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Abstract: Resource allocation for machine-type communication (MTC) devices is one of the keys
challenges in the 5G network as it affects the lifetime of battery powered devices and also the quality
of service of the applications. MTC devices are battery restrained and cannot afford a lot of power
consumption due to spectrum usage. In this paper, we propose a novel resource allocation algorithm
termed threshold controlled access (TCA) protocol. We propose a novel technique of uplink resource
allocation in which the devices make a decision of resource allocation blocks based on their battery
status and related application’s power profile that eventually leads to required quality of service (QoS)
metric. The first phase of the TCA algorithm selects the number of carriers to be allocated to a certain
device for the better lifetime of low power MTC devices. In the second phase, the efficient solution
is implemented through inducing a threshold value. A certain value of the threshold is selected
through a mapping based on a QoS metric. The threshold enhances the selection of subcarriers for
less powered devices, such as small e-health sensors. The algorithm is simulated for the physical
layer of the 5G network. Simulation results show that the proposed algorithm is less complex and
achieves better performance when compared to existing solutions in the literature.
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1. Introduction

Machine-to-machine (M2M) communication network is the base technology for enabling Internet
of Things (IoT) [1]. It establishes the concept of autonomous data transfer that can be used in
numerous applications, such as smart grids, enterprise, e-health, telematics, and security, etc. For now,
this network is based on a cellular network but aims to evolve towards the fifth generation mobile
communication system (5G). The 5G network is in an experimental phase; therefore, there are many
challenges for its deployment and efficient functionality. Some of the challenges are small burst traffic,
time controlled functions, varied power requirements, massive transmissions, high mobility, a large
number of devices, and different QoS demands, etc. One of the most critical requirements is energy
efficiency since the machine-type communication (MTC) [2] devices run on small batteries that are
difficult to recharge or replace; therefore, they cannot afford complex computations that are usually
used during radio resource management [3,4]. The energy efficiency of the devices should be increased
by a factor of at least 10 so that the lifetime of batteries is increased tenfold. The 5G deployment
meets several requirements of MTC applications, such as increasing reliability and scalability, ensuring
availability, reducing latency and providing interoperability; moreover, it provides functionalities to
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boost energy efficiency and updates security [5]. The key enabling technologies provided by 5G are
advance coding techniques, congestion reduction techniques, supporting heterogeneous networks,
and enabling software defined networks (SDN) and network function virtualization (NFV) to make core
and backhaul networks flexible. New waveforms are also investigated in 5G; previously, orthogonal
frequency division multiplexing (OFDM) has gained much of the popularity but 5G offers new
modulation techniques including a filter bank multicarrier (FBMC) scheme. FBMC provides high
spectrum sensing resolution, whereas spectrum sensing performance is degraded in the OFDM
technique. Efficient radio resource allocation strategies could play a major role in the performance of
FBMC wireless networks. Many research efforts in this area are related to downlink resource allocation,
which has restricted the effectiveness of the energy efficiency of an M2M communication network [6].
Since M2M devices are uplink-centric, it is thus important to design new resource allocation schemes
specific to energy efficiency. In M2M networks, less traffic is generated on the downlink, therefore,
providing solutions or more resources on the downlink is not solving the energy efficiency problem.
Currently, to achieve energy efficiency for resource allocation on the uplink of M2M network, there may
be certain degradation of other performances such as serving less M2M devices, inducing higher delay,
including more signaling messages or limited QoS requirements, etc. Due to these issues, currently
available solutions have left gaps.

There is limited literature work for resource allocation in the MTC network to achieve energy
efficiency; moreover, the existing techniques do not imply autonomous resource selection on the
5G network. Figure 1 shows the latest research regarding resource allocation in the IoT network
with their related problem-solving approaches. The SEIRA [7] algorithm uses a metaheuristic
technique for assigning resources to devices and claims to lower the communication cost. A resource
allocation algorithm [8] is proposed for the wireless powered network. This algorithm implies
the Markov Decision Process (MDP) and power allocation technique to maximize the throughput,
whereas heterogeneous resource allocation [9] implements a service-to-interface to fulfill the service
requirements while reducing the average cost of communication. A resource allocation technique [10]
for the Internet of Everything introduces Energy Harvesting Active Networked Tags (EnHANTs)
for managing power supply to devices deployed in cellular M2M network. A new random access
technique [11] is proposed for resource allocation in a collision-free manner. It offers a scheduling
protocol for the uplink channel. The literature [12] proposes a game theory that implies a cooperation
strategy. An infrastructure-to-device (I2D) technique [13] is proposed that aims to maximize resource
allocation for a device-to-device (D2D) network. The technique implements a weighted sum-rate
(WSR) approach. In addition, the recent resource allocation algorithm [14] implements a maximum
bipartite graph approach for assigning immediate resources during a disaster situation.

