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Abstract: Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level
analysis, such as step-counting and gait analysis, are limited by a lack of realistic and labeled datasets.
The effort required to obtain and annotate such datasets is massive, therefore we propose a smart
annotation pipeline which reduces the number of events needing manual adjustment to 14%. For
scenarios dominated by walking, this annotation effort is as low as 8%. The pipeline consists of three
smart annotation approaches, namely edge detection of the pressure data, local cyclicity estimation,
and iteratively trained hierarchical hidden Markov models. Using this pipeline, we have collected
and labeled a dataset with over 150,000 labeled cycles, each with 2 phases, from 80 subjects, which we
have made publicly available. The dataset consists of 12 different task-driven activities, 10 of which
are cyclic. These activities include not only straight and steady-state motions, but also transitions,
different ranges of bouts, and changing directions. Each participant wore 5 synchronized inertial
measurement units (IMUs) on the wrists, shoes, and in a pocket, as well as pressure insoles and video.
We believe that this dataset and smart annotation pipeline are a good basis for creating a benchmark
dataset for validation of other semi- and unsupervised algorithms.

Keywords: activity recognition; benchmark database; gait analysis; inertial measurement unit;
gait phases; cyclic activities; home monitoring; smart annotation; semi-supervised learning

1. Introduction

Activity monitoring using wearables is ubiquitous in daily life and is beginning to be used
for medical purposes, from level of sedentary behavior to gait analysis [1]. For home monitoring,
rehabilitation, and health outcome measurements, accurate step counts and cycle analysis within
realistic environments is needed. Commercially available activity monitors are currently used for some
health outcome studies, often using daily step counts as a measure [2]. However, the accuracy of these
devices depends on location and speed [1,3,4]. Furthermore, the algorithms used are often proprietary,
with unknown accuracy, and subject to regular updates with an unspecified change in performance.
For research and medical purposes, algorithms with known accuracy are needed.

To understand the limitations of algorithms and compare them fairly, one needs benchmark
datasets. There are several public databases within the activity recognition field which use wearables;
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however they focus on the overall activities, often on a very high level [5], whereas for applications
such as home monitoring and rehabilitation cycle level information is needed. Furthermore, they often
focus on steady-state activities [6] and are performed under laboratory conditions [7]. For gait analysis,
the databases are often also only collected under laboratory conditions, only steady state, with few
subjects [8,9] or with low repetitions per activity [10]. Finally, within the home monitoring field, the
data is often without labels or only sporadic and self-annotated ones [11].

One of the barriers to providing benchmark datasets with cycle level information is the effort
required to obtain and annotate them. Ontologies for daily activities, such as cooking [12,13], have
been used simplify to the task when looking at non-cyclic data. Semi-supervised learning is also a
common approach to reduce the labeling effort for activity level labels [14,15]. We propose a method
which will reduce the annotation effort where cycle phase labels are needed. Cycle phases is a more
general term for gait phases, i.e., swing and stance phase, when referring to cyclic motions other than
walking which involve alternating ground contact and in the air phases of the foot.

Ideally a benchmark dataset would be collected under free living conditions; however, the ability
to provide accurate, cycle level labels under such conditions is still an open problem. Therefore, a
compromise between free living and laboratory environments needs to be found. This can be achieved
by having task-driven protocols where the precise start, stop and manner of performing the activity is
left to the participant’s interpretation of an instruction. However, using a protocol and environment
where collecting and labeling ground truth data is still feasible.

We provide a dataset, and data collection protocol, which addresses these needs. This dataset
is an extension of the smaller one published in [16], using a similar protocol. In contrast to existing
datasets, ours includes transitions between activities, initiation, and termination of them, varying
lengths of bouts and examples of weight change which are not considered to be walking. The sensor
modalities used are inertial measurement units (IMUs) at several body locations, pressure insoles, and
videos. To provide cycle phase labels for this dataset, we propose a smart annotation pipeline based
on the edge-detection method from [16], which is extended in this paper using an iteratively trained
hierarchical hidden Markov model (hHMM). We also compared local cyclicity estimation [17] and
peak detection for the labeling of one of the activities where the other methods were insufficient. The
data is labeled on three levels; protocol, basic activity, and cycle phase level. We analyze the cost of
these smart annotation methods relative to that of complete manual labeling and investigate for which
activities they are most effective. The aim of this protocol, pipeline and dataset is to create a coherent
and publicly available large-scale benchmark database for the training and testing of algorithms for
home and health monitoring by using and testing smart annotation methods.

We provide a novel public dataset which is diverse in sensors and activities, which focuses on
cycle phases and transitions as well as activities. We also develop a novel smart annotation pipeline,
reusable protocol, and definitions. The dataset and pipeline are extensions of [16], a workshop paper
by the authors. In [16], the edge-detection method was proposed and a dataset of 20 subjects was
published. This method relied on pressure data. In this paper, the pressure data was unusable with this
method, so to extend the dataset a new method was proposed using IMU data, namely the iterative
training of the hHMM and the use of the local cyclicity estimation for cycle detection where no phases
occurred. The dataset itself was extended from 20 subjects to 80 and is available at activitynet.org.

2. Related Work

2.1. Smart Annotation Approaches

Methods used to reduce the cost of labeling data can be grouped into several categories: shared,
transfer, and unsupervised learning as well as active, population, and semi-supervised labeling. The
three learning methods refer to the way models are trained to provide labels. The three labeling
methods refer to when only partial data within a dataset is labeled and how this is then used to label
the remaining data.

activitynet.org
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Shared learning combines datasets where not all datasets contain all activities [18]. Transfer
learning uses labeled data in the source domain to train a model for use in the target domain,
hence models are shared across domains [19]. In contrast unsupervised learning attempts to label
data without using prior knowledge, by identifying the underlying structure of the data. To apply
unsupervised approaches, one needs to define to which labels these underlying structures refer and the
applicability of them within the particular application domain. Unsupervised approaches successfully
used in the wearables domain include clustering methods [20], cross-correlation-based ones [17] and
information gain-based methods [21]. Part of our data was completely unlabeled and so we used
a basic peak detector and compared it to the local cyclicity estimator, the cross-correlation-based
unsupervised method from [17].

