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Abstract: The simultaneous wireless information and power transfer (SWIPT) technique has been
considered as a promising approach to prolong the lifetime of energy-constraint wireless sensor
networks (WSNs). In this paper, a multiple-input multiple-output (MIMO) full-duplex (FD)
bidirectional wireless sensor network (BWSN) with SWIPT is investigated. Based on minimum
total mean-square-error (total-MSE) criterion, a joint optimization problem for source and relay
beamforming and source receiving subject to transmitting power and harvesting energy constraints
is established. Since this problem is non-convex, an iterative algorithm based on feasible point
pursuit-successive convex approximation (FPP-SCA) is derived to obtain a local optimum. Moreover,
considering the scenarios in which source and relay nodes equipped with the same and different
numbers of antennas, a low-complexity diagonalizing design-based scheme is employed to simplify
each non-convex subproblem into convex problems and to reduce the computational complexity.
Numerical results of the total-MSE and bit error rate (BER) are implemented to demonstrate the
performance of the two different schemes.

Keywords: beamforming; bidirectional wireless sensor network (BWSN); full duplex (FD);
multiple-input multiple-output (MIMO); simultaneous wireless information and power
transfer (SWIPT)

1. Introduction

Wireless sensor networks (WSNs) have attracted a significant amount of attention from researchers
and have been widely employed in vast and varied areas, e.g., object tracking, habitat monitoring,
military systems, and industrial areas [1–3]. However, in WSNs, the relay or sensor nodes are typically
powered by batteries with finite capacities [4], which are difficult or impossible to replace or recharge in
most cases. Thus, the energy supplies will limit the lifetime of WSNs. Saving on energy or prolonging
the operation time of energy-constrained nodes has become an important research issue in WSNs.
Traditionally, multi-input multi-output (MIMO) can provide an effective way for energy saving [5,6].

Recently, simultaneous wireless information and power transfer (SWIPT) is considered
a promising energy-harvesting (EH) technique to solve the energy scarcity problem and to achieve
perpetual communications in energy-constrained WSNs [7–9], which is extensively applied in the
area. To date, two receiver architectures proposed in Reference [10], namely time switching (TS) and
power splitting (PS), have been widely used for a colocated energy harvester and information decoder
in SWIPT systems [11,12]. Compared with the TS structure periodically switching between the EH
module and information decoding (ID) module, the PS design allows the receiver to complete EH and

Sensors 2019, 19, 1827; doi:10.3390/s19081827 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0562-4539
http://www.mdpi.com/1424-8220/19/8/1827?type=check_update&version=1
http://dx.doi.org/10.3390/s19081827
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 1827 2 of 19

information processing in the same phase [13–17]. In Reference [14], the energy-efficient cooperative
transmission problem for SWIPT and the power transfer in clustered WSNs was discussed, where
the PS architecture was equipped with the receiver. In Reference [15], the joint transceiver design for
full-duplex (FD) MIMO SWIPT systems with a PS mode was considered in order to minimize the mean
square error (MSE). In Reference [16], the secrecy outage probability minimization problem for the
decode-and-forward (DF) relay SWIPT systems with a PS scheme was analyzed. In Reference [17],
the energy efficiency problem for SWIPT in a MIMO bidirectional amplify-and-forward (AF) relay
network was formulated, where a receiver applied the PS scheme to harvest energy.

In the SWIPT context, conventionally, most networks are assumed to operate in the half-duplex
(HD) communication mode [18–22]. Therein, in Reference [19], the performance of an HD bidirectional
wireless sensor network (BWSN) with a TS EH strategy was analyzed. In Reference [20], a joint
resource optimization scheme for the DF relay SWIPT cognitive sensor networks was proposed.
In Reference [21], the authors investigated the joint source and the relay beamforming design in HD
sensor networks with SWIPT. The joint source and relay precoding design for the HD bidirectional
relay network (BRN) using a PS scheme was proposed in Reference [22]. However, in HD networks,
communication nodes can either transmit or receive on a single frequency but not simultaneously [23].
Due to this characteristic, half of the spectrum resources are theoretically wasted. Recent advances
suggest that the FD mode enables the concurrent transmission and reception of user signals over
the same frequency band for which it can provide nearly double the improvement in spectral
efficiency than HD [24]. Therefore, much interest has been turned to incorporating the networks
into the FD [25–32]. Thereinto, in Reference [25], an FD MIMO one-way relay network (OWRN)
aided by SWIPT was considered to solve the source and relay beamforming optimization problem
using minimum mean-square-error (MSE) criterion. In Reference [26], a joint source and relay
beamforming optimization for the FD one-way wireless sensor network (OWSN) with SWIPT using
MSE minimization criterion was considered. In Reference [27], the transmission rate maximization
problem for an FD OWRN powered by a wireless energy transfer was discussed. In Reference
[28], the sum rate maximization problem for the AF FD relay-assisted MIMO one-way system
was investigated, and with the consideration of self-interference aware FD relaying, an alternating
optimization (AO) method was devised. In Reference [29], the authors designed the source and
relay precoders for a MIMO FD OWRN with SWIPT-enabled destination to optimize the end-to-end
performance in residual loop-interference environments. In Reference [30], the hardware impairments
of the FD AF OWRN was considered and an optimization problem was established to maximize the
signal to a distortion-plus-noise ratio under relay and source transmit power constraints.

Nonetheless, motivated by the benefit of reducing the waste of extra-channel resources and
achieving a higher spectral efficiency than the one-way communication [33–35], the bidirectional
communication has attracted considerable interest, and much more researches have tended to adopt
bidirectional communication in the FD. In the literature [36], the joint optimization of transmit and
receive beamforming for relays to maximize the achievable sum-rate in the FD BRN system with a PS
scheme was considered. However, to the best of our knowledge, a joint source-relay design based on
a total-MSE minimization in MIMO FD BWSN with SWIPT has not yet been studied.