In summary, this paper has proposed an energy-efficient resource allocation threshold controlled
access (TCA) scheme based on the device power profile using the 5G communication network.
Our main concern is on small MTC devices such as health care sensors. In the first step, the device
consumed power is compared with a selected maximum power budget value taken from the QoS
metric based on IoT applications power requirements. Accordingly, the number of subcarriers is
calculated. In the second step, the solution is optimized by including a threshold. In the next step,
a suitable threshold value is selected. The threshold value enhances the calculation of subcarriers
for less power consuming devices. The rest of the paper is organized as follows: Section 2 discusses
previous related work followed by Section 3, which elaborates on the system model and problem
formulation. The solution is proposed in Section 4. Simulation and results are discussed in Section 5,
followed by Section 6, which presents the conclusions of the paper.
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Figure 1. Popular recent resource allocation in IoT.

2. Related Work

As the interest grows in the M2M domain and in related IoT applications, more research
initiatives have been raised worldwide including the energy efficiency topic. Previously, there has been
a number of publications relating to achieving energy efficiency during resource allocation of M2M
communication using the LTE network; Table 1 summarizes the work. Then, research work is discussed,
and the literature work in [15] proposes a resource allocation algorithm for the contention-based access
(CBA) method for MTC using an LTE-A network. By assessing the probabilities of events occurring
in CBA methodology, transmission and latency are estimated according to CBA resource allocation.
If latency is larger, increase the CBA resource allocation for a certain device, whereas Ref. [16] proposes
a two-stage random access (RA) algorithm for allocating resources to user equipment. By using
an access class barring (ACB) scheme proposed in the first stage, the user devices compete for resources
according to the computed ACB factor. Later, in the second stage, the user devices that were ignored
are served with new ACB check. The article [17] studied the usage of energy problem while using
LTE-A uplink with Type 1 relays. The authors have proposed a heuristic methodology of spatial
reuse of spectrum allocations and achieving less energy consumption by reducing the modulation
and coding schemes (MCS) level. By using weights and reward calculation functions of game theory,
the proper MCS levels can be selected, whereas the literature [18] introduces the quality of service
(QoS) requirements’ constraint using a sum power minimization problem while achieving energy
efficiency. The technique is based on QoS requirements of users and achieves the results through
an inverse weed optimization algorithm. The results are simulated on LTE networks for co-existence of
M2M/human-to-human(H2H). communication. In Ref. [19], the context information of a user device
is used for scheduling purpose. The system is tested for the 5G network. Context information is based
on LTE-A signaling architecture. A module based on context information is implemented in an LTE-A
simulator that works on a priority scheduling algorithm.
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Table 1. Related work summary.

Algorithm Complexity Application Energy Efficiency

Dynamic RA [15] O(n2) Real time 2%

Two-Stage RA [16] O(n2) Transport 3%

RA in Relay [17] O(log n) Relay networks 40%

H2H RA [18] O(W*n2) Communication 5%

Context RA [19] O(n) Scheduling 20%

Game theory RA [20] O(W*n2) HetNets 50%

D2D RA [21] O(nm) e-learning 45%

Mesh RA [22] O(|V|+|E|) Real time 4%

In Ref. [20], the authors considered the uplink of the hybrid HetNet having femtocells overlaid on
the macrocell, and is proposing a two-layer game-theoretic framework to achieve energy efficiency
(EE) while increasing the usage of network resources. The proposed outer layer allows each femtocell
access point (FAP) to maximize the use of the data rate for its users by opting for the frequency band
ranging between sub-6 GHz and the mmWave. By applying the strategy of Nash equilibrium to
this non-cooperative game, the proposed solution can be achieved, whereas the proposed inner
layer ensures the energy efficiency to the user association method depending on the minimum
data rate and maximum transmission power constraints for using a dual decomposition approach.
The technique shows that the proposed hybrid HetNet scheme while using the mmWave frequency
band improves the sum-rate and EE. Energy efficiency is also said to be achieved in [21], where the
authors propose the device-to-device (D2D) communication architecture for utilizing the spectrum
better. The energy-efficient resource allocation problem is considered a case study for the application
of the mentioned sequential fractional programming algorithms. The main focus is on the downlink
of an orthogonal frequency-division-multiple-access (OFDMA) cellular network coexisting with
infrastructure-to-device (I2D) and D2D communications architecture. The paper presents the two key
performance measures termed GEE and the weighted sum-rate (WSR) algorithms. Considering another
paper [22], the authors propose a channel assignment algorithm. Using the forwarding weight of each
node (LMFW) and the interference of local multicast. The proposed algorithm to improve the network
performance considers partially overlapped channels and orthogonal channels. The simulation tends
to show improvement in network allocation.

