.
[CrossRef]

Khan, I.; Maiti, M.K. A swap sequence based Artificial Bee Colony algorithm for Traveling Salesman Problem.
Swarm Evol. Comput. 2019, 44, 428-438. [CrossRef]

Ouaarab, A.; Ahiod, B.; Yang, X.-S. Discrete cuckoo search algorithm for the travelling salesman problem.
Neural Comput. Appl. 2014, 24, 1659-1669. [CrossRef]

http://dx.doi.org/10.1016/0304-3975(77)90012-3
http://dx.doi.org/10.1007/s00500-016-2432-3
http://dx.doi.org/10.1016/j.eswa.2011.04.163
http://dx.doi.org/10.1007/s00500-016-2071-8
http://dx.doi.org/10.1109/TCYB.2016.2556742
http://dx.doi.org/10.1186/s40294-017-0048-9
http://dx.doi.org/10.1007/s11432-015-0594-2
http://dx.doi.org/10.1016/j.asoc.2015.01.068
http://dx.doi.org/10.1016/j.swevo.2018.05.006
http://dx.doi.org/10.1007/s00521-013-1402-2

Sensors 2019, 19, 1837 28 of 28

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Osaba, E.; Yang, X.-S; Diaz, F; Lopez-Garcia, P.; Carballedo, R. An improved discrete bat algorithm for
symmetric and asymmetric Traveling Salesman Problems. Eng. Appl. Artif. Intell. 2016, 48, 59-71. [CrossRef]
Choong, S.S.; Wong, L.-P,; Lim, C.P. An artificial bee colony algorithm with a modified choice function for
the Traveling Salesman Problem. Swarm Evol. Comput. 2019, 44, 622-635. [CrossRef]

Civicioglu, P.; Besdok, E. A conceptual comparison of the Cuckoo-search, particle swarm optimization,
differential evolution and artificial bee colony algorithms. Artif. Intell. Rev. 2013, 39, 315-346. [CrossRef]
Lin, S. Computer solutions of the traveling salesman problem. Bell Syst. Tech.]. 1965, 44, 2245-2269. [CrossRef]
Dorigo, M.; Stiitzle, T. Ant colony optimization: Overview and recent advances. In Handbook of Metaheuristics;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 311-351.

Reinelt, G. The Traveling Salesman: Computational Solutions for TSP Applications; Springer: Berlin/Heidelberg,
Germany, 1994.

Blazinskas, A.; Misevicius, A. combining 2-opt, 3-opt and 4-opt with k-swap-kick perturbations for the
traveling salesman problem. In Proceedings of the 17th International Conference on Information and
Software Technologies, Kaunas, Lithuania, 27-29 April 2011; pp. 50-401.

Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman
problem. IEEE Trans. Evol. Comput. 1997, 1, 53-66. [CrossRef]

Dorigo, M.; Gambardella, L.M. Ant colonies for the travelling salesman problem. BioSystems 1997, 43, 73-81.
[CrossRef]

Gambardella, L.M.; Dorigo, M. Solving Symmetric and Asymmetric TSPs by Ant Colonies. In Proceedings of
the International Conference on Evolutionary Computation, Nagoya, Japan, 20-22 May 1996; pp. 622-627.
Deepa, O.; Senthilkumar, A. Swarm intelligence from natural to artificial systems: Ant colony optimization.
Networks (Graph-Hoc) 2016, 8, 9-17.

Aljanaby, A. An Experimental Study of the Search Stagnation in Ants Algorithms. Int.]. Comput. Appl. 2016,
148. [CrossRef]

Dahan, F; El Hindi, K.; Ghoneim, A. An Adapted Ant-Inspired Algorithm for Enhancing Web Service
Composition. Int. J. Semant. Web Inf. Syst. 2017, 13, 181-197. [CrossRef]

Reinelt, G. TSPLIB—A traveling salesman problem library. Orsa J. Comput. 1991, 3, 376-384. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.engappai.2015.10.006
http://dx.doi.org/10.1016/j.swevo.2018.08.004
http://dx.doi.org/10.1007/s10462-011-9276-0
http://dx.doi.org/10.1002/j.1538-7305.1965.tb04146.x
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1016/S0303-2647(97)01708-5
http://dx.doi.org/10.5120/ijca2016910861
http://dx.doi.org/10.4018/IJSWIS.2017100109
http://dx.doi.org/10.1287/ijoc.3.4.376
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Metaheuristic Solutions
	Opt Algorithm
	Ant Colony Optimization
	Flying Ant Colony Optimization

	Dynamic Flying Ant Colony Optimization (DFACO) Algorithm
	Experimental Results
	Conclusions
	References