Active labeling refers to automatically extracting and manually labeling sections of the data
which would be most effective to annotated or where labeling errors are most likely to have taken
place. Liu et al. identified the most informative samples by identifying those sections where the
classifier outputs conflicted or where they had the lowest confidence [22]. Hossain et al. combine
an unsupervised clustering approach with active learning for the labeling of smart home data which
allowed new activities and clusters to be dynamically added [23]. On the other hand, population
labeling is the annotation of subsets of data, where these are chosen to represent certain groupings of
the population. This could be by age, gender, disease stage, or type. For example, [24] uses gender and
physical characteristics to find a matching model, and in [25] a new user is matched to the most similar
model from the existing trained models. Semi-supervised annotation is where a labeled subsection
of a dataset is used as training data for a model which suggests labels for the remainder of the data.
Diete et al. used IMU data synchronized to video data to partially label a multi-modal dataset [26].
This data was then used to create templates and dynamic time warping was applied to give the
labeler suggestions for the remaining data [14,26]. Active learning and semi-supervised annotation are
combined by Alemdar et al., who use the actively labeled data from a smart home to iteratively train
an HMM for activity recognition [27].

In this paper, we used the output of an edge-detection method for semi-supervised annotation,
developed in previous work [16]. The resulting data we use to iteratively train a hierarchical HMM
(hHMM). The main difference is that we are interested in both activity and cycle information where
both classification and segmentation are necessary, hence the need for a hierarchical model.

2.2. Cyclic Activity Datasets

Activity recognition is a well-established field with a variety of public databases. However, most
of these datasets focus on video and environmental sensor data and focus on labeling complex activities
such as house work or cooking. For applications such as home monitoring or rehabilitation, more
basic activities are useful, such as walking. Furthermore, these basic activities should be accurately
characterized in terms of duration, quality, and variability. In this paper, we focus on basic cyclic
activities such as walking, running, and jumping. Although in the case of home monitoring of
patients with motion disorders, we would not expect jumping data, we may do so in the case of sports
rehabilitation. Including a variety of cyclic activities would also give insight into how generalizable
algorithms are to unknown, but cyclic data such as abnormal, but nonetheless cyclic motion (e.g.,
walking with a limp). Specifically, we are focusing on data where exact cycle parameters could be
extracted. Such data would allow the comparison and analysis of algorithms proposed for home
monitoring and rehabilitation purposes.

Public datasets containing wearable sensor data and labels for cyclic activities often isolate
the steady-state sections of behavior, such as [6,28]. This excludes transition stage data which is
unavoidable in realistic scenarios. Furthermore, traditional activity recognition databases usually
only provide labels for the overall activity, rather than individual cycles [5,28]. The databases where
cycle information is given can be split into two categories: those with step counts or labeled cycle
borders [29–33] and those with labeled heel-strike and toe-off events [8,9]. These databases focus on
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steady-state gait and have under 20 subjects each. One database focusing on gait, with more than
700 participants [10], is unfortunately limited to less than 20 strides per subject and cycle borders
or gait events are not published with the database, only the activity, namely gait, slope, and stair.
Furthermore, the data is only from waist mounted sensors which limits the application domain. In all
the cases where gait events are given, the data is taken from a limited capture volume due to using a
ground truth such as motion capture [8] or using treadmills [9]. While [30] had 175 subjects, the data
was of a 20 m straight walk repeated 6 times and they used only accelerometer data from one side
of the body. Although [29] had outdoor motion data with varied speeds and sensor locations, they
also only focused on walking. While [31,32] had outdoor walking and running or jogging instances,
they both had data from under 20 participants. The Digital Biobank [33] offers data from 70 patients;
however only the straight strides are labeled. One wearables database where a variety of cycles are
present, not just running and walking, is [7]; however, the activities are limited to the capture volume
of a motion capture system and the cycle counts are not given. In conclusion, the available datasets are
often unrealistic or lack subject numbers or repetitions. The databases mentioned here are described
in more detail in Tables 1 and 2, where the final entry is a description of the dataset presented in this
paper, which will be detailed in the following section. There exist more databases with wearable sensor
data; however, to the best of the authors’ knowledge there are none with cycle level labels under such
realistic conditions.

Table 1. Participant characteristics of publicly Available Wearable-based Cyclic Activity Recognition
Databases (Healthy subjects).

Dataset Name No. of Subjects Duration Cyclic Labels

MAREA [9] 20 34 min per subject Heel strike, toe off (using FSR)
Bradjic [29] 27 Unknown Step count (from video)
CMU-MMAC [5] 43 5 recipes N/A
MHAD [7] 12 82 min (total) N/A
OU-ISIR2012 [10] 744 Under 20 steps per subject N/A
ZJU-GaitAcc [30] 175 6 times 20 m Cycle borders (Signal analysis)
Real World (HAR) [28] 15 70 min per subject N/A
Digital Biobank [33] 70 40 m plus 2 times 2 min Cycle borders (Signal analysis)
Kluge [8] 15 1166 strides Heel strike, toe off, heel off

(Mocap)
Dailiac [6] 23 20 min N/A
Martindale [31] 18 3500 strides Cycle borders
BASA [32] 15 20 min per subject Step count
FAU-Gait (current paper) 80 20 min per subject Heel strike, toe off
(extending [16]) (smart annotation)

Table 2. Sensor and activity details of publicly Available Wearable-based Cyclic Activity Recognition
Databases (Healthy subjects).

Dataset Name Sensors and Sensor Location Activity Labels

MAREA [9] FSR, Acc (128 Hz) Treadmill & outdoors,
Left wrist, ankles, waist Walk & run, slope & flat

Bradjic [29] Acc, Gyr, Mag (100 Hz) Slow, normal & fast
Phone in pockets/hand/bag straight walk

CMU-MMAC [5] Acc, Gyr, (60 Hz) Mocap, Audio Cooking
Back, legs & arms

MHAD [7] Acc (30 Hz), mocap 11 actions : Jump, clap
Wrists, ankles, hips Throw, wave, punch, ...

OU-ISIR2012 [10] Acc, Gyr, (100 Hz) Level walking
Waist Slope & stair
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Table 2. Cont.