There still are many problems with currently available schemes in literature such as some of
the algorithms requiring a big time delay and some strategies being complex to implement. There is
a wide gap present for an effective resource allocation scheme specific for energy efficient M2M small
devices—those are being ignored. Based on our knowledge, no one has investigated energy efficiency
resource allocation for small powered devices on 5G coexisting with LTE-M and Narrowband-IoT
networks. This network aims to be suitable for M2M communication; therefore, the proposed TCA
algorithm is simulated on this network.

3. System Model and Problem Formulation

The MTC ecosystem usually consists of small devices, including sensors and actuators which
are connected through the network. The network provides a communication means for sending and
receiving data that is in a periodic form of M2M based communication. The cellular network has its
popularity due to the large coverage and stability it provides [23]. MTC is expected to play a key role
in the 5G network [24]. MTC devices are further divided into massive MTC (mMTC) and ultra-reliable
MTC (uMTC) devices. We simulate the system in the 5G setting. In the system, our main concern is
towards M2M low powered devices that have little power consumption.
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5G introduces many waveforms including FBMC. It has gained much interest as a potential
waveform in the 5G network. This technique is a pure physical layer concept. FBMC is a subclass of
MC. FBMC modulation is considered in this system for an access technique in the 5G network [25].
In the case of the data link layer, 5G consists of Open Wireless Architecture, lower and upper network
layers. With respect to resource blocks formation, they are distributed in both frequency and time
domain. In the frequency domain, the resource blocks within available bandwidth are divided into
carriers having 75 kHz spacing on the frequency bandwidth of 27 to 29 GHz.

3.1. System Description

A system model is based on the M2M devices mainly consisting of small sensors. The main
focus of our research is related to biomedical sensors. The total number of available channels can
be expressed as C, where C is the total number of channels. Within each channel, there are resource
blocks RBs, which are expressed as RB[n]. Here, n represents the total count of subcarriers within
each resource block. The reference signal power Prsrpm,q [26] required by M2M device (m) while using
resource blocks (q), during radio resource allocation can be computed as the below equation:

Prsrpm,q = PBS − 10 log10(q× Sq). (1)

Here, PBS is the power of the eNB node and Sq is the number of subcarriers within each qth
resource block. The total consumed power Pm,q is further calculated by subtracting pathloss PL from
reference power in Equation (2). The result is the estimated MTC device power. The purpose of this
equation is to compute the general consuming signal power for a device to create the base calculations:

Pm,q = Prsrpm,q − PL. (2)

Signal-to-Noise Ratio (SNR) Θm,q [27] for the MTC device (m) while using resource blocks (q) is
expressed as the following:

Θm,q =
(Pm,q × |hm,q|2)

δ2 . (3)

Here, in Equation (3), hm,q denotes channel fading amplitude, δ2 denotes power of Additive White
Gaussian Noise (AWGN), and Pm,q denotes consumed power by the M2M device (m). The data rate
Dm [28] that can be achieved by the following equation:

Dm = B× RB[n]m × log2(1 + Θm,q). (4)

Here, B denotes effective bandwidth, and RB[n]m denotes the resource block assigned to
a particular device. Power usage for all users can be measured as follows:

Pu =
M

∑
m=1

RB

∑
k=1

Pm,k. (5)

The objective is to minimize the summed power Pu while allocating appropriate resource blocks
RB’s to MTC devices. The energy efficiency (EE) can be calculated through Equation (6). The units of
energy efficiency are bits/joule:

EEm =
Dm

Pm,q
. (6)

3.2. Channel Model

The specific channel model for the 5G network is [29]. RF coverage distances indicate path loss.
According to Friis free space path loss, it is inversely proportional to the carrier frequency square.
For deployment, environment path loss should be estimated. MTC devices and base station gains,
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RF bandwidth, coding, and modulation techniques determine cell coverage. Formula (7) is used for
estimating the path loss

PL(l) = PL(lo) + 10× k× log10
l
l0

+YRx + YC f + Yθ ,
(7)

where
Pl(lo) = 20× log10(

4× π × lo
γ

). (8)

Here, in the equation, PL(lo) represents the path loss at distance lo, YRx and YC f denote receiver
heights and frequency correction factor, respectively, whereas Yθ denotes standard deviation θ in dB of
shadowing variable with mean 0 dB. The variable k denotes terrain models used in service areas.