In this paper, a MIMO FD BWSN with PS is presented. With the consideration of processing
self-interference, different from References [15,27–30], we choose to use the one presented
in Reference [37]. The merit of the proposed network lies in the considerably high spectral efficiency,
providing a cost-effective and perpetual power supply for WSNs and an uninterrupted transmission
of information. The contributions are summarized as follows. First, for the sensor system model,
contrary to Reference [36], the two source nodes are also equipped with multiple transmitter-receiver
antennas for signal transmission and reception, and the multiple data streams transmitting scenarios
are considered. Second, a joint optimization problem for source and relay beamforming and source
receiving based on the total-MSE minimization is formulated. Third, to cope with the primal
nonconvex problem, a feasible point pursuit-successive convex approximation (FPP-SCA)-based
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iterative algorithm is exploited. Finally, to reduce the computational complexity, a low-complexity
diagonalizing method-based algorithm is introduced to simplify each non-convex subproblem into
convex problems directly. In terms of the existing approach [25], the generalized singular value
decomposition (GSVD) is discussed, and the scenarios in which source and relay nodes equipped with
the same and different number of antennas are both discussed. The numerical results show a good
performance and validate our analysis.

The remainder of the paper is organized as follows. Section 2 proposes the system model,
including the sensor nodes deployment and optimization model. Section 3 focuses on the scheme
design. The numerical results are presented and discussed in Section 4. Finally, the conclusions are
presented in Section 5.

Notation: Throughout this paper, scalar variables are expressed by lowercase italic letters, vectors
are represented by boldface lowercase letters, and matrices are denoted by boldface uppercase letters.
CM×N denotes an M× N matrix with complex entries. Tr(·), (·)T , (·)H , (·)−1, (·)∗, and ‖·‖ are the
trace, transpose operation, conjugate transpose operation, inverse operation, conjugate transpose
operation, and the bound norm of a vector. ∑M

i=1(·) stands for the sum from 1 to M. ∼ CN
(
x, σ2)

represents a complex Gaussian distributed variable with a mean x and covariance σ. vec(·) and mat(·)
are the matrix vectorization operator and the corresponding inverse operation, respectively. E[·]
signifies the expectation of the random variables in the bracket.

2. System Model

This paper aims to jointly design the transmitters of the source and relay and the receivers of the
source in the FD BWSN with SWIPT. We adopt a three-node sensor system consisting of two sources
and a relay and assume that the sources are equipped with the PS receiver and that the relay applies
an AF scheme. Without a loss of generality, we suppose that the energy conversion efficiency at the PS
receiver is 100 percent and that the PS ratio is fixed.

The considered three-node MIMO BWSN with SWIPT consists of two sources: S1 and S2 both
equipped with MT > 1 transmit antennas and MR > 1 receive antennas. S1 and S2 decode the
information, harvest the energy by PS, and exchange information with the help of the single AF relay
node R with NT > 1 transmit antennas and NR > 1 receive antennas, as shown in Figure 1. All nodes
are assumed to operate in FD mode, which means they transmit and receive data at the same time
and frequency.
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Figure 1. The system model of the multi-input multi-output (MIMO) full-duplex (FD) bidirectional
wireless sensor network (BWSN) with energy harvesting (EH).
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Let HSi R ∈ CNR×MT and HRSi ∈ CMR×NT denote channel matrices from Si’s transmit antennas
to R’s receive antennas and that from R’s transmit antennas to Si’s receive antennas, respectively.
We assume that all channels are statistically independent, reciprocal in the incoming and outgoing
directions, and slowly time-varying quasi-static flat Rayleigh fading. Moreover, the self-interference
channels at the corresponding nodes are represented as HS1S1 ∈ CMR×MT , HS2S2 ∈ CMR×MT , and
HRR ∈ CNR×NT .

Meanwhile, in our system, the two source nodes S1 and S2 are set far apart so that the direct
link between them is assumed to be ignored. Moreover, we suppose that the perfect channel state
information (CSI) is available at each node [38–40] and that the transmit power of the two sources
are equal.

For a further analysis, the node deployment and optimization models are presented as follows.

2.1. Node Deployment

At time instant n(n > 1), MT data streams si[n] ∈ CMT×1 with a normalized power are
transmitted through the beamformer Fi ∈ CMT×MT (i ∈ {1, 2}) from Si simultaneously and the
relay R forwards its received signal yR[n] ∈ CNR×1 after multiplying it by a beamforming matrix
Fr ∈ CNT×NR . In practice, a τ(τ > 1)-symbol processing delay is unavoidable at R when it processes
the received signals.

Accordingly, in time slot n, the received signal yR [n] at R can be expressed as

yR [n] =
2

∑
i=1

HSi RFisi[n] + HRRxR[n] + nr[n], (1)

where nr[n] ∼ CN
(
0, σ2

r INr

)
represents the additive white Gaussian noise (AWGN) at R.

Assuming that τ is kept small and that the SI can be cancelled perfectly or almost perfectly with
the knowledge of the signal transmitted by the relay itself [37], the transmitted signal xR[n] ∈ CNT×1

at R can be written as
xR[n] = Fr (yR[n− τ]−HRRxR[n− τ]) . (2)

Substituting Equation (1) into Equation (2), the overall relay output can be given by

xR [n] = Fr

(
2

∑
i=1

HSi RFisi[n− τ] + nr[n− τ]

)
. (3)

The signal received by Si, i ∈ {1, 2} can be written as

ŷSi [n] =HRSi

[
Fr

(
HSi R

Fi[n− τ]si[n− τ] + HSi RFisi[n− τ]
)]

+ HSiSi xSi [n] + n̂i[n], (4)

where, the same as below, i = 2 if i = 1 and vice versa. n̂i[n] is the equivalent noise vector
representing n̂i[n] = HRSi Frnr[n − τ] + ni[n], where ni[n] denotes an AWGN at source nodes Si

with ni[n] ∼ CN
(

0, σ2
Si

IMR

)
.