Dataset Name Sensors and Sensor Location Activity Labels

ZJU-GaitAcc [30] Acc (100 Hz) Walk
Arm, wrist, waist, ankle, thigh

Real World (HAR) [28] Acc, Gyr, GPS, Mag, Light, Sound Walk, run, sit, stand,
Chest, forearm, head, shin, Lie, stairs, jump
Thigh, upper arm, and waist

Digital Biobank [33] Acc, Gyr (100 Hz) Straight walk
Shoes

Kluge [8] Acc, Gyr (100 Hz) Level walk
Shoes

Dailiac [6] Acc, Gyr (100 Hz) 13 activities: Sit, lie,
Shoes, chest, hip, wrist Walk, stair, treadmill, skip ...

Indoor & outdoors

Martindale [31] Acc, Gyr (200 Hz) Walk, run, stand
Ankles Outdoors

BASA [32] Acc, Gyr (200 Hz) Stairs, walk jog,
Shoe, wrist Sit, lie, stand

FAU-Gait (current paper) Acc, Gyr (200 Hz), Pressure insole Walk, jog, run, stand,
(extending [16]) Shoes, wrists, pocket Jump, hop, skip, cycle, ...

Abbreviations: Accelerometer (Acc), Gyroscope (Gyr), Magnetometer (Mag), Force sensitive resistor (FSR),
Motion capture (mocap).

3. Dataset

3.1. Goals of the Dataset

To address the gaps in the publicly available datasets, we provide a protocol and dataset to fulfil
these criteria:

• (Pseudo) realistic
• Cyclic activities
• Cycle and activity level annotations
• Initiation and termination of activities
• Variety of bout durations
• Task orientated
• Wearables sensors at common locations
• Non-straight walking
• Transition phases between activities

By fulfilling these criteria the dataset could then be used to investigate generic cyclic activity
algorithms, validate semi-supervised and home monitoring methods, as well as understand their
limitations and normal behavior during edge cases, such as unclear start of bouts and failed or aborted
tasks. The main challenges for such a dataset collection are practical concerns such as the need for
many subjects, repetitions, and creating tasks as realistically as possible, while still being able to
create cycle level annotations for them. The annotation challenges include the sheer volume of data
to be labeled and definitions, such as the start of activities or the labeling of unclear ones. This is
normally avoided by providing only steady-state cases or by excluding unclear activities; however, in
a real-world environment these cases can be expected. To the best of the authors’ knowledge, there
are no existing wearables databases which have phase level labels in pseudo realistic settings with a
variety of cyclic activities, as well as a variety of sensor locations.
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3.2. Dataset Description

We collected data from 80 subjects who all gave written, informed consent. This study
was approved by the ethics committee of the Friedrich-Alexander-Universität Erlangen-Nürnberg,
No. 106_13B. The physical characteristics of the subjects are shown in Table 3. The data collection
was carried out at the Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany and
at the Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia;
Respectively 56 and 24 subjects were collected at each location. Data from 20 of the subjects collected
in Slovenia was previously published in [16]. The dataset is available at www.activitynet.org.

Table 3. Subject characteristics.

Characteristic Unit Mean and Variance

Age [years] 27 ± 6
Gender [F/M] 28/52
Height [cm] 174 ± 7
Weight [kg] 66 ± 18

Shoe size (EU) 41 ± 2
Handedness [R/L] 74/4

Location [Erlangen/Ljubljana] 56/24

Each subject wore 5 IMU sensors; one on each wrist, one on the lateral side of each shoe and,
where possible, one in a trouser pocket, preferably the right front pocket. Due to technical failures,
6 subjects do not have data from the pocket IMU sensor, and 1 subject does not have from one wrist
sensor. The IMUs were part of a Bosch development platform. Each IMU measured acceleration
(±8 g) and angular velocity (±2000 dps) with a frequency of 200 Hz. The sensors were calibrated at
the end of each day, according to the method given in [34], where the accelerometer and gyroscope
were calibrated using six static positions and a complete rotation about each of the three axes. The
placement, attachment mechanisms and orientation of the sensors are shown in Figure 1. All sensors
were synchronized by a simultaneous, single packet Bluetooth-based clock reset and start command.
Due to technical failure, the IMU synchronization failed for 2 subjects.

Each subject also wore Moticon pressurized insoles. Moticon Science Software version 01.10.00
was used for sensor connection, download of the data and synchronization with the camera
system [35]. Due to limited Moticon insole sizes, subjects were restricted to shoe sizes of between 38
and 44. Each insole recorded 5 pressure sensors and a 3-axis accelerometer at 100 Hz. For the 56 subjects
collected in Germany, there was significant drift in the pressure signals and random data package
loss. However, the automatic zeroing feature was available at 100 Hz for the 24 subjects collected in
Slovenia which corrected both problems. The Moticon data was synchronized to the cameras using a
time stamp-embedded QR code displayed within the Moticon software. The calibrated IMUs were
then synchronized to the Moticon data by performing a piecewise cross correlation between the x-axis
acceleration of the insole and the shoe-mounted IMUs. We assume that the acceleration of the insole is
the same as that of IMU mounted to the same shoe. The Moticon acceleration data was re-sampled
with a range of ratios between 1.4 and 3.3 with a resolution of 0.001. The ratio with the highest cross
correlation value was then chosen as the re-sampling factor, usually close to 2.0. The time difference
achieving the highest cross correlation was then selected and used as the lag between the insoles and
the IMUs. This was performed separately for each section, subject, and foot. Due to technical failure,
the Moticon to IMU system synchronization failed for 1 subject.

As reference for the activities, the data was recorded using static cameras with a view of
each location and one camera held by the researcher which was focused on the subjects’ feet. The
combination of hand held camera and room camera minimized occasions of occlusion.

www.activitynet.org
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Figure 1. Sensor type and location. (a) Photograph of IMU sensor system in 3D printed case. (b)
Diagram showing sensor attachment to shoe, using industrial Velcro and Moticon insole, which was
used instead of the original sports shoe insole pressure sensor location and approximate size and shape
within the insole. Also showing axes location for the insole accelerometer. (c) IMU sensor locations on
the body with corresponding axes.

3.3. Data Collection Protocol

The overall structure of the data collection was always the same; however, the individual activities
within each section were given in a randomized order per participant. Each activity had an assigned
location with a marked starting point as shown in Figure 2. There were 4 sections of activities. Between
each section the sensors and cameras were stopped, restarted, and resynchronized. The participant
was then instructed to jump 3 times and lift each foot into the air. At the end of each section this
procedure was repeated. This was used as a manual synchronization method, to check for errors in the
other synchronization methods. During data collection in Erlangen, only the cameras were restarted
between each section; however the synchronization jumps were still present. The complete recording
took about 30 min with another 15 min for setup and instruction.

