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Abstract: In this paper we propose an outlier detection approach for GNSS vector networks based
on the specific direction (i.e., SD approach), along which the test statistic constructed reaches the
maximum. We derive the unit vector of this specific direction in detail, and prove that the unit
vector is the same as that determined by the outlier estimates in three-dimensional (3D) approach,
while the distribution of the maximum test statistic in this direction is the square root of Chi-squared
distribution. Therefore, eliminating an outlier along this specific direction can get the same result
as that of eliminating all three components of outlier vector in 3D approach. The mathematical
equivalence of SD approach and 3D approach is further demonstrated by a real GNSS network.
Moreover, preliminary application of the SD approach to detect the abnormal antenna height
measurement is carried out in terms of numerical simulations of multiple baseline solutions, and it
shows that the SD approach can effectively detect baselines that are directly infected by corresponding
receiver antenna height errors.

Keywords: outlier detection; GNSS networks; baseline vector; antenna height

1. Introduction

When a weight matrix is chosen as the inverse of observables’ covariance matrix, the weighted
least-squares (WLS) estimation is the best linear unbiased estimator (BLUE), assuming that no outlier
exists. However, outliers can inevitably occur in practice and cause the optimal feature of such
estimation loss [1–3]. Therefore, outliers must be detected and then eliminated as soon as possible.
Baarda [4] first introduced ‘data-snooping’ for detecting outliers in geodetic networks, where outliers
are identified one by one based on the test statistic of single outlier detection approach. The test statistic
can be constructed according to various statistical distributions, e.g., standard normal distribution,
τ-distribution, and F-distribution [4–7], and one can determine the existence of outliers by a comparison
with correspondent critical value at a given significance level [8,9]. Three types of errors, i.e., rejecting
the right observation (type I error) and accepting the wrong observation (type II error) as well as
locating the outlier to right observation (type III error) [10–13], are inevitably encountered in outlier
detection processes. Therefore, the reliability theory is of fundamental importance in outlier detection,
the content of which has been extended from the case for single outlier [4] to multiple outliers [7,14,15]
and from independent observations to correlated ones [16,17]. According to the reliability theory, once
the possibility of type I and type II errors is given, the Minimal Detectable Bias (MDB) and Bias-to-Noise
Ratios (BNR), defined respectively as the measures of internal reliability and external reliability of
geodetic networks, are uniquely determined [18–20]. Both MDB and BNR reflect the characteristics of
a geodetic network to resist outliers, and the BNR shows impact of non-detected outlier on the final
solution [21], which can be reduced or eliminated by robust methods via iteratively reweighting of
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observations [2,22–25]. The outlier detection and reliability theory has already been widely applied for
the three-dimensional (3D) networks of Global Navigation Satellite System (GNSS) [26–33].

At present, outlier detection for 3D GNSS vector networks is performed either at one-dimensional
(1D) baseline component level or 3D baseline vector level [34], and based on a fundamental set of
independent loops [35,36] or by adding a redundancy constraint [37]. Different from many other
geodetic measurements, the baseline vector observations of GNSS networks are not directly observed,
but derived from the pseudo-range or carrier-phase measurements [38]. Hence, there can be various
outliers’ sources in GNSS networks such as satellite orbit error, impractical tropospheric model, wrong
measurement of GNSS antenna height, antenna centering and positioning, etc. These factors usually
come from a specific direction in the space, and have varying effects on all coordinate components
of baseline vectors [39]. Supposing a GNSS baseline vector is spoiled by the outlying antenna
height measurement of a station, this outlier would be detected with a higher probability when the
least-squares residuals are projected to the vertical direction of the station. Therefore, outlier detection
in GNSS networks can be conducted by searching a specific direction, so that the test statistic for
outliers along this direction reaches maximum. However, due to the existence of random observation
errors, this specific direction is certainly deflected from the true one. How can we determine such a
specific direction for outlier detection of a certain baseline vector? Further, once the outlier in this
direction is detected, what is its impact on the other two coordinate components orthogonal to this
specific direction? These issues motivate the following investigation of the paper.

The rest of this paper is organized as follows. Section 2 briefly reviews the traditional outlier
detection approaches in GNSS vector networks and derives in detail the mathematical formulas of the
SD approach. Section 3 presents the results of applying ‘data snooping’ to a real GNSS network by 1D,
3D, and the proposed Specific Direction-based (SD) approach, which validates the effectiveness of the
SD approach. In Section 4, we apply the SD approach for the detection of wrong GNSS antenna height
measurement in terms of numerical simulations of multiple baseline solutions. Section 5 gives the
concluding remarks.