For simplicity, we assume that the full channel state information (CSI) is known and that both S1

and S2 know their own transmitted signals; thus, the SI at Si herein can be cancelled. After subtracting
the back-propagated self-interference term HRSi FrHSi RFisi[n− τ] from Equation (4), the received signal
at Si becomes

ŷSi [n] = HRSi Fr(HSi R
Fisi[n− τ] + nr[n− τ]) + ni[n]. (5)
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To implement SWIPT, a portion βi ∈ (0, 1) of the signal power is applied to Equation (5), which
splits ŷSi [n] into two parts, βi portion for ID and the remaining (1− βi) portion for EH. Then, the signals
for ID at each source node can be represented as

ySi [n] =
√

βiHRSi FrHSi R
Fisi[n− τ] + n

′
i[n, τ], (6)

where n
′
i[n, τ] =

√
βi
(
HRSi Frnr[n− τ] + ni[n]

)
+ np[n] denotes the equivalent noise vector and

np[n] ∼ CN
(

0, σ2
pIMR

)
is the AWGN caused by the power splitter.

At the EH side, we have

ζi (1− βi) Tr
[
HRSi FrRFH

r HH
RSi

+ σ2
Si

IMR

]
> ei, (7)

where ζi ∈ (0, 1] is the energy conversion efficiency at the energy harvester. It is assumed
that for ζi = 1, here, ei represents the minimum power that should be harvested at Si and
R = ∑2

i=1 HSi RFiFH
i HH

Si R
+ σ2

r INR .
Moreover, Fi and Fr should satisfy the transmitting power constraints, that is,

Tr
(

FiFH
i

)
6 pi, Tr

(
FrRFH

r

)
6 pr, (8)

where pi and pr are the maximum transmit power supplied by Si and R, respectively.
Since channels in our system are memoryless, we can define that ySi , ySi [n], n

′
i , n

′
i[n, τ],

si , si[n− τ], and nr , nr[n− τ], and we assume that σ2
p � σ2

Si
. Thus, (6) can be reformulated as

ySi =
√

βi(HRSi FrHSi R
Fisi + HRSi Frnr + ni). (9)

2.2. Optimization Model

Considering the harvested energy and transmit power constraints, i.e., Equations (7) and (8),
the optimization model to minimize the total-MSE of the whole system and to find the optimal source
and relay beamformer and the source receiver is described in this section. The objective function and
the problem are separately discussed below.

Using Equation (9), the MSE of Si can be given by

Ji =E
[∥∥WiySi − si

∥∥2
2

]
=Tr

{
WiJiB JH

iB
WH

i + βiσ
2
Si

WiWH
i

− 2Re(WiJiB) + σ2
r WiJiA JH

iA
WH

i + IMR

}
,

(10)

where Wi ∈ CMR×MR is the linear receiver at Si, E[sisH
i
] = 0, E

[
sisH

i
]
= 1, JiA =

√
βiHRSi Fr,

JiC
= HSi R

Fi, and JiB = JiA JiC
.

Given the MSE of Si, fixing βi, a joint source and relay beamforming and source-receiving
optimization problem based on the total-MSE with transmit power constraints and an
energy-harvesting constraint can be formulated as

min
Fr ,Wi ,Fi

J1 + J2 (11a)

s.t. Tr
(

FiFH
i

)
6 pi (11b)

Tr
(

FrRFH
r

)
6 pr (11c)

(1− βi)Tr
[
HRSi FrRFH

r HH
RSi

+ σ2
Si

IMR

]
> ei. (11d)
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3. Scheme Design

Considering the problem Equation (11) is non-convex and multivariate, the iterative algorithms
based on FPP-SCA and a low-complexity diagonalizing are employed in this section.

3.1. Iterative Algorithm Based on FPP-SCA

Since the problem in Equation (11) is non-convex and basically intractable, in this section, an
iterative algorithm based on FPP-SCA [41] is proposed to decouple the primal problem into four
subproblems corresponding to four variables: Wi, Fr, F1, and F2, and to solve them alternately. At each
iteration, one variable is optimized while keeping the other fixed. Starting from Equation (12), the Wi is
optimized, and then, the Fr is optimized by using Equation (14), following this, Equation (16) (actually
two subproblems) is formulated to optimize F1 and F2 separately. Finally, the four subproblems are
solved, and the four variables are optimized. Details are given below.

First, with Fi and Fr fixed, the receiver Wi is first optimized. As Wi is only involved in Ji,
the optimal Wopt

i can be derived using ∂Ji/∂W∗i = 0, which yields

Wopt
i = JH

iB
R−1

wi , (12)

where Rwi = (JiB JH
iB
+ σ2

r JiA JH
iA
+ βiσ

2
Si

IMR).

3.1.1. Optimization of Relay Beamformer Fr

Then, the optimization of Fr with a fixed Fi and Wi is discussed. According to [42] (p. 77),

Tr(ABCD) =
(

vec(DT)
)T

(CT ⊗A)vec(B), (13)

where A, B, C, and D are arbitrary matrices with compatible dimensions, ⊗ is the Kronecker product,
and vec(·) represents the matrix vectorization operator.

To guarantee the feasibility of Equation (11), the feasible region is relaxed and approximated by
adding slacks s ∈ R2 to the non-convex constraint of Equation (11d), and the positive slack variables
and slack penalty are used in Equation (11a). Then, the original problem can be recast as

min
fr

fH
r Zrfr −QH

r fr − fH
r Qr + Cr + λ ‖s‖ (14a)

s.t. fH
r Qirfr 6 −ξi + sm (14b)

fH
r Qfr 6 pr (14c)

sm > 0, m = 1, 2, (14d)

where ‖·‖ can be any vector norm, ‖s‖ denotes the slack penalty term, and λ > 1 is the trade-off
between the original objective function and ‖s‖. Besides, fr = vec(Fr), Zr = Zr1 + Zr2, Qr = Qr1 +

Qr2, Cr = Cr1 + Cr2, Zri = βi

(
JiC

JH
iC
+ σ2

r INR

)T
⊗
(

HH
RSi

WH
i WiHRSi

)
, Qri =

√
βivec

(
JH

iC
HH

RSi
WH

i

)
,

Cri = Tr
(

βiσ
2
Si

WiWH
i + IMR

)
, Q = INR ⊗RT , Qir = −HH

RSi
HRSi ⊗RT , and ξi =

ei
(1−βi)

− Tr
(

σ2
Si

IMR

)
.