The first section of activities included: walking, jogging, and running, each performed as 2 times
20 m bouts, walking a slalom route through 3 tables spaced 2 m apart, sorting cards on 3 tabletops
while standing, sitting down and performing three tasks at three different tables (sorting cards, filling
out a form and relaxing) and signing one’s name on 5 posters spaced 2 m apart. Each activity was
performed at a fixed location; however, as the tasks were in a random order, the length of walking and
standing bouts between activities varied. Jogging was defined as “as one would jog for exercise in the
evening” and running as “as if one is late for a bus”.

The second section involved motion around a 40 m by 20 m circuit. Running, jogging, and walking
were alternated such that each transition between the three activities occurred once. The transitions
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occurred after each half a circuit. The range of permutations of these transitions were also randomized
per participant.

The third section involved a variety of cyclic activities; running slalom through 5 evenly spaced
cones (2 times 10 m), stepping 20 times onto and off a step, cycling for one minute on a stationary
bicycle, side-stepping for 2 times 10 m (alternating front foot), hopping 2 times 10 m (alternating
hopping leg), jumping with both feet together over a line for 10 m, skipping 20 times, performing
jumping jacks 20 times and jumping on the spot 20 times. At the location in Slovenia a stationary
bicycle was unavailable, therefore the activity was replaced; participants ran on the spot with high
kicks 20 times. Activities such as skipping were not always successful; however, the participant
would try up to three times. If an activity was performed incorrectly (e.g., stepping over the step
instead of onto it), then it was simply restarted. During the final section, the participant walked to the
neighboring building, up and down two flights of stairs and then returned.

Figure 2. Layout of the activities (Germany). The starting point of each activity is shown by the letter
whose key is in the table on the right. Double lines in the table separate the 4 sections of activities.

Figure 2 refers to the layout for the data collected in Germany. For that from Slovenia, the first
section was performed in a classroom and the adjacent corridor; however, the setup for each individual
task was replicated. The circuit was performed outdoors and so the stairs and outdoor walking section
was performed between the classroom and an outdoor circuit location.

The smart annotation tool introduced by [16] was extended for the labeling of this dataset. The
study protocol was imported per subject and the exact timing of the start of each activity adjusted
within the tool using the synchronized video and pressure data. The labeling of cycles and cyclic
phases was performed using the various smart annotation approaches and label definitions which are
detailed in Section 4. The results of these smart annotation approaches were then manually corrected
using the visualization of left and right normalized shoe-mounted IMU data and insole sensor data
synchronized to each other and to the hand held camera video stream. For both cycle and activity
labeling one could add or remove a segment, and change the label of a segment.
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4. Annotation

4.1. Activity and Label Definitions

Another problem with realistic datasets is the choice of definition for activity bouts or of when a
change of weight is a step and when not. These problems are circumvented in many public databases
by only labeling steady-state regions; however, they occur in daily life and are abundant in this dataset.
In this section, we will describe our labeling conventions.

Each of the tasks mentioned in Figure 2 could contain several basic activities as specified in
Table 4. Rest refers to all data that is not covered by any other label, and includes standing and weight
shift, except for periods of video occlusion or where one or more sensor fell off which were labeled as
unknown. This definition enables the calculation of statistics about all non-rest activities where we are
sure the labels are clear. Sit and rest are simple activities and contain no phases or repetitions. All the
other basic activities are cyclic and contain two phases; on the ground and off the ground. Here we
will refer to these as stance and swing phases, respectively. These cycle phases are defined per foot.
One exception is cycling where the pressure data was often insufficient to define cycle phases and
therefore only cycles are defined.

Table 4. Tasks with corresponding activity labels; indicating if activity is cyclic and if it includes phases.

Task Cyclic Activities with Phase Labels Non-Cyclic Activities

Walk 2 × 20 m Walk Rest
Walk slalom Walk Rest
Walk circuit Walk Rest

Walk between activities Walk Rest
Sign name on posters Walk Rest

Jog 2 × 20 m Jog Rest
Jog circuit Jog Rest

Run 2 × 20 m Run Rest
Run slalom Run Rest
Run circuit Run Rest

Sitting at tables Walk Sit, Rest
Stepping Stairs Rest

Stairs Stairs Rest
Double jump Jump Rest

Jumping Jump Rest
Jumping on spot Jump Rest

Side-stepping Side-step Rest
Hopping Hop Rest
Skipping Skip Rest
Cycling Cycle (no phase labels) Rest

Running on spot RunOnSpot Rest

All activities transitioning to or from rest (aka standing), begin with a swing phase. This defines
that an activity starts when the foot leaves the ground for the first time in a sequence and ends when
it touches the ground the final time in that sequence. This means that at the start of a bout, one foot
will still be in rest when the other starts the activity. Sequences of activities will be referred to as bouts.
If there is a transition between two non-rest activities, then there could be a stance phase separating
them. This definition was used so that even sensor data from just one sensor could be isolated with the
correct labels.

At the start or end of a bout there are sometimes a few abnormal movements, e.g., the first step
when standing up from chair or when changing directions before starting to walk. These movements
were excluded if, by video or signal inspection, these cycles could not be said to be part of the bout or
in the same direction as the bout (e.g., the angle of the foot changes in mid swing when standing up
from a chair). The reason for this style of labeling is the need to calculate bout information from the
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ground truth labels. This is a less clear definition but a necessary one to exclude weight shifts from
bouts, as well as cases where they are simply isolated movements but could not be said to be a part of
the bout. It can also often be simplified by saying that only the initial and terminal stride may begin
with the feet together.

All methods used data from the sensors located at the feet because on-the-ground and
off-the-ground phases needed to be labeled. The labels for the remaining sensors were then inferred
due to the synchronization of all systems.