2. Methodology

2.1. Traditional Outlier Detection Approach for GNSS Vector Observations

Since it is usually impossible to predetermine the number of outliers, hypothesis testing is
practically applied by iteratively removing the wrong observation corresponding to the largest test
statistic until no statistic exceeds the critical value. If a single outlier ∇i occurs at the ith observation,
the general linear or linearized observation equation is expanded to

y = Ax + hi∇i + ε (1)

where y is a 3m × 1 vector of observations with m the number of baselines, A is a 3m × n
design matrix with full column rank, x is an n × 1 vector of unknown parameters to be solved,

hi =
(

0 i 0 1 0 i 0
)T

is a 3m-dimensional zero vector with only the ith element equaling to
one and ε is an 3m × 1 vector of observation error with the covariance Σ. When the weight matrix in
WLS is taken as P = σ2

0Σ−1 with σ2
0 the prior variance factor, the least-squares estimate of the outlier ∇̂i

and its variance σ2
∇̂i

are as follows

∇̂i =
(
hT

i PQvvPhi
)−1

hT
i PQvvPy =

(
hT

i Phi
)−1

hT
i Py, σ2

∇̂i
= σ2

0

(
hT

i Phi
)−1

(2)
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where P = PQvvP is called the reliability matrix of the observations [20], and Qvv = P−1
−

A
(
ATPA

)−1
AT is the cofactor matrix of residuals vector v = −QvvPy. Then the w-test statistic

for the ith observation is formulated as [4,7]:

wi =
∇̂i
σ
∇̂i

=
hT

i Py

σ0

√(
hT

i Phi
) (3)

If there is no outlier in the ith observation, wi follows the standard normal distribution, i.e.,
wi ∼ N(0, 1). Once the significance level α0 of the test is given, the critical value of test statistic is
uniquely determined by the distribution function. If the absolute value of wi is larger than the critical
value, the estimated outlier ∇̂i by Equation (2) is assumed significant and thereby an outlier is detected
in the ith observation. If the variance factor σ2

0 in (3) is unknown and substituted with its unbiased
estimator σ̂2

0, then the test statistic (3) follows the τ-distribution with r − 1 degrees of freedom with r
being the redundancy number of observations [5,6]. In particular, for uncorrelated observations case,
test statistic (3) can be simplified as

wi =
vi

σ0
√qvivi

(4)

where vi and qvivi denote the ith element of the residuals vector v and the ith diagonal element of
cofactor matrix Qvv in (2), respectively.

The Minimal Detectable Bias (MDB), as a measure of internal reliability, of the ith observation for
single outlier case is expressed as [4,7]:

MDB(∇i) =
δ0σ0√
hT

i Phi

(5)

where δ0 is the non-centrality parameter, which is uniquely determined by the size of type I error α0

and type II error β0 [40].
For the GNSS baseline networks, it is reasonable to treat the baseline vector observations in triples

manner because the three components of a baseline vector are computed together by the same GNSS
observations and are naturally correlated. Once an outlier occurs, all three components would be
impacted. Therefore, the 3D outlier detection approach is intuitively developed specifically for the
GNSS baseline vector applications [34]. To describe the 3D approach, the observation vector and design
matrix in (1) is partitioned as

y =


y1
y2
...

ym

, A =


A1

A2
...

Am

, ε =


ε1

ε2
...
εm

 (6)

where y j and ε j are the 3 × 1 vectors of the jth baseline observation and observation error, A j is the jth
3 × n design sub-matrix. When the ith observation vector yi contains a 3D outlier vector di, Equation (1)
is rewritten with (6) as

y j = A jx + H jdi + ε j, j = 1, 2, . . . , m (7)

and H j =

{
03, for j , i
I3 for j = i

, where 03 is a 3 × 3 zero matrix and I3 is a 3 × 3 identity matrix. The WLS

estimation d̂i of 3D outlier vector is derived from (7) as

d̂i = P
−1
ii

m∑
j=1

Pi jy j (8)
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in which, Pi j denotes the ij-th 3 × 3 sub-matrix of the reliability matrix P. To determine whether or not
the 3D vector of outliers exists, the test statistic Ti is constructed by

Ti =
d̂

T
i Piid̂i/3

σ2
0

(9)

If there are no outliers, Ti is central F-distributed with two degrees of freedom as 3 and ∞ at
given α0, i.e., Ti ∼ F(α0; 3,∞). If the variance factor σ2

0 in (9) is unknown, then Ti can be re-constructed
following the central F-distribution of F(α0; 3, 3m− n− 3) if no outlier exists according to [6] (p. 302).