Since Qir is negative, Equation (14) is non-convex. To tackle this subproblem, we define
g(fr) = fH

r Qirfr and assume that a center point zr ∈ CN×1, N = NT × NR is given. Introducing
g̃(fr) , 2Re

(
zH

r Qirfr
)
− zH

r Qirzr, Theorem 1 can be established and proved.

Theorem 1. g̃ satisfies the following properties: (i) g̃(zr) = g(zr); (ii) g̃(fr) ≥ g(fr); and (iii)
∂g̃(fr)/∂fr|fr=zr = ∂g(fr)/∂fr|fr=zr .

Proof. Substituting zr into g̃(fr) and g(fr), (i) can be easily certified. For (ii), Qir � 0, (fr −
zr)HQir(fr − zr) 6 0 always holds, which shows g(fr) = fH

r Qirfr 6 fH
r Qirzr + zH

r Qirfr − zH
r Qirzr =
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2Re
(
zH

r Qirfr
)
− zH

r Qirzr = g̃(fr), property (ii) is proved. For (iii), the derivatives can be computed as
∂g̃(fr)/∂fr|fr=zr = (zH

r Qir)
T and ∂g(fr)/∂fr|fr=zr = (zH

r Qir)
T ; therefore, property (iii) is proved.

Replacing g(fr) with g̃(fr), Equation (14) can be rewritten as

min
fr

fH
r Zrfr −QH

r fr − fH
r Qr + Cr + λ ‖s‖ (15a)

s.t. 2Re(zH
r Qirfr) 6 zH

r Qirzr − ξi + sm (15b)

fH
r Qfr 6 pr (15c)

sm > 0, m = 1, 2. (15d)

Equation (15) can be efficiently solved using the modeling language YALMIP [43] and the generic
conic programming solver SeDuMi [44]. A new approximated problem can be built and solved
when the optimal solution of Equation (15) becomes the new center point, that is, zr = f∗r . Based on
Theorem 1, Equation (14) can be solved.

3.1.2. Optimization of Source Beamformer Fi

Similarly, Fi can be optimized given Fr and Wi. According to Equation (13), the original problem
in Equation (11) can be transformed into Equation (16)

min
fi

fH
i Qifi − qH

i fi − fH
i qi + Ci + λ ‖s‖ (16a)

s.t. fifH
i 6 pi (16b)

fH
i Q1ifi 6 pr − Tr(Q fi

) (16c)

fH
i Q

′
2iD

fi 6 ∆iD (16d)

fH
i Q

′
2iD

fi 6 ∆iD
(16e)

sm > 0, m = 1, 2, (16f)

where fi = vec(Fi), Qi = βi
(
IMT ⊗AiAH

i
)
, qi =

√
βivec (Ai)

H , Ai = WiHRSi
FrHSi R, D = 1, D = 2,

Q
′
2iD

= −IMT ⊗QH
iDQiD, QiD = HRSD FrHSi R, ∆iD = Tr

(
QSiD + σ2

SD
IMR

)
− eD

(1−βD)
+ sD, QSiD =

HRS1FrQCiFH
r HH

RS1
, QCi = JiC

JH
iC
+ σ2

r INR , Q1i = IMT ⊗HH
Si R

FH
r FrHSi R, Q fi

= FrJiC
JH

iC
FH

r + σ2
r FrFH

r ,

Ci = Tr
(

CiD + CiD
+ σ2

Si
WiWH

i + σ2
Si

WiW
H
i
+ 2IMT

)
−
√

βiTr (RW) −
√

βi
(
RH

W
)
+ Tr

(
RWRH

W
)
,

RW = WiJiB , and CiD = σ2
r βDWDHRSD FrFH

r HH
RSD

WH
DIMR .

The optimized f1 and f2 can be separately obtained from Equation (16) using a similar FPP-SCA
method foresaid.

3.1.3. Summarization of the Proposed Algorithm

Based on the FPP-SCA algorithm presented above, the iterative algorithm is summarized as
Algorithm 1.
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Algorithm 1 An alternating optimization algorithm based on a feasible point pursuit-successive convex
approximation (FPP-SCA)

1. Initialize Define βi = 0.5, Fr =
√

pr
Tr(R)

INR , and Fi =
√

pi
MT

IMT .

2. Iterative updating

(1) Update Wi using Equation (12) with a fixed Fi and Fr.

(2) Update Fr by solving Equation (14)

a. Set k = 0 and vec(Fr) as the initial point z0
r .

b. Solve Equation (15) at the kth iteration for
k > 0 to yield the optimal solution fk

r .
with a fixed Fi and Wi. c. Let zk+1

r = fk
r and k = k + 1.

d. Until convergence, let Fr = mat(zk+1
r ).

(3) Update Fi by solving Equation (16) with a fixed Fr and Wi, following similar steps in (2).

3. Until convergence

The Algorithm 1 is convergent based on the following Property 1.

Property 1. The iterative algorithm based on FPP-SCA is convergent.

Proof. In the kth iteration of the proposed algorithm, we first compute F[k]
r with the given F[k−1]

1 , F[k−1]
2 ,

and W[k−1]
i . Since the optimal solution F[k]

r can be achievable with CVX, where CVX is a Matlab-based
available convex programming toolbox [45], we can discover that the objective value corresponding to
F[k]

r , F[k−1]
1 , F[k−1]

2 , and W[k−1]
i is no greater than that to F[k−1]

r , F[k−1]
1 , F[k−1]

2 , and W[k−1]
i . Similarly, F[k]

1

is no larger than that to F[k−1]
1 , F[k]

2 is no larger than that to F[k−1]
2 , and W[k]

i is optimally solved and the
objective value is descendent. Consequently, the objective value of the original problem monotonically
decreases and is lower-bounded by zero, which verifies the convergence of Algorithm 1.