4.2. Smart Annotation Methods

The final dataset consisted of about 30 h of data, where one phase was on average 0.5 s long. The
only feasible way to label such a dataset was by smart annotation methods. The data from the first 20
subjects was labeled using the change in pressure data due to initial and final ground contact of each
foot. This change in pressure was found by an edge-detection method. The pressure data from the
remaining subjects had drift and occasional data loss problems, therefore a smart annotation method,
independent of pressure data was needed. We used the data from the 20 labeled subjects to train a
hierarchical hidden Markov model (hHMM). This model we used to predict the next 10 subjects. These
predictions were manually corrected, and the resulting labels used to update the hHMM, which in
turn was used to predict the next 10 subjects’ data. This was repeated until the complete dataset was
labeled. The only exception was data for cycling where the pressure data was insufficient to be used as
a ground truth and so only the cycles were annotated. This was done by comparing an unsupervised
method to a general peak detection method. Between applying these smart annotation methods and
manually correcting the data a few post-processing steps were applied to conform to the definitions
from Section 4.1. Manual labeling was performed with an updated version of the smart annotation
tool described in [16].

4.2.1. Edge Detection

In previous work we compared two edge-detection methods, a proprietary Moticon algorithm
and a basic thresholding method [16]. The edge-detection method based on the rising and falling
edges of each individual pressure sensor was found to be superior. (This method was referred to as
EdgeDet1 in [16].)

The positive and negative peaks of the derivative of the filtered, normalized pressure data were
found. These peaks were then filtered using a set of empirically found rules. The located edges were
then manually corrected by inspection of all available sensors and video streams. 17.2% of the edges
processed in this manner required manual correction. The protocol labels were used to identify the
activity label, whereas rest or sitting was found by an empirically found energy threshold. Further
implementation details can be found in [16]. The data used for this method was the data collected in
Slovenia, thus consisted of 24 subjects’ data.

4.2.2. Iterative hHMM

The manually corrected labels from the first 24 subjects, processed using the edge-detection
method, were used to provide training data for a hierarchical hidden Markov model (hHMM). The
gyroscope sagittal plane (GZ) and accelerometer axial plane (AX) data from both shoe-mounted sensors
were used for training the model. The model treated the data from each foot independently. The choice
of these axes and sensors, as well as the basic HMM architecture was chosen by the success of the
models used in [31,36]. Features were calculated from the raw data using a windowing approach with
a window length of 70 s and step size of 5 ms. The variance, first three coefficients of the second order
polynomial fit, as well as the raw data itself were used as features. All features were normalized per
person to minimize inter-person differences. The features were described using a Gaussian Mixture
Model (GMM) where the number of centers was trivially initialized to 4 centers per phase or simple
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activity. Simple activity refers to data labeled as rest or sit. The densities were calculated using ten
estimation maximization (EM) iterations and a diagonal covariance matrix was used.

The transition probabilities were initialized as a left-right continuous model within each phase or
activity and as a fully connected model between phases and activities. Unlike the architecture used
in [31], phases are included as an additional hierarchy rather than just cycles per activity. The non-zero
transitions were initialized uniformly. The simple activities were assigned 3 internal states representing
initiation, steady-state, and termination phase. The complex activities were made up of one HMM per
phase, each consisting of 4 internal states. This is based on the assumption that gait can be described
by up to 8 phases [37]. The training of the model was semi-supervised in that the initiation of activities
and phases was supervised, but the internal states were unsupervised. The unsupervised states were
always initialized linearly. The hHMM was implemented using the using Java Speech Toolkit (JSTK)
due to its ability to handle semi-supervised training [38].

The manually corrected output of the edge-detection method was used for training with 100
iterations before the model was used to predict the next 10 subjects. To reduce manual labeling effort,
the predictions were restricted to the activities known to occur within each task, detailed in Table 4.
When new data was added to the training set, the new model was initialized from the final model of
the previous iteration and all labeled data from all previous iterations were used for training.

4.2.3. Cycle Detection

The data from the cycling activity was unable to be initially labeled using the edge-detection
method due to only minimal, or no, changes in pressure on the insole during this activity and
unclear phases from the motion data. Therefore, another method to estimate the initial labels in an
unsupervised manner was needed, and so a peak-detection (PD) method was compared to a local
cyclicity estimation (LCE) method for cycle segmentation. The data from the cycling activity was
labeled using the PD method and manually corrected. The protocol labels were used to identify the
activity label, whereas rest or sitting was found by an empirically found energy threshold.

Peak Detection

The PD implementation used was the findpeaks method from MATLAB. Two thresholds were
required and were found empirically using cycle data from the first subject. The PD was performed on
the normalized GZ axis data where the peak at mid swing was detected. The minimum peak distance
was set to 400 ms and the minimum peak height was set to 0.5 (relative to the normalized GZ data).

Local Cyclicity Estimator

The method and implementation of the local cyclicity estimator were used from [17]. The noise
threshold was set to 1.0, the frequencies were varied from 0.5 Hz to 6 Hz. The maximum of the
normalized GZ axis was detected.

4.2.4. Label Post-Processing

Once a prediction by a smart annotation method was made, the following rules were automatically
applied before manual correction occurred:

• Consecutive sections with the same activity and phase label were joined.
• Each activity bout could start and end only with a swing phase.

These were based on the definitions described in Section 4.1. Following manual correction,
statistics such as mean and variance of cycle time and swing duration were used to highlight any
outliers which were subsequently reinspected, and corrected where necessary.
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4.2.5. Evaluation Metrics

To evaluate the success of the smart annotation pipeline and its components we calculate the
number of labels which needed to be added or deleted during the manual correction phase, with a
tolerance of 50 ms, over the total number of labels according to the manually corrected reference. A
label in this case referring to the segmentation point between two activities of phases. We refer to this
as the effort required for labeling. We also calculate some standard metrics such as the F1 score, the
miss rate and the false discovery rate which are specified below:

F1-score = 2 × Precision × Recall
Precision + Recall

=
2 × TruePositive

2 × TruePositive + FalsePositive + FalseNegative
(1)

MissRate (MR) =
FalseNegative

TruePositive + FalseNegative
(2)

FalseDiscoveryRate (FDR) =
FalsePositive

TruePositive + FalsePositive
(3)

Effort =
DeletedLabels + AddedLabels
TotalManuallyCorrectedLabels

=
FalsePositive + FalseNegative
TruePositive + FalseNegative

(4)

where TruePositive refers to the case where the predicted label and the manually corrected one
were within 50 ms of each other, FalsePositive refers to the case where there is a predicted label but
no corresponding manually corrected one within the 50 ms tolerance window and FalseNegative
refers to the case where there is no predicted label within 50 ms of a manually corrected label.
TotalManuallyCorrectedLabels can also be referred to as the number of ground truth labels. The miss
rate can also be referred to as the false negative rate.