2.2. Specific Direction-Based (SD) Approach for GNSS Vector Observations

2.2.1. Outlier Detection in SD Approach

Supposing the outlier’s coefficient matrix of (7) is defined as H j =

{
03, for j , i
uik for j = i

, where uik

represents the 3D directional cosines relative to three Cartesian coordinate axes and 03 is a 3D zero
vector, similar to (3) the test statistic for the ith baseline vector observation at the kth direction of is
constructed as

wik =

uT
ik

m∑
j=1

Pi jy j

σ0

√
uT

ikPiiuik

=
uT

ikgi

σ0

√
uT

ikPiiuik

=
gT

i uik

σ0

√
uT

ikPiiuik

(10)

where gi =
m∑

j=1
Pi jy j is a 3D vector and Pi j is the ij-th 3 × 3 sub-matrix of the reliability matrix P.

For different directions uik, the testing values wik in (10) are also different.
Accordingly, the outlier detection and identification should focus on finding the specific unit

direction vector, supposing ui3, that enables the largest test statistic for (10). This can be solved by the
following target function Φ(ui3)

max : Φ(ui3) = w2
i3 =

(
gT

i ui3
)2

σ2
0uT

i3Piiui3
(11)

For a local maximum of the target function above, its first order partial derivative must equal to
zero, i.e.,

∂Φ(ui3)

∂ui3
=

2
(
gT

i ui3
)[(

uT
i3Piiui3

)
gT

i −
(
gT

i ui3
)
uT

i3Pii
]

σ2
0

(
uT

i3Piiui3
)2 = 0 (12)

The solution of (12) is

ui3 =
uT

i3Piiui3

gT
i ui3

P
−1
ii gi and gT

i ui3 = 0 (13)

where the matrix P
−1
ii denotes the inverse of Pii. When gT

i ui3 = 0, the test statistic of (10) gets the
minimum value, which is not the right solution we are looking for. Since the scalar factor uT

i3Piiui3/gT
i ui3

in (13) does not impact the direction of the unit direction vector ui3, the first equation of (13) is simply
equivalent to (14) for determination of a spatial direction

ui3 = ±
P
−1
ii gi

‖P
−1
ii gi‖

(14)
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with ‖P
−1
ii gi‖ =

√
gT

i P
−2
ii gi being the 2-norm of the vector P

−1
ii gi. Here, by comparing (14) with (8), we

can find that ui3 and d̂i are along the same direction, indicating the outlier vector derived from 3D
approach can intrinsically determine the specific direction with maximum test statistic.

By taking the second order partial derivative to (12) and then substituting (14) into it, one can get

∂Φ2(ui3)

∂u2
i3

= −
Pii

[(
gT

i P
−1
ii gi

)
I3 −P

−1
ii gig

T
i

]
σ2

0gT
i P
−1
ii gi

(15)

where I3 denotes the 3 × 3 identity matrix. Since the block matrix Pii is positive definite, if the matrix

Mi = (gT
i P
−1
ii gi)I3 −P

−1
ii gig

T
i is non-negative definite, the solution of (14) is the unique unit vector to get

the local maximum test statistic, and it must be the global maximum one. By substituting (14) into (10),
one can derive the maximum value as (16), which is utilized as test statistic in the SD approach

|wi3| =
1
σ0

√
gT

i P
−1
ii gi (16)

Considering gi =
m∑

j=1
Pi jy j, test statistic (16) can be rewritten with (8) as

|wi3| =
1
σ0

√(
P
−1
ii gi

)T
PiiP

−1
ii gi =

1
σ0

√
d̂

T
i Piid̂i (17)

Comparing (17) with (9), we can find that |wi3|
2 follows the Chi-squared distribution with 3 degrees of

freedom. Thereby, the SD approach is mathematically equivalent to the 3D method and its critical
value for |wi3| can be directly calculated by

√
3 · F(α0; 3,∞).