3.2. Low-Complexity Diagonalizing Design

However, the main drawback of the proposed FPP-SCA algorithm is the high computational
complexity. In order to overcome this shortcoming, a low-complexity algorithm using the channel
parallelization (CP) technique [22], namely the generalized singular value decomposition (GSVD) and
SVD, is applied.

In this section, we assume that MT = MR = M and NT = NR = N for simplicity and focus on
the scenarios where N > M.

3.2.1. Channel Parallelization

Substituting Equation (12) into Equation (10) and employing

E−1 −
(

F−1E + I
)−1

E−1 = (E + F)−1 , (17)

where E and F are arbitrary matrices and I is the identity matrix, the function Ji can be simplified as

Ji = Tr
[(

IMT + JH
iB

Z−1
1i JiB

)−1
]

, (18)

where Z1i = σ2
r JiA JH

iA
+ βiσ

2
Si

IMR .

Applying GSVD on the uplink channel matrix pair
{

HH
S1R, HH

S2R

}
and SVD on the downlink

channels Hdl =
[
HT

RS1
, HT

RS2

]T
, we can obtain

HS1R = RhΣh1UH
h1

, HS2R = RhΣh2UH
h2

, (19)

HRS1 = Rdl1ΣdlU
H
dl , HRS2 = Rdl2ΣdlU

H
dl , (20)
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where Rh ∈ CN×N , Uhi
∈ CM×M, Rdl ∈ C2M×2M, and Udl ∈ CN×N are four unitary matrices;

Σh1 =
(

0T
(N−M)×M, ΛT

h1

)T
; Σh2 =

(
ΛT

h2
, 0T

(N−M)×M

)T
; Σdl =

(
ΛT

dl , 0T
(2M−N)×N

)T
; Λhi

and Λdl are M×
M and N × N nonnegative diagonal matrices; Rdl1 = Rdl (1 : M, 1 : N); Rdl2 = Rdl (M + 1 : N, 1 : N)

for N > M; and Rdl1 = R̃dl1 = Rdl(1 : M, 1 : M), Rdl2 = R̃dl2 = Rdl(M + 1 : 2M, 1 : M) for N = M.
In order to parallelize the channels in Equations (19) and (20), the relay and source beamformers

Fr and Fi can be proposed as
Fr = UdlΛrR−1

h , Fi = Uhi
ΛiVH

Fi
, (21)

where Λr and Λi are N × N and M×M nonnegative diagonal matrices, respectively.
Substituting Equations (19)–(21) into Equation (18), the resultant objective function J ∗i becomes

J ∗i =Tr

[(
IMT + βiΛ

H
i ΣH

hi
ΛH

r ΛH
dl

(
σ2

r βiΛdlΛrΛBh ΛH
r ΛH

dl + ΛBi βiσ
2
Si

IMR

)−1
ΛdlΛrΣhi

Λi

)−1
]

,

(22)
where ΛBh and ΛBi are two diagonal matrices containing the (k, k)th entries of Bh and Bi,

Bh =
(
RhRH

h
)−1, and Bi =

(
RH

dliRdli
)−1 for N > M, Bi =

(
R̃H

dliR̃dli
)−1 for N = M.

Substituting Equations (19)–(21) into each of the constraints in Equation (11), the original problem
can be expressed as

min
Λr ,Λi

J ∗1 + J ∗2 (23a)

s.t. Tr
(

ΛiΛ
H
i

)
6 pi (23b)

(1− βi)Tr
[
ΓG + σ2

Si
IMR

]
> ei, ∀i (23c)

Tr
[
Λr

(
Γ + Bhσ2

r INR

)
ΛH

r

]
6 pr, (23d)

where ΓG = B−1
i ΛdlΛr

(
Γ + Bhσ2

r INR

)
ΛH

r ΛH
dl and Γ = Σh1 Λ1ΛH

1 ΣH
h1
+ Σh2 Λ2ΛH

2 ΣH
h2

. To solve the
nonconvexity caused by Equation (23c), we propose Theorem 2 as follows.

Theorem 2. The left side of the energy-harvesting constraint in Equation (23c) can be replaced by its
lower-bound (1− βi)Tr

[
ΛΓG + σ2

Si
IMR

]
.

Proof. We take N > M as an example to illustrate the proof procedure and the optimization problem.
Expanding the left side of Equation (23c), defining A = RdliΛdlΛr, and ignoring the constant matrix
σ2

r INR , the part Tr
[
B−1

i ΛdlΛrBhΛH
r ΛH

dl

]
becomes

Tr
[
ABhAH

]
= Tr

[
AAHBh

]
= Tr [CBh] . (24)

Define the (i, j) entry of CBh as (CBh)ij = ∑M
k=1 cikbhkj

; then, we have Tr(CBh) > Tr(CΛBh) based on

the relationship ∑M
i=1 ∑M

k=1 cikbhki
> ∑M

i=1 ciibhii
. Following a similar procedure, the lower-bound of

Tr
[
B−1

i ΛdlΛrΓΛH
r ΛH

dl

]
can be expressed as Tr

[
Λ−1

Bi
ΛdlΛrΓΛH

r ΛH
dl

]
.

Then, Theorem 2 is proved.
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By using Theorem 2, Equation (23) can be reformulated as

min
Λr ,Λi

J ∗1 + J ∗2 (25a)

s.t. Tr
(

ΛiΛ
H
i

)
6 pi (25b)

(1− βi)Tr
[
ΛΓG + σ2

Si
IMR

]
> ei, ∀i (25c)

Tr
[
Λr

(
Γ + ΛBh σ2

r INR

)
ΛH

r

]
6 pr, (25d)

where ΛΓG = Λ−1
Bi

ΛdlΛr
(
Γ + ΛBh σ2

r INR

)
ΛH

r ΛH
dl .