3.3. Interference Model

For handling interference, we opt for machine-type multicast service model (MtMS [30].
MtMS defines the transmission procedures, related control with architecture for handling M2M
communication multicast traffic, shown in Figure 2. MtMS serving center (MtMS-SC) initiates an MtMS
session, which is implemented as part of SC and is the main source content of MtMS. For M2M devices,
the anchor point is the service capability center (SCS), whose functionality is to send and receive data
to and from the MTC devices. MtMS-SC is provided with parameters from SCS under the current
MtMS session. MTC devices have the option of connecting with a suitable group of machines that are
required to be served. After joining the group through the procedure, tracking area information is
provided to a MtMS coordination entity (MtMS-CE) by MME. The tracking area information is relevant
to devices that begin paging by using M3 control interfaces. MtMS-CE handles the joining procedure.
After successful completion of the joining procedure, MtMS gateway (MtMS-GW) is responsible for
data delivery in the current MtMS session through a balanced allocation of frequency resources with
relevant transmission properties. In enhanced group paging, the MtMS devices are split into subgroups
and paging is performed on the properties of subgroups. The size of the subgroup and paging time
interval depends on the available resources on the current radio interface.

Figure 2. Interference reduction architecture.

3.4. Transfer Rate Model

To estimate proper energy conservation, the data transfer rate should also be modeled. Since the
paper targets a 5G network, it may therefore include cellular communication or D2D communication
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and any type of communication that may have different data rates. For this reason, we model the data
transfer rate in the following Equation (9):

TRc =
n

∑
k=1

log2

[
1 + Pc × G

∑m
i=1 PD × G + θ2

]
. (9)

Here in the equation, TRc represents cellular data transfer rate, Pc is transmission power required
by cellular user data transfer, PD is transmission power required by D2D data transfer, G is the channel
gain computed in Section 5 and θ is channel noise value. Similarly, the data transfer rate for D2D
communication type can be computed as Equation (10):

TRD =
m

∑
i=1

n

∑
k=1

log2

(
1 +

PD × G
Pc + ∑m

i=1 PD × G + θ2

)
. (10)

Here in the equation, TRD represents the D2D data transfer rate.

4. Energy Efficient Resource Allocation with Threshold Optimization

The main objective of our proposed TCA solution is to allocate resources according to the energy
consumption of smaller devices. Since each device has different power profiles according to its related
application, the QoS factor should also be included. Our proposed solution is in two-phases: phase A is
an approach of resource allocation according to a QoS power profile metric and, in phase B, an optimal
solution is provided through using a threshold for making the resource allocation enhanced especially
for smaller devices. The mathematical notations used throughout the paper are listed in Table 2.

Table 2. Notations used in paper.

Symbol Definition

mi M2M ith device
Pm,q Consumed device power
Pu Total summed power
Gi channel gain
No channel noise
Ci shared channel available for ith MTC device

M(ϕp) Matrix of transmit powers from M2M devices
RB[n] matrix of resource block
� maximum power usage limit

Prsrpm,q reference signal power
q number of subcarriers within RB

PBS base station power
Pl pathloss

Θm,q Signal-to-Noise Ratio (SNR)
δ2 power of Additive White Gaussian Noise (AWGN)

hm,q channel fading amplitude
Dm data rate achieved by ith device
B effective bandwidth
λi calculated number of carriers for ith device
ϑi calculated power by estimation for ith device
α computed number of carriers
β total number of available carriers
ω threshold
Jo constant depends on antenna characteristic
δ path loss constant
Ψ Rayleigh random variable
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4.1. TCA Energy Efficient Resource Allocation

Each resource block is indexed as RB[n]. The received power of the device is compared with the
set highest power limit of �. Through Equation (11), power rank Γ is calculated:

Γ =

(
1−

(
s(ϕp)

�

))
. (11)

Here, Γ is the calculated power rank through Equations (11) and (14). By using Γ value, the
number of carriers are estimated that should be assigned to the device:

ϑm =
(
s(ϕp

)
× 1

Γ
)− PL, (12)

a =
(ϑm − PBS)