2.2.2. Outlier Elimination in SD Approach

If the maximum test statistic |wi3| by (17) is larger than its critical value, the 3D test statistic (9) will also
be larger than its corresponding critical value and the whole ith baseline vector should be eliminated.

Evaluating 3D outlier estimates (8), it can be rewritten as

d̂i = P
−1
ii

m∑
j=1

Pi jy j = P
−1
ii gi =

P
−1
ii gi

‖P
−1
ii gi‖

‖P
−1
ii gi‖ = ui3di3 (18)

where di3 = ‖P
−1
ii gi‖, the outlier estimates at the other two directions (ui1 and ui2) orthogonal to ui3

must be zero. Therefore, in SD approach, if an outlier occurs at the ith baseline vector, the observational
equation for eliminating the outlier along the specific direction ui3 is expressed as

yi=Aix+ui3di3 + εi, and
y j=A jx+ε j, j = 1, 2, . . . , m; j , i (19)

Then the estimates of parameter vector x and its variance can be derived via least squares
adjustment. It was found that elimination of the outlier estimated in this direction will lead to the same
results of elimination outlier vector d̂i in the whole baseline vector as done in 3D approach, since the
outlier scalar estimated in this specific direction ui3 contains all the information content of 3D outlier
vector d̂i.
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3. Outlier Detection and Elimination for Real GNSS Network

3.1. Data Description

The real GNSS network used in the following is shown in Figure 1 and its observation data set is
given in Tables A1 and A2 in the Appendix A [41]. There are 8 sites and 16 baselines in this network,
and the site N001 is fixed as known for the free network adjustment.

Sensors 2018, 18, x FOR PEER REVIEW  6 of 15 

 

3.1. Data Description 

The real GNSS network used in the following is shown in Figure 1 and its observation data set 

is given in Table A1 and Table A2 in the Appendix [41]. There are 8 sites and 16 baselines in this 

network, and the site N001 is fixed as known for the free network adjustment. 

N001

N002

N003

N004

N005

N006

N007

N008

1

4

3

2

5

6
7

8

9

10

11

12

13

14

15

16

. 

Figure 1. Shape of the GNSS network. 

The square root of prior variance factor 0  is taken as 1 cm in the following data analysis, and 

probabilities of type I and type II errors are chosen as 0 0.1% =  and 0 20% =  respectively 

thereafter [7]. 

3.2. Specific Direction Validation 

If the matrix ( )1 1

3

T T

i i ii i ii i i

− −= −M g P g I P g g  in (15) is non-negative definite, previous derivation 

guarantees the unit direction vector 3iu  determined by (14) is the specific direction for the ith 

baseline observation to achieve the maximum test statistic as expressed by (16). The unit direction 

vector 
iku  of an arbitrary direction in 3D space can be expressed as 

( )cos cos cos sin sin
T

ik     =u  (20) 

where [ 90 ,90 ]  −  and [0 ,360 ]  are spherical coordinates. When   and   are fixed, 

correspondent test statistic of (10) at this direction is uniquely determined. Therefore, the specific 

direction, which (10) generates as the maximum test statistic, can be obtained by simply traversing 

the whole range space of   and   given a certain small step size. To validate the effectiveness of 

(14) and (16), statistic values (10) of the No. 1 baseline for all ( , )   direction combinations are 

calculated and plotted in Figure 2 given the 1  step size. It is shown that values in Figure 2 manifest 

a symmetric pattern with respect to the origin and there exist two maximum points of 1.4973 in two 

opposite directions, just corresponding to the positive and negative sign in (14). This value is slightly 

smaller than the maximum 1.4975, which is directly derived from analytical formula (16). The 

differences of the maximum test statistics by analytical formula (16) proposed in SD method and 

those by numerical traversal algorithm are shown in Figure 3 for 16 baseline observations, which 

indicate that the maximum test statistics derived from (16) are all slightly larger than those from the 

traversal method. It further proves the test statistic derived from (16) is the theoretical global 

maximum one, since the traversal method can only get an approximate maximum due to the step 

Figure 1. Shape of the GNSS network.

The square root of prior variance factor σ0 is taken as 1 cm in the following data analysis,
and probabilities of type I and type II errors are chosen as α0 = 0.1% and β0 = 20% respectively
thereafter [7].