3.2.2. Alternating Optimization of Fr and Fi

In this section, an iterative approach is utilized to convert the multivariate non-convex problem
in Equation (25) into three convex subproblems. We first study how to optimize Λr with a fixed Λi,
and then, the alternating optimization of Λ1 and Λ2 is performed with a given Λr.

1. Optimization of Λr

Using Equation (17), J ∗i can be simplified and rewritten as

J ∗i = M− Tr
{[

βiΛ
H
i ΣH

hi
D−1

i Σhi
Λi −MSE∗i

]}
, (26)

where MSE∗i = βi

(
ΛH

i
ΣH

hi
D−1

i ΛiΣhi

)[
1

βiσ
2
Si

ΛH
r ΛH

dlΛdl ΛrΛ
−1
Bi

Di + IM

]−1
and Di = βiΣhi

ΛiΛ
H
i

ΣH
hi

+σ2
r βiΛBh .

Since Λr exists in MSE∗i only, the problem of minimizing J ∗1 + J ∗2 is equivalent to that of
minimizing MSE∗1 + MSE∗2 . Defining ain, ahin, arn, adn, λBin, and λBhn as the nth diagonal element of
Λi, Λhi

, Λr, Λdl , ΛBi , and ΛBh , respectively, MSE∗i can be given by

MSE∗1 =
M

∑
n=1

β2
1σ2

S1
a2

2na2
h2nλB1n(

a2
rna2

dnλ1n + λB1nβ1σ2
S1

)
λ1n

, (27)

MSE∗2 =
N

∑
n=ς

β2
2σ2

S2
a2

1na2
h1nλB2n(

a2
rna2

dnλ2n + λB2nβ2σ2
S2

)
λ2n

, (28)

where ς = N −M + 1, λin = βia2
hin

a2
in
+ σ2

r βiλBhn.

Moreover, we define φin = a2
rna2

hin
a2

in
, θrn = a2

rnλBhn, Φin = φina2
dnλ−1

Bin
, and Θrn = θrnλ−1

Bin
a2

dn.
Accordingly, the problem related to Λr can be described as

min
a2

rn

MSE∗1 + MSE∗2 (29a)

s.t. (1− βi)[Λrc ] > ei (29b)
M

∑
n=1

φ1n +
N

∑
n=ς

φ2n +
N

∑
n=1

σ2
r θrn 6 pr (29c)

arn > 0, (29d)

where Λrc = ∑M
n=1 Φ1n + σ2

Si
IM + ∑N

n=ς Φ2n + ∑N
n=1 σ2

r Θrn.

2. Optimization of Λi
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Similarly, the solution for ain can be described in the following scalar form

min
a2

in

J �1 + J �2 (30a)

s.t.
M

∑
n=1

a2
in 6 pi, ain > 0 (30b)

(1− βi) [Λrc ] > ei (30c)
M

∑
n=1

φ1n +
N

∑
n=ς

φ2n +
N

∑
n=1

σ2
r θrn 6 pr, (30d)

where J �1 = ∑M
n=1

(
1 +

β1a2
2na2

rna2
h2na2

dn

σ2
r β1a2

dna2
rnλBhn+β1σ2

S1
λB1n

)−1

and J �2 = ∑N
n=ς (1+

β2a2
1na2

rna2
h1na2

dn

σ2
r β2a2

dna2
rnλBhn+β2σ2

S2
λB2n

)−1

.

By proving

∂2MSE∗i
∂2a2

rn
=

2βi
2σ2

Si
a2

in
a4

hin
λBina2

dnλain(
a2

rna2
dnλain + λBinβiσ

2
Si

)3 > 0, (31)

and

∂2J �i
∂2a2

in

=
2bin

(
βia2

rna2
hin

a2
dn

)2

(
bin + βia2

in
a2

rna2
hin

a2
dn

)3 > 0, (32)

where for i = 1, 1 6 n 6 M and for i = 2, N −M + 1 6 n 6 N and bin = σ2
r βia2

dna2
rnλBhn + βiσ

2
Si

λBin,
we can indicate that Equations (29) and (30) are convex for a2

rn and a2
in. Then, the optimal solution can

be obtained by CVX directly.

3.2.3. Summarization of the Proposed Algorithm

The low-complexity algorithm based on CP method depicted above is summarized as Algorithm 2.

Algorithm 2 The low-complexity algorithm based on the channel parallelization (CP) method
1. Channel
decomposition Decompose the channel pairs

{
HH

S1R, HH
S2R

}
and

{
HRS1 , HRS2

}
using Equations (19) and (20).

2. Initialization Define βi = 0.5, Fr =
√

pr
Tr(ΨR)

IN , and Fi =
√

pi
MT

IMT ,

where ΨR = RhΣh1
Λ1ΛH

1 ΣH
h1

RH
h + RhΣh2 Λ2ΛH

2 ΣH
h1

RH
h + σ2

r INR .

3. Iterative updating

(1) Update Wi using Equation (12) with a fixed Fi and Fr.

(2) Update Fr with a fixed Fi and Wi.
a. Update Λr using arn by solving Equation (29).
b. Substitute Λr into Fr = UdlΛrR−1

h .

(3) Update Fi with a fixed Fr and Wi.
a. Update Λ1 and Λ2 using a1n and a2n by
solving Equation (30) separately.
b. Substitute Λ1 and Λ2 into Fi = Uhi

ΛiVH
Fi

.

4. Until convergence

Algorithm 2 is convergent based on the following Property 2.

Property 2. The low-complexity algorithm based on the CP method is convergent.