5. Results and Discussion

5.1. Dataset Evaluation

The final dataset consisted of data from 80 subjects totaling almost 30 hours of pseudo realistic data
in both indoor and outdoor settings which included 12 activities recorded using 5 IMU sensors, a pair
of pressurized insoles, as well as video. All sensor data and labels can be found at www.activitynet.org,
for privacy reasons video data is excluded. This data included initiation and termination sections,
transitions, non-straight walking, and all inter-activity data such as weight shift. A wide range of
walking bouts was achieved, as illustrated in Figure 3, as well as over 150,000 cycles, see Table 5.
While there were 12 classes, the dataset was dominated by walking and rest, followed by jogging and
running, as seen in Table 5.

Figure 3. Logarithmic histogram of walking bout lengths, for all subjects.

www.activitynet.org
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Table 5. Duration and quantity of activities.

Activity Mean Duration 1 Mean Cycle Count 1 Total Cycles 2

Walking 523 s ± 63 s 492 ± 56 78,684
Jogging 60 s ± 12 s 78 ± 17 12,475
Running 55 s ± 14 s 85 ± 18 13,592

Stairs 65 s ± 11 s 67 ± 6 10,709
Jumping 40 s ± 6 s 77 ± 8 12,333
Hopping 11 s ± 2 s 12 ± 2 1932
Skipping 14 s ± 4 s 27 ± 10 4389
Side-step 9 s ± 2 s 16 ± 3 2653

Run on spot 16 s ± 2 s 21 ± 1 985
Cycling 62 s ± 10 s 85 ± 18 9482

Sit 120 s ± 34 s - -
Rest 397 s ± 106 s - -
Total 1343 s ± 137 s 983 ± 67 157,340

1 calculated per person, on the left foot data; 2 total for all subject.

The characteristics of the activities are as expected with stride time decreasing between walking,
jogging, and running, see Figure 4, even though the pace was self-selected. Stairs have a similar stride
time to that of walking, while that of jumping, hopping, and skipping are lower. Swing duration per
activity are shown in Figure 5. Again, the swing duration increases between walking and running.
Skipping, side-step and jumping have a swing duration of around 60 %, while hopping, stairs and
walking are closer to 40 %. While the general trends are consistent, there are many outliers, showing
the wide variety of interpretations and modes of performing the various activities.

Figure 4. Boxplot of the stride times per activity, over all subjects.

5.2. Smart Annotation Evaluation

The effort required for labeling each batch is illustrated in Figure 6a, the hypothetical effort for
each model if the data for prediction were identical, in this case the final batch, is shown in Figure 6b.
Finally, the combined effort for all smart annotation approaches combined is given in Table 6, along
with the effort per activity and for the individual parts of the smart annotation pipeline. The F1 scores,
miss rates and false detection rates are given in Tables 7 and 8, respectively.
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Figure 5. Boxplot of the swing duration per activity, over all subjects.

Table 6. Mean of the labeling effort per activity, over all subjects in a given batch. Effort being the
percentage of labels added or removed during manual labeling.

Activity Overall Effort [%] Effort Using EdgeDet [%] Effort Using hHMM [%]
All 7 Batches Batch 1 Batch 7

All 16.3 ± 4.3 16.0 ± 5.3 14.1 ± 1.8

Walking (total) 12.5 ± 5.7 16.8 ± 6.1 8.5 ± 1.8
- circuit 6.2 ± 8.9 12.6 ± 11.4 0.8 ± 0.6
- 2 times 20 m 7.1 ± 8.9 14.6 ± 11.4 2.2 ± 1.4
- slalom 7.9 ± 10.4 15.9 ± 15.4 2.2 ± 2.0
- between activities 11.0 ± 6.2 16.4 ± 6.0 7.6 ± 3.1
- posters 38.7 ± 17.6 51.5 ± 14.1 23.5 ± 9.1
- between sitting 81.2 ± 40.7 45.4 ± 12.6 83.5 ± 47.9

Jogging (total) 9.1 ± 8.4 14.5 ± 9.4 4.9 ± 2.1
- circuit 7.6 ± 8.2 13.0 ± 9.3 1.2 ± 0.6
- 2 times 20 m 12.9 ± 11.7 18.1 ± 13.5 15.7 ± 5.3

Running (total) 15.5 ± 8.1 18.0 ± 9.4 14.9 ± 11.3
- circuit 7.9 ± 9.7 17.5 ± 12.4 1.2 ± 0.7
- 2 times 20 m 22.7 ± 14.4 26.2 ± 17.0 20.4 ± 12.8
- cones 25.4 ± 19.2 10.6 ± 7.7 43.1 ± 28.8

Stairs (total) 38.7 ± 18.9 18.4 ± 10.0 49.4 ± 14.9
- stepping 35.3 ± 22.7 17.0 ± 13.8 36.3 ± 18.3
- stairs 44.0 ± 24.2 20.3 ± 10.5 70.8 ± 23.3

Jumping (total) 12.4 ± 10.7 9.5 ± 7.6 8.1 ± 2.5
- jumping jacks 7.7 ± 14.2 6.6 ± 6.8 2.6 ± 1.9
- jumping on spot 14.7 ± 23.8 13.3 ± 17.6 3.7 ± 2.9
- double jump 20.7 ± 15.1 12.3 ± 9.5 24.1 ± 10.4

Hopping 46.3 ± 29.6 27.0 ± 21.5 56.7 ± 28.1
Skipping 26.2 ± 32.6 9.9 ± 9.5 23.8 ± 15.2
Side-step 47.1 ± 37.5 12.6 ± 8.8 40.9 ± 14.3
Run on spot 12.3 ± 12.4 12.3 ± 12.4 -
Cycle 1 2.9 ± 3.7 - -

1 Using the peak-detection method.



Sensors 2019, 19, 1820 15 of 21

5.2.1. Edge Detection

The results of the edge-detection method of [16], were post-processed according to the label
definitions given in Section 4.1. Due to this, the resulting effort required for labeling decreased
marginally to 16.3%. The edge-detection method was applied to the 24 subjects collected in Slovenia
and is referred to as Batch 1 in Figure 6a. One can see here that there is a wide range of effort required;
however, all are under 30%.