3.2. Specific Direction Validation

If the matrix Mi =
(
gT

i P
−1
ii gi

)
I3 − P

−1
ii gig

T
i in (15) is non-negative definite, previous derivation

guarantees the unit direction vector ui3 determined by (14) is the specific direction for the ith baseline
observation to achieve the maximum test statistic as expressed by (16). The unit direction vector uik of
an arbitrary direction in 3D space can be expressed as

uik =
(

cosφ cosλ cosφ sinλ sinφ
)T

(20)

where φ ∈ [−90◦, 90◦] and λ ∈ [0◦, 360◦] are spherical coordinates. When φ and λ are fixed,
correspondent test statistic of (10) at this direction is uniquely determined. Therefore, the specific
direction, which (10) generates as the maximum test statistic, can be obtained by simply traversing the
whole range space ofφ and λ given a certain small step size. To validate the effectiveness of (14) and (16),
statistic values (10) of the No. 1 baseline for all (φ,λ) direction combinations are calculated and plotted
in Figure 2 given the 1◦ step size. It is shown that values in Figure 2 manifest a symmetric pattern with
respect to the origin and there exist two maximum points of 1.4973 in two opposite directions, just
corresponding to the positive and negative sign in (14). This value is slightly smaller than the maximum
1.4975, which is directly derived from analytical formula (16). The differences of the maximum test
statistics by analytical formula (16) proposed in SD method and those by numerical traversal algorithm
are shown in Figure 3 for 16 baseline observations, which indicate that the maximum test statistics
derived from (16) are all slightly larger than those from the traversal method. It further proves the
test statistic derived from (16) is the theoretical global maximum one, since the traversal method
can only get an approximate maximum due to the step size limitation. Besides this, the matrices

Mi = (gT
i P
−1
ii gi)I3 −P

−1
ii gig

T
i corresponding to 16 baseline observations are all non-negative definite.
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3.3. Outlier Detection

The test statistics of all baseline observations of the networks by SD, 3D, and 1D approach,
calculated via (16), (9), and (3) respectively, are listed in Table 1, and the correspondent spherical
coordinates denoting the specific directions in SD approach are also demonstrated. For a given
α0 = 0.1%, the critical values of three approaches are shown in Table 2, which are respectively
computed by the inverse of the standard normal cumulative distribution function N(α0; 0, 1) for the
1D approach, by inverse of the central cumulative F-distribution function F(α0; 3,∞) for 3D approach,
and by

√
3 · F(α0; 3,∞) for SD approach. Besides this, test statistics larger than corresponding critical

values are marked in bold font.
Since one outlier can pollute its neighboring observations and possibly causes their test statistic

values exceed the critical value, the ‘data snooping’ procedure is iteratively conducted, i.e., detecting
the outliers one by one. The largest test statistics among all baseline observations in each test step by
different approaches are shown in Table 3 and those exceeding critical values are in bold font.
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Table 1. Test Statistics of baseline observations by Specific Direction-based (SD), 3D, and 1D approach.

Baseline
Num.

SD Approach 3D Approach 1D Approach

λ (Deg.) φ (Deg.) Test Statistics Test Statistics X Y Z

1 5.8 118.5 1.498 0.748 0.469 1.031 0.743
2 −17.7 307.7 1.730 0.997 0.908 0.742 0.518
3 52.7 210.0 4.378 6.388 2.395 3.469 2.305
4 3.2 268.1 2.316 1.788 1.262 2.313 0.699
5 34.7 267.7 2.982 2.964 0.937 2.568 2.162
6 27.2 156.2 1.604 0.858 1.422 0.670 0.287
7 61.5 327.9 1.768 1.042 0.866 0.278 1.647
8 −34.2 148.0 1.993 1.324 1.425 0.101 1.527
9 83.0 213.3 2.685 2.403 0.151 1.229 2.648

10 −63.4 130.8 1.000 0.333 0.375 0.496 0.975
11 18.0 63.6 0.712 0.169 0.608 0.588 0.083
12 −19.3 344.5 2.014 1.352 1.939 0.847 0.203
13 0.3 118.2 1.542 0.792 0.308 1.184 0.990
14 −5.7 315.9 0.543 0.098 0.349 0.217 0.339
15 70.2 141.1 1.931 1.243 0.127 0.788 1.854
16 66.8 140.2 0.736 0.180 0.021 0.299 0.693

Table 2. Critical values of SD, 3D, and 1D test statistics.