Proof. In the kth iteration of the proposed algorithm, we first compute F[k]
r with the given F[k−1]

1 ,

F[k−1]
2 , and W[k−1]

i . Since the optimal solution F[k]
r can be achievable with CVX, we discover that the

objective value corresponding to F[k]
r , F[k−1]

1 , F[k−1]
2 , and W[k−1]

i is no greater than that to F[k−1]
r , F[k−1]

1 ,

F[k−1]
2 , and W[k−1]

i , which means the objective value is descendent. Consequently, the objective value
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of the original problem monotonically decreases and is lower-bounded by zero, which verifies the
convergence of Algorithm 2.

4. Numerical Results and Discussion

In order to analyze the performance of the proposed algorithms, the following simulations are
conducted. Fifty random Rayleigh fading channels are generated, and the pathloss exponent is set
to 2. The variances of noises are assumed as σ2

r = σ2
Si
= σ2, the transmit powers are set as pi = 18Es

and pr = 12Es, and the signal noise ratio (SNR) is calculated from SNR = 10log10(Es/σ2), where Es

is the power of signal. Meanwhile, the energy-harvesting requirement ei = 0.1. N = 4, M = 2 and
N = 2, M = 2 are both considered, and the data stream S = 2. Moreover, the carrier frequency of the
system is given by fc = 5 GHz. Four schemes are simulated: 1. The unaided scheme, which means
that the beamformers are set as initial matrices; 2. the proposed FPP-SCA scheme; 3. the proposed
low-complexity scheme; and 4. the semidefinite relaxation (SDR) scheme [46] used in the previous
literature. In order to show the impact of noise, the impact of different values of β, and the number of
antennas, we do the corresponding simulations.

Figure 2 and Table 1 show the performance under different β for the proposed FPP-SCA scheme
and the Low-Complexity scheme. From the simulation results, obviously, a larger β leads to a higher
system performance for both schemes, since more signals can be used for decoding the information
in the receiver shown in Equation (6). In order to make the comparision with the existing works, we
choose to use β = 0.5.

The convergence property of different schemes is evaluated in Figure 3, where the total-MSE
is plotted versus the iterations ranging from 0 to 50 in SNR = 5 dB and SNR = 20 dB when
N = M = 2. From Figure 3, as the increment in the number of iterations, the FPP-SCA scheme
always converges slower and requires more iterations for a convergence as SNR increases than the
proposed low-complexity one. Furthermore, the FPP-SCA scheme exhibits a better performance than
the low-complexity one for different SNRs when the curve converges. Meanwhile, comparing the
FPP-SCA and conventional SDR scheme, we can find that the SDR scheme always converges slower
than the FPP-SCA one and that the MSE of it is always higher than that of the FPP-SCA one (e.g., 2.07
vs. 2.04 for SNR = 5 dB and 0.50 vs. 0.48 for SNR = 20 dB) under 50 iterations, which implies an
advantage of the proposed FPP-SCA scheme.

0 5 10 15 20 25 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

B
E

R

 

 

FPP-SCA Scheme,beta=0.3

Low-Complexity Scheme,beta=0.3

FPP-SCA Scheme,beta=0.5

Low-Complexity Scheme,beta=0.5

FPP-SCA Scheme,beta=0.7

Low-Complexity Scheme,beta=0.7

Figure 2. The bit error rate (BER) versus signal noise ratio (SNR) for the proposed schemes under
different β.
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Table 1. The effects of β variation.

SNRs (dB) FPP-SCA Scheme Low-Complexity Scheme

β = 0.3 β = 0.5 β = 0.7 β = 0.3 β = 0.5 β = 0.7

0 0.35 0.25 0.2 0.80 0.77 0.74
5 0.12 0.06 0.03 0.66 0.62 0.59

10 0.01 0.003 9.3 × 10−4 0.52 0.47 0.45
15 1.8 × 10−4 1.0 × 10−5 0.0 0.38 0.33 0.31
20 0.0 0.0 0.0 0.25 0.22 0.19
25 0.0 0.0 0.0 0.14 0.11 0.09
30 0.0 0.0 0.0 0.06 0.04 0.03

0 10 20 30 40 50

10
0

Iterations

M
S

E

 

 

Unaided Scheme, SNR=5dB

Low-Complexity Scheme, SNR=5dB

SDR Scheme, SNR=5dB

FPP-SCA Scheme, SNR=5dB

Unaided Scheme, SNR=20dB

Low-Complexity Scheme, SNR=20dB

SDR Scheme, SNR=20dB

FPP-SCA Scheme, SNR=20dB

T
o

ta
l-

M
S

E

SNR=5dB

SNR=20dB

Figure 3. The total mean square error (total-MSE) versus the iterations for N = M = 2.

It can be claimed that the proposed FPP-SCA scheme has a lower level of total-MSE while it has
a higher iteration complexity than the low-complexity counterpart.

The performance comparison of different schemes is indicated in Figure 4, Tables 2 and 3, where
in Figure 4, the bit error rate (BER) is plotted against SNR ranging from 0 dB and 30 dB under
conditions N = M = 2 and N = 4, M = 2 with respect to 50 iterations. From the results illustrated
in Figure 4, obviously as the SNR increases, the BER decreases for all schemes. Meanwhile, in both
conditions of antenna, the FPP-SCA one is the best in terms of the performance of all schemes, which
increases the performance 0.003 compared with the Unaided Scheme, 0.4× 10−4 compared with the
Low-Complexity Scheme, and 4.0× 10−6 compared with the SDR Scheme for N = M = 2 under
SNR = 20 dB and 0.38 compared with the Unaided Scheme, 0.33 compared with the Low-Complexity
Scheme, and 1.5× 10−5 compared with the SDR Scheme for N = 4, M = 2 under SNR = 15 dB, which
are shown in Tables 2 and 3.
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Figure 4. BER versus SNR for 50 iterations.

Table 2. The BER performance for different schemes when M = N = 2.