10
, (13)

λm = 10a. (14)

λm is the estimated number of carriers in Equation (14) that will be assigned to the device. The proposed
algorithm is shown in Algorithm 1. The achievable maximum data rate for each device on a subcarrier
can be expressed as follows:

b = 10a, i f b < 1b = 100× b; (15)

α = b× β. (16)

Algorithm 1 TCA algorithm

1: Initialize � ;
2: Compute power rank Γ ,
3: Γ =

(
1−

(
s(ϕp)
�

))
4: Calculate least power required ϑm
5: ϑm =

(
s(ϕp

)
× 1

Γ
)− PL

6: By using ϑm suitable carriers λm are computed
7: ϑm =

(
s(ϕp

)
× 1

Γ
)− PL

8: a = (ϑm−PBS)
10

9: λm = 10a return λm

Here, α is the computed number of carriers and β are the total number of available carriers.
For simplification, the TCA algorithm is shown in flowchart Figure 3.

The value of the ϑm i-e the calculated power by estimation and the number of carriers λm can be
calculated from Equations (12)–(14), respectively.

4.2. QoS Power Metric

The above algorithm can be adjusted according to the requirement of the domain. Since each
M2M application has different priority levels and relative device power profiles, a QoS metric listed in
Table 3 is required for specifying the highest power limit � value used in Equation (11). The proposed
metric is shown in Table 3.

Each resource block is pre-computed in groups/cluster according to the defined ranges of power
they consume. A set of groups can be defined and resource blocks are assigned to each group according
to power range, shown in Equation (14).
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Figure 3. Flowchart of TCA algorithm.

Table 3. QoS power metric.

Domain Highest Power Limit Priority

Health care 0–8 db High
Surveying 0–10 db Low

Control 5–9 db High
Enterprise 2–15 db Medium

4.3. Controlled Threshold in the Algorithm

For proposing an optimal solution, we have introduced ω in Equation (17). ω is the threshold
that updates the value of Γ used in Equation (12) for computing the number of carriers. By selecting
a proper threshold, carriers’ allocation can be enhanced for especially small devices whose power usage
is restricted; the algorithm is shown in Algorithm 2 by using the “interp1” interpolation function in
Matlab 2017 version that creates a relationship between MTC device power and threshold. The function
output according to QoS metric is shown in Table 3.

Γ = ω× Γ. (17)
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Algorithm 2 Optimization algorithm

1: Initialize QoS metric accordingly;
2: Set required power limit points in the interpolation set.
3: Interpolation function “interp1” select threshold “ω”
4: ω enhances Γ value
5: Γ value updates Equation (14).
6: return Equation (14) gives no of carriers.

4.4. Complexity Analysis

In this section, the complexity of the proposed algorithm is analyzed. The whole algorithm is
broken into two phases. In the proposed algorithm there are no comparisons, thus eliminating major
computations that also require most of the time. In phase A, a simple constant computation is required
that computes the percentage of device power relative to the set highest power limits. The complexity
will be constant O(1). In the next step reference, power value and the assigned number of carriers are
computed again in constant time. Therefore, the complexity of phase A does not exceed O(1). In phase
B, a threshold is set that enhances the performance of M2M devices. A n number of comparisons are
used according to the device power and QoS metric. Thus, the overall algorithm complexity falls in
O(n) time.

4.5. Use Case Study

To deeply understand the effects and for the future implication of the proposed algorithm, certain
effective use cases are discussed below, since low powered devices such as sensors’ networks are
typically application-oriented silos that have difficulty in adjusting to high mobility and lack dynamic
reconfigurability. 5G oriented SDN/NFV offers cost-effective solutions for improving the flexibility
and agility of IoT networks. Our proposed algorithm gives priority to low powered devices for
managing resource allocation within their QoS related highest power limits.

4.5.1. Healthcare Applications

Use of low powered devices is increasing as these devices are low cost, have low latency and
are crucial for collecting sensitive and periodic data related to patients. Such devices are also used to
monitor sugar levels, heart rates, blood pressure and many other preserving clinical data. In the 5G
network, these devices must survive to send periodic or chucked data in a continual manner. For this
reason, the proposed algorithm assesses the highest power limits and adjusts the subcarriers’ allocation
to each device differently and dynamically to achieve the desired throughput.