SD Approach 3D Approach 1D Approach

Critical Values 4.033 5.422 3.291

Table 3. Largest test statistics in each outlier detection step.

Test Step Baseline Num. SD Approach 3D Approach
1D Approach

X Y Z

1 3 4.378 6.388 2.395 3.469 2.305

2
1 2.413 1.941 0.101 2.154 1.108
9 2.307 1.774 0.656 0.702 2.301

In Step 1, the outlier is detected at the No. 3 baseline by all three approaches, but the 1D method
locates the outlier only at the Y-component of the baseline. Therefore, the No. 3 baseline observation
should be discarded and the remaining data set is used to continue ‘data snooping’ procedure in
Step 2. In Step 2, all test statistics are well lower than the corresponding critical values listed in
Table 2; therefore, no outlier is detected, indicating that the current dataset is quite ‘clean’ and the
‘data snooping’ procedure can be terminated. However, three methods show obvious discrepancy
at this step. By the SD and 3D method, the largest statistics are reached both at the No. 1 baseline.
However, by the 1D method, the largest test statistic is located at the Z-component of the No. 9 baseline,
indicating that the baseline-component-based method (1D approach) and the baseline-vector-based
method (3D and SD approach) do not always lead to same results as already discussed by [34].

3.4. Outlier Elimination

After identifying the outlier observation, its influence on the final parameter estimation must be
eliminated. Since the SD approach is mathematically equivalent to the 3D approach, it can be expected
that eliminating the influence of outlier in specific direction (14) has the same effect as that in 3D
approach by (8). Figure 4 shows the absolute differences of 21 coordinate parameters (7 unknown sites)
estimated by SD and 3D approach after elimination of outliers’ influence respectively. The differences
are ignorable and are merely caused by the limits of computer precision. Note that the values of
parameters 12 and 13 are zero due to floating point number round-off and therefore not be presented
in Figure 4. The final parameters estimation after outlier elimination of the No. 3 baseline by SD and
3D method are listed in Table 4.
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Figure 4. The absolute value of differences between SD and 3D approach derived parameter
estimation after outlier elimination. The values of parameter 12 and 13 are zero due to floating-point
number round-off.

Table 4. Final sites’ coordinate parameters estimation after elimination of outliers determined by SD or
3D method.

Site X (m) Y (m) Z (m)

N002 −2830634.7415 4649557.6508 3313013.3273
N003 −2831170.1981 4649484.1775 3312659.4277
N004 −2831820.5247 4649349.1169 3312296.9359
N005 −2830250.6519 4649506.9814 3313403.5257
N006 −2831231.1017 4649166.3913 3313046.1881
N007 −2832003.8156 4648890.1430 3312775.1533
N008 −2831387.7285 4648523.2569 3313809.5058

4. Simulation Analysis for Detecting Abnormal GNSS Antenna Height Measurements

In this section, we adopt the SD approach to detect baseline vectors which are infected by abnormal
antenna height measurement in the GNSS networks in terms of numerical simulations of multiple
baseline solutions. The GNSS network used for simulations is based on Figure 1, which also consists of
8 sites and 16 baselines. Simulated baseline vector observations are generated in two steps, where
firstly error-free baseline vectors are calculated by ‘true’ coordinates of each site, and secondly baseline
vector noises are randomly generated according to corresponding baseline covariance matrix and then
added to the error-free baseline vector. The simulation procedure is described in detail by [23], and in
following simulations the estimated sites coordinates in Table 4, as well as the known coordinates
of site N001 in Appendix A, are treated as the ‘true’ values for error-free baseline vector generation.
Besides this, the covariance matrices in Appendix A are used to generate baseline vector noises as
that in [23].

Assuming there are four GNSS receivers to carry out the measurement task of above-mentioned
GNSS network, the surveying is divided into six observation sessions as arranged in Table 5 and note
that only three receivers are used for sessions 2 and 5. In each session, there are at most three functional
independent baseline vectors for the final network adjustment. Since the multiple baseline solutions are
supposed, the baselines of each session must be stochastic dependent and the correlation coefficients
from 0.2 to 0.3 between different baselines’ components are assumed during the construction of weight
matrix. In the following simulations, it is assumed that the GNSS antenna height on site N006 is
wrongly measured by 10 cm in observation session 2, which is possibly caused by, for example,
the misreading of antenna height. Therefore, baselines No. 3 and No. 11 are directly influenced by the
wrong N006 antenna height. The influence is introduced by upward continuation of the site N006
coordinates in the error-free baseline vector generation step of observation session 2, while for other
sessions the coordinates of site N006 are still based on that in Table 4.
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Table 5. Session arrangement for the observation of 16 baselines in the network by 4 GNSS receivers.