The effort required, F1 scores, miss rates and false detection rates for individual activities are
summarized in the middle columns of Tables 6–8, respectively. The edge-detection method performed
reasonably, at under 20% effort for most activities. It performed worst for short bout activities such as
the signing posters task, walking between tables for the sitting activity and hopping. The false detection
rate was generally lower than the miss rate at under 17% except for walking between activities. The
miss rate was high for short bouts, hopping, and stairs. The overall F1 score was 83.8%. It was also the
worst for short bouts and the best for running and jumping.

5.2.2. Iterative hHMM

The manually corrected data from the edge-detection method, Batch 1, were used to train a
hHMM which was used to predict the labels of the next 10 subjects, referred to as Batch 2 in Figure 6a.
This data was then manually corrected, and the model trained with the updated training set, and
so on until all 80 were labeled. The labeling effort required for each batch can be seen in Figure 6a.
One can observe overall lowering of the effort required with each batch and a decrease in variation.
In Figure 6a, the subjects per batch were different. The variation of the results reflects the variety of
motion styles between subjects. To reflect the effort required by each model without the influence of
different subjects per batch, each batch’s model was also used to predict the data from the final batch’s
set of subjects as these were not used for the training of any of the models. These results are shown in
Figure 6b.

Figure 6. Boxplots of the effort required for manual correction of each batch of subjects using the
smart annotation approaches. (a) Shows the actual effort per batch where Batch 1 was using the
edge-detection method and Batches 2 to 7 were using the hHMM method, where the data from the
previous batches is always added to the training set of the subsequent model. (b) Shows the labeling
effort for each batch’s hHMM model when predicting the subject data from Batch 7.
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Again, there is a general lowering of the effort and so improving of the models. The minimal
decrease in effort per batch could be attributed to the effort of correcting errors in the labeling of
the precise start and stop of the tasks dominating the results or a non-optimal model for the some
of the activities. Alternatively, the training data is still too small in comparison to the inter-subject
variation to reflect a large improvement with the given training data. One possible limitation is that
some stance phases are similar to rest and the hHMM has a limited time dependency, so does not
necessarily account for a long sequence of activities.

A more fine-grained illustration of the results of the hHMM-based smart annotation method
per activity are given in the final column of Tables 6–8. Overall and for most walking, jogging, and
running activities the hHMM method reduced the labeling effort and F1-scores considerably compared
to the edge-detection method. For long bouts of steady-state walking, jogging, and running the effort
is under 1% and an F1-score of over 99%. However, for some cyclic activities the effort was lower
with the edge-detection method. For side-step, stairs and hopping this can be attributed to the motion
consisting of two different types of motion; upstairs and downstairs and which leg is the leading leg.
This could be improved by more fine-grained activity models. Furthermore, there were a variety of
ways of performing a task, for example some subjects continuously jumped while others stopped
between each individual jump, some subjects skipped similarly to running while others performed
more of a jumping motion.

Table 7. Mean of the F1 score per activity, over all subjects in a given batch.

Activity Overall F1 [%] F1 Using EdgeDet [%] F1 Using hHMM [%]
All 7 Batches Batch 1 Batch 7

All 89.5 ± 4.8 83.8 ± 4.7 93.0 ± 0.8

Walking (total) 90.5 ± 7.5 80.5 ± 5.7 95.8 ± 0.9
- circuit 94.1 ± 8.7 84.4 ± 9.9 99.6 ± 0.3
- 2 times 20 m 96.4 ± 4.7 92.5 ± 6.1 98.9 ± 0.7
- slalom 96.0 ± 5.3 91.9 ± 7.8 98.9 ± 1.0
- between activities 90.0 ± 9.5 76.7 ± 6.0 96.2 ± 1.5
- posters 79.3 ± 11.1 68.2 ± 10.9 88.0 ± 4.6
- between sitting 65.3 ± 10.7 71.9 ± 9.1 67.2 ± 13.2

Jogging (total) 93.7 ± 6.8 86.9 ± 7.8 97.5 ± 1.1
- circuit 93.2 ± 8.7 83.4 ± 9.7 99.4 ± 0.3
- 2 times 20 m 93.5 ± 6.1 90.6 ± 7.2 92.1 ± 2.7

Running (total) 90.2 ± 6.2 84.3 ± 6.8 92.4 ± 5.8
- circuit 92.7 ± 9.8 80.2 ± 9.4 99.4 ± 0.4
- 2 times 20 m 88.3 ± 7.7 86.4 ± 9.0 89.5 ± 6.8
- cones 86.0 ± 10.1 91.5 ± 5.3 78.4 ± 14.6

Stairs (total) 79.0 ± 7.7 84.3 ± 6.6 75.6 ± 7.6
- stepping 81.5 ± 10.6 88.1 ± 8.1 81.9 ± 9.2
- stairs 75.2 ± 10.1 78.0 ± 8.2 65.4 ± 11.9

Jumping (total) 92.9 ± 5.9 92.5 ± 5.2 95.9 ± 1.2
- jumping jacks 95.1 ± 9.6 94.8 ± 4.7 98.7 ± 0.9
- jumping on spot 92.4 ± 11.1 91.5 ± 9.4 98.2 ± 1.4
- double jump 89.0 ± 7.0 90.6 ± 6.2 87.9 ± 5.2

Hopping 77.4 ± 11.8 82.1 ± 9.6 72.9 ± 13.3
Skipping 87.2 ± 13.4 92.5 ± 6.2 88.2 ± 7.5
Side-step 76.8 ± 14.7 90.3 ± 5.2 79.7 ± 7.5
Run on spot 90.9 ± 7.4 90.9 ± 7.4 -
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Table 8. Mean of the miss rate (MR) and false discovery rates (FDR) per activity, over all subjects in a
given batch.