4.5.2. Assets Tracking

It is predicted that the use of ultra low powered devices will be tripled by the year 2022 for use in
asset tracking. Any kind of theft, damage or loss of any product chain is monitored by these devices.
Such devices require emergency data communication, therefore, our proposed algorithm gives priority
to the throughput of these devices.

5. Simulation Results and Discussion

The performance is shown and discussed in this section of our proposed algorithm. The simulation
is performed in a Matlab simulator. The results of the simulation are presented for both service
probability and energy efficiency. The throughput probability is the measurement of successful
resource allocation to devices within the available bandwidth. It evaluates the proposed algorithm’s
ability to provide a feasible solution under certain SNR.
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Simulation Results in 27 GHz

The algorithm is simulated on 27 GHz to 29 GHz bandwidth. The spacing between carriers
is 75 kHz. For the channel, the path loss is set to 30 considering LOS conditions, 7 db is Rayleigh
channel amplitude and −11 db set for Rayleigh signal power. The parameters values used are related
to 5G system model [29]. The results of the proposed solution are compared with standard Round
Robin (RR) and Best Channel Quality Indicator (BCQI) algorithms. RR allocates an equal number
of resource blocks to devices, whereas BCQI gives priority to the device having the highest SNR
value. It is a channel aware algorithm. For the testing scenario, different values of the threshold are
used that are related to Table 3 values referring to device power profiles according to applications.
We have partitioned the resource blocks to a set of subcarriers for better allocation and for a 5G network
setting that can consist of any capillary networks. For evaluating the scenario, the following results
are discussed.

Figure 4 shows better performance of the proposed algorithm against RR and BCQI techniques,
especially for M2M devices consuming less power consumption. The proposed solution achieves
30 percent better energy efficiency for small devices such as sensors used in different fields such as
home automation, e-health, solar devices, etc. The highest power limit is set for 40 dB, which is the
power usually used for small sensors mostly having the power supply through energy harvesting.
Similarly, Figure 5 shows better throughput probability at threshold 6 of the proposed algorithm.
It achieves more than 50 percent better resource allocation as compared with other techniques for
low powered devices. The proposed solution is tested with different thresholds ranging from 6 to
15 further on the data rates that become limited. However, the throughput probability falls below
RR and BCQI when the device power value increases, thereby requiring more power, which extends
the power limit set to above 40 dB. Figure 6 illustrates better energy efficiency results at threshold
10. When the power level set to 40 dB, the achieved energy efficiency as shown reaches the highest
attainable level that is 37% of energy efficiency. With comparison to RR and BCQI, it is more than 30%.
Figure 7 illustrates the throughput probability plot achieved when the threshold level is set to 10. The
threshold is increased to 6 dB which can tolerate increasing BER. However, RR and BCQI still give
their throughput probability in increasing BER.
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Figure 6. Energy efficiency achieved at threshold 10.
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Figure 8 remains almost the same as in the case of threshold level 10, but it can also achieve energy
efficiency for devices with increased device power. It can be observed that it has more achievable
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energy efficiency for high power devices. The highest achieved energy efficiency is 37%. Beyond
threshold 6 dB to 15 dB, results do not increase the highest energy efficiency, but it does improve
the performance with respect to high device powers. From the result, it shows a smooth throughput
probability at threshold 15 shown in Figure 9. The plot keeps its curve even in increasing device power
and shows better throughput probability with the comparison to RR and BCQI. Figure 10 illustrates
the comparison between results with different thresholds. The thresholds refer to the maximum power
limit set during simulation. The graph shows energy efficiency and service probability comparison
having the range from 1, 5 and 10.
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Figure 8. Energy efficiency achieved at threshold 15.
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Figure 10. Comparison of results with different thresholds.

6. Conclusions

Energy efficiency is a major requirement in M2M communication ecosystems. In this paper, we
have investigated the issue of resource allocation for small conserving M2M devices while using the 5G
network. Our objective was to increase energy efficiency while increasing autonomous resource
allocation to MTC devices. We proposed the algorithm that allocates resource blocks according
to the QoS metric that relates the M2M device power limits. For the optimal solution, which
enhances the results especially for small devices through the set of thresholds, the complexity of
the proposed solution is low and produces less time delay. The solution gives better performance
results when compared with standard algorithms. For future work, our research focus will be on
intelligent data transmission for the uplink stream of IoT networks serving a massive number of
devices. While considering the 5G network for IoT applications, both the MTC device and each
gateway have finite resources, such as computation resource, power resource, and spectrum resource.
Our investigation will be to optimize resource allocation while using intelligent strategies through
machine learning techniques.
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