Session Receiver Station Baseline No.

1 N001, N002, N003, N005 1, 2, 8
2 N002, N003, N006 3, 11
3 N002, N003, N005, N006 4, 5, 13
4 N005, N006, N007, N008 9, 15, 16
5 N004, N006, N007 10, 14
6 N001, N003, N004, N006 6, 7, 12

The numerical simulations are carried out 10,000 times, and for each simulation the baseline
vector noises are newly produced while the 10 cm antenna height error of site N006 in session 2 is
kept fixed. We use the SD approach to estimate the spatial direction, i.e., latitude and longitude,
of possible outlier vector for each baseline by (14), and calculate the standard deviation (SD) of them
with respect to the upward direction of site N006 by (21). In Equation (21), SDϕ and SDλ stand for the
SD values of latitude and longitude estimates respectively, and the upward direction of site N006 is
(ϕN006,λN006) = (31.3◦, 121.3◦) according to Table 4.

SDϕ =

√√√√√ N∑
i=1

(ϕi −ϕN006)
2

N
, SDλ =

√√√√√ N∑
i=1

(λi − λN006)
2

N
(N = 10, 000) (21)

Table 6 lists the SD values of both latitude and longitude estimates for all baselines as well as
corresponding mean values over 10,000 simulations. As shown, the No.3 baseline reaches the best
consistency in terms of outlier direction estimation with site N006’s antenna height direction, which
is followed by the No.11 baseline for its smaller SD values compared to remaining baselines. Since
the No. 3 and No. 11 are directly infected by the wrong antenna height of site N006 in session 2,
the statistical results demonstrate that the SD approach can effectively determine the influence of
wrong antenna height on baseline vectors in the GNSS network. Furthermore, we investigate the
outlier direction estimates of other site N006-related baselines, which are observed in other sessions
where the antenna height is correctly measured. Figure 5 shows the statistical distribution of outlier
direction estimates for these baselines, from which we can obviously see more gathering outlier
direction estimates for No. 3 and No. 11 baselines and smaller bias with respect to the antenna height
direction of site N006 indicated by the corresponding red vertical line at each panel. Wih regard to
the test statistics for each baseline observation calculated by (16), it turns out that among 16 baselines
over 10,000 simulations, the No. 11 baseline reaches the maximum at about 99% times while the
remaining part of the maximum values falls into the No. 3 baseline, which are all well beyond the
critical value listed in Table 2. Therefore, it is possible to apply the SD method to detect the influence
of wrongly measured receiver antenna height on baseline vectors in GNSS networks, which needs
further investigation.

Table 6. Mean and SD values of outlier direction (latitude and longitude) estimates for all baselines
(unit: degree).

Baseline No. Mean Lat. Mean Long. SD Lat. SD Long.

1 22.7 117.7 10.3 7.7
2 25.9 114.1 7.6 8.5
3 31.0 121.8 1.2 1.1
4 15.9 97.2 18.5 70.9
5 25.1 118.8 6.5 3.0
6 26.1 118.7 5.3 2.8
7 15.8 113.6 16.0 8.9
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Table 6. Cont.

Baseline No. Mean Lat. Mean Long. SD Lat. SD Long.

8 17.7 115.4 14.1 6.6
9 31.7 123.1 2.5 3.0
10 31.7 122.4 2.0 2.3
11 32.1 120.3 1.2 1.4
12 32.8 122.5 1.9 1.7
13 29.7 121.4 2.0 1.2
14 33.6 123.9 3.2 3.5
15 34.2 124.7 3.8 4.3
16 26.1 129.7 13.2 49.7
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Figure 5. Statistical distribution of outlier direction estimates for site N006 related baselines. (a) for
No.3 baseline, (b) for No.11 baseline, (c) for No.12 baseline, (d) for No.13 baseline, (e) for No.14 baseline
and (f) for No.15 baseline (The red vertical lines stand for the latitude and longitude of site N006’s
antenna height direction.).
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5. Conclusions