SNRs (dB) Unaided Scheme FPP-SCA Scheme Low-Complexity Scheme SDR Scheme

0 0.44 0.39 0.44 0.42
5 0.26 0.19 0.21 0.20
10 0.12 0.04 0.047 0.05
15 0.03 0.003 0.0043 0.004
20 0.0027 5.0 × 10−6 4.5 × 10−5 9.0 × 10−6

25 3.5 × 10−5 0.0 0.0 0.0
30 0.0 0.0 0.0 0.0

Table 3. The BER performance for different schemes when M = 2, N = 4.

SNRs (dB) Unaided Scheme FPP-SCA Scheme Low-Complexity Scheme SDR Scheme

0 0.80 0.25 0.77 0.28
5 0.67 0.06 0.62 0.07
10 0.52 0.003 0.47 0.005
15 0.38 2.5 × 10−5 0.33 4.0 × 10−5

20 0.27 0.0 0.22 0.0
25 0.18 0.0 0.11 0.0
30 0.12 0.0 0.04 0.0

Accordingly, in comparison to the results in Figure 4 and the two tables, we can see that for the
proposed FPP-SCA algorithm, the performance is always higher than the SDR-based one for different
antennas and SNRs, and we can make the conclusion that our proposed FPP-SCA-based scheme
performs better than the traditional SDR-based scheme.

More intriguingly, when N = M, the low-complexity scheme achieves a comparable performance
to that of the FPP-SCA one and yields a better performance than that of N > M (e.g., 0.0 vs. 0.04 for
SNR = 30 dB shown in Tables 2 and 3). Combined with the low complexity of the low-complexity
scheme, it is more applicable than the FPP-SCA one in the N = M case. However, when N > M,
in comparison to the FPP-SCA scheme, the performance of the low-complexity scheme is a bit worse
owing to the influence of the enhancive diversity gain.

In summary, when the number of antennas at the relay node and source nodes are different, it is
more beneficial to choose the FPP-SCA scheme.
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From Figure 5 and Table 4, we can see that the performance increases with the number of antennas
for both schemes under M = N or N > M. When the number of antennas increases, more antennas
can be used to suppress multipath fading with antenna diversity, to increase the system capacity,
and to improve the performance. Considering the cost of computing of the low-complexity scheme
and comparing the existing work proposed in Reference [35], we choose to use M = N = 2 and
M = 2, N = 4 for both schemes. In detail, in Table 4, AM,N , BM,N , CM,N , and DM,N correspond to
M = N = 2; M = 2, N = 4; M = N = 4; and M = 4, N = 8 for the FPP-SCA scheme and EM,N , FM,N ,
GM,N , and HM,N correspond to M = N = 2; M = 2, N = 4; M = N = 4; and M = 4, N = 8 for the
low-complexity scheme.

0 5 10 15 20 25 30

10
-6

10
-4

10
-2

10
0

SNR (dB)

B
E

R
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FPP-SCA Scheme,M=4,N=4

Low-Complexity Scheme,M=4,N=4

FPP-SCA Scheme,M=4,N=8

Low-Complexity Scheme,M=4,N=8

Figure 5. The antennas versus SNR for 50 iterations.

Table 4. The effects of antennas variation.

SNRs (dB) FPP-SCA Scheme Low-Complexity Scheme

AM,N BM,N CM,N DM,N EM,N FM,N GM,N HM,N

0 0.39 0.25 0.29 0.20 0.44 0.77 0.35 0.64
5 0.18 0.06 0.09 0.04 0.21 0.62 0.12 0.40
10 0.04 0.003 0.012 5.0 × 10−4 0.05 0.47 0.02 0.26
15 0.003 1.0 × 10−5 6.5 × 10−6 0.0 0.004 0.33 0.002 0.14
20 5.0 × 10−6 0.0 1.6 × 10−7 0.0 4.5 × 10−5 0.22 5.7 × 10−6 0.07
25 0.0 0.0 0.0 0.0 0.0 0.11 0.0 0.02
30 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0045

In order to verify the advantage of the proposed network, we make the comparison of our
network and the existing BWSN proposed in Reference [35]. In Reference [35], a joint source and relay
design for MIMO two-way relay networks with SWIPT considering a perfect CSI is proposed. In the
network, the sources are equipped with PS receivers. The comparison is implemented under the same
parameters for the two systems, and the results are as follows.

According to the results shown in Figure 6, it can be observed that the performance of the same
algorithm based on the proposed system is preferred to that based on the BWSN, which verify the
superiority of the proposed system.
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Figure 6. The comparison between the proposed network and existing BWSN N = M = 2.

5. Conclusions

In this paper, we have investigated the joint optimization problem for source and relay
beamforming and source receiving in a MIMO FD BWSN SWIPT system. In terms of the problem, two
iterative algorithms based on FPP-SCA and low-complexity diagonalizing designs which minimize
the total-MSE subjected to the relay-and-source-transmitted power and energy-harvested constraints
are proposed. The simulation results demonstrate that the low-complexity scheme always converges
faster than the FPP-SCA based one, while the FPP-SCA-based scheme achieves a lower BER compared
with the work of the low-complexity scheme. Moreover, when N = M, the performance of the
low-complexity scheme yields better than that of N > M. In further works, we will analyze the
system performance for multiple users and the interference suppression in the FD network scenario,
where a large number of nodes are involved, and a discussion on the optimization scheme under the
imperfect SCI will be developed.
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Abbreviations

The following abbreviations are used in this manuscript:

WSN Wireless sensor network
MIMO Multiple-input multiple-output
FD Full-duplex
HD Half-duplex
BWSN Bidirectional wireless sensor network
BRN Bidirectional relay network
OWRN One-way relay network
OWSN One-way wireless sensor network
SWIPT Simultaneous wireless information and power transfer
TS Time switching
PS Power splitting
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EH Energy harvesting
ID Information decoding
MSE Mean square error
FPP-SCA Feasible point pursuit-successive convex approximation
CP Channel parallelization
BER Bit error rate
GSVD Generalized singular value decomposition
AF Amplify and forward
DF Decode and forward
AWGN Additive white Gaussian noise
CSI Channel state information
SNR Signal noise ratio
SDR Semidefinite relaxation
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