In this contribution, we proposed the specific direction-based outlier detection approach
(SD approach), for 3D GNSS networks. By seeking the specific direction in the 3D space, the maximum
test statistic of baseline vector observations is constructed. The analytical expression (14) is derived to
directly obtain this specific direction and to construct the corresponding test statistic by (16). Compared
to traditional 3D approach, the SD approach is derived from another point of view. It tests the
baseline vector in a specific direction in which the outlier vector manifests the largest test statistic value.
Evaluating (17) and (9) demonstrates that the two approaches are rigorously mathematically equivalent,
while if readers want to directly investigate the spatial direction characteristic of outlier sources in
the GNSS networks, the SD approach is preferred. A real GNSS network is processed to validate
the effectiveness of the SD approach and the equivalence to the 3D method. Moreover, preliminary
application of SD approach to detect the influence of wrong GNSS antenna height measurement on
baseline vectors in the GNSS networks are carried out, which shows promising results and needs
further investigation.
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Appendix A

The baseline vector observations and their covariance matrix of real GNSS networks are
listed in Table A1 referred to in [41], where the accurate known site N001’s 3D coordinates are:
X = −2830754.6300, Y = 4650074.3450, and Z = 3312175.0540, with the unit of meter. The approximate
3D coordinates of seven unknown sites are listed in Table A2.

Table A1. Baseline vector observations and covariance matrix.

Bl.Num Sta.Po End.Po ∆X (m) ∆Y (m) ∆Z (m) Covariance Matrix (×10−6)

1 N002 N001
1.5616

−119.8880 516.6920 −838.2730 −1.2684 2.5332
−1.6092 1.6192 3.5764

2 N003 N001 415.5670 590.1690 −484.3730
0.9704
−0.7912 1.5756
−0.9936 1.0044 2.2228

3 N006 N002 596.3630 391.2610 −32.8650
0.8868
−0.7200 1.5160
−0.8576 0.9132 1.9000

4 N002 N003 −535.4570 −73.4720 −353.8990
0.9180
−0.8868 2.1596
−0.2988 0.5916 0.9604

5 N002 N005 384.0890 −50.6680 390.1980
1.0084
−0.9792 2.3960
−0.3232 0.6472 1.0364

6 N003 N004 −650.3260 −135.0610 −362.4920
0.6004
−0.5796 1.3952
−0.1932 0.3832 0.6248
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Table A1. Cont.

Bl.Num Sta.Po End.Po ∆X (m) ∆Y (m) ∆Z (m) Covariance Matrix (×10−6)

7 N004 N001 1065.8940 725.2290 −121.8830
1.1984
−1.1608 2.7032
−0.3748 0.7292 1.1796

8 N005 N001 −503.9770 567.3630 −1228.4710
1.0196
−0.9888 2.3016
−0.3172 0.6192 1.0156

9 N005 N008 −1137.0770 −983.7240 405.9790
0.8212
−0.8012 1.9432
−0.2528 0.5148 0.8316

10 N004 N007 −183.2910 −458.9740 478.2180
1.0352
−0.8360 1.4972
−0.7420 0.9900 1.3932

11 N006 N003 60.9040 317.7860 −386.7610
0.9424
−0.7692 1.3572
−0.6940 0.9112 1.2836

12 N006 N004 −589.4240 182.7260 −749.2520
1.1232
−0.9152 1.5996
−0.8368 1.0832 1.5328

13 N006 N005 980.4510 340.5890 357.3370
1.3940
−1.1380 1.9908
−1.0396 1.3508 1.9056

14 N006 N007 −772.7140 −276.2480 −271.0350
1.3328
−1.0844 1.8956
−0.9880 1.2792 1.8108

15 N008 N006 156.6270 643.1340 −763.3190
1.2804
−1.0448 1.8336
−0.9552 1.2444 1.7568

16 N008 N007 −616.0870 366.8860 −1034.3530
1.4576
−1.1908 2.1180
−1.0624 1.4064 1.9852

Table A2. Approximate coordinates of the solved-for sites.

Site X (m) Y (m) Z (m)

N002 −2830634.7412 4649557.6514 3313013.3268
N003 −2831170.1980 4649484.1773 3312659.4277
N004 −2831820.5247 4649349.1166 3312296.9360
N005 −2830250.6519 4649506.9812 3313403.5257
N006 −2831231.1022 4649166.3910 3313046.1886
N007 −2832003.8159 4648890.1427 3312775.1536
N008 −2831387.7286 4648523.2565 3313809.5059
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