Activity Overall Overall MR [%] FDR [%] MR [%] FDR [%]
Activity MR [%] FDR [%] EdgeDet EdgeDet hHMM hHMM

All 7 batches All 7 batches Batch 1 Batch 1 Batch 7 Batch 7

All 10.4 ± 6.5 10.5 ± 3.6 19.1 ± 5.1 13.1 ± 4.6 0.6 ± 6.4 7.6 ± 1.2

Walking (total) 9.3 ± 9.5 9.6 ± 5.7 22.6 ± 6.1 16.1 ± 5.8 0.8 ± 3.3 5.1 ± 1.4
- circuit 6.4 ± 9.1 5.4 ± 8.3 17.1 ± 9.9 14.1 ± 10.0 0.5 ± 0.5 0.3 ± 0.2
- 2 times 20 m 3.9 ± 5.7 3.3 ± 3.9 9.0 ± 7.7 5.9 ± 4.7 0.5 ± 1.2 1.0 ± 1.2
- slalom 4.1 ± 5.7 3.9 ± 5.0 9.1 ± 8.2 7.0 ± 7.5 1.0 ± 1.1 1.1 ± 2.2
- between activities 9.6 ± 11.1 10.2 ± 8.2 25.4 ± 6.6 20.9 ± 6.3 1.4 ± 3.2 4.3 ± 1.7
- posters 22.5 ± 16.1 16.2 ± 9.2 43.1 ± 12.0 12.9 ± 8.7 5.3 ± 13.5 10.2 ± 5.7
- between sitting 28.9 ± 11.9 34.1 ± 21.6 40.8 ± 10.3 6.9 ± 8.2 8.6 ± 20.7 40.0 ± 17.6

Jogging (total) 6.9 ± 7.6 5.7 ± 6.0 14.9 ± 8.8 11.0 ± 7.4 1.0 ± 3.0 2.0 ± 1.1
- circuit 7.5 ± 9.5 6.0 ± 8.2 18.7 ± 9.8 14.3 ± 10.0 0.4 ± 0.9 0.3 ± 0.3
- 2 times 20 m 6.9 ± 7.1 6.0 ± 5.4 11.0 ± 9.1 7.4 ± 6.1 2.6 ± 8.9 7.0 ± 2.9

Running (total) 11.1 ± 7.3 8.4 ± 5.3 18.3 ± 7.4 12.8 ± 6.7 6.4 ± 8.3 6.8 ± 5.2
- circuit 8.5 ± 11.1 5.9 ± 8.5 23.1 ± 10.0 16.0 ± 9.3 0.6 ± 1.1 0.1 ± 0.3
2 times 20 m 13.1 ± 9.1 10.1 ± 6.7 15.9 ± 10.7 10.9 ± 8.4 8.7 ± 12.2 8.6 ± 5.0
- cones 14.7 ± 11.8 13.1 ± 8.7 9.3 ± 6.4 7.5 ± 5.6 15.1 ± 21.6 21.7 ± 14.1

Stairs (total) 21.2 ± 7.6 20.3 ± 9.5 20.2 ± 8.5 10.2 ± 6.0 8.7 ± 23.3 25.5 ± 6.6
- stepping 19.0 ± 10.4 17.8 ± 11.5 14.9 ± 9.8 8.4 ± 7.2 9.7 ± 17.6 18.5 ± 8.8
- stairs 24.5 ± 11.3 24.2 ± 12.1 28.1 ± 10.7 13.7 ± 8.5 13.4 ± 32.5 36.5 ± 10.7

Jumping (total) 7.2 ± 7.4 6.7 ± 5.2 9.2 ± 6.1 5.6 ± 4.8 1.1 ± 3.9 4.2 ± 1.5
- jumping jacks 5.7 ± 11.9 3.4 ± 4.9 7.3 ± 6.7 2.9 ± 3.1 1.1 ± 1.2 1.4 ± 0.9
- jumping on spot 6.9 ± 11.0 7.9 ± 11.7 10.0 ± 10.7 6.5 ± 8.9 1.4 ± 1.0 2.6 ± 2.3
- double jump 9.7 ± 6.7 12.1 ± 8.3 9.8 ± 6.4 8.9 ± 7.0 5.1 ± 12.2 11.9 ± 5.5

Hopping 18.5 ± 12.2 25.2 ± 14.1 19.4 ± 12.9 15.1 ± 9.7 13.6 ± 24.1 29.5 ± 14.2
Skipping 11.0 ± 11.8 14.1 ± 15.2 7.6 ± 7.7 7.0 ± 6.8 7.0 ± 11.1 12.5 ± 8.0
Side-step 20.7 ± 14.4 25.1 ± 15.5 9.1 ± 6.9 10.0 ± 5.3 8.5 ± 19.3 21.0 ± 7.2
Run on spot 9.4 ± 7.5 8.6 ± 7.7 9.4 ± 7.5 8.6 ± 7.7 - -

A small study was also conducted to understand the time required for labeling. The relabeling
of 4 subjects was timed, where the labeler was familiar with the tools and signals. The labeling of
each subject took on average 39 min ± 8 min, where the average effort was 19.8% ± 3.9%. These
numbers are dependent on the familiarity of the labeler with the signals, the speed of the computer for
video and GUI rendering and the number of times new motions were found and thus a more detailed
inspection required.

5.2.3. Cycle Detection

The results of both the PD and LCE methods were compared to the manually corrected reference.
The PD method required 2.9% ± 3.9% added or deleted labels while the LCE method required an
almost identical level of effort at 2.9% ± 2.8%. In both cases the cycle numbers were overestimated. The
disadvantage of both methods is the need to empirically set parameters as well as a need to separately
detect activity.

5.3. Discussion of Pipeline

While this dataset has a wide variety of cyclic activities performed at self-selected paces, it only
represents participants of up to 43 years old. However, there are 80 subjects and a wide range of
different interpretations of each activity. We believe that this wide variety in activity style and bout
length will present challenges for the existing activity recognition and cycle detection algorithms and
enable a deeper understanding of the limitations of such algorithms.
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The edge-detection method was found to be superior to the hHMM one for activities where there
were many different interpretations such as skipping, or where the activity had more than one part
such as stairs and stepping where up and down have distinctly different motion signals. However,
this could be improved by adding more examples of the problematic activities or more fine-grained
models for them.

Activities where the motions were more distinctive and the pressure edges were sharp, such as
jumping, both methods perform similarly, although there is an increase in the F1-score. The hHMM
method outperformed the edge-detection one for walking, jogging, and running activities, especially
where longer steady-state sections existed, with respect to effort while with respect to the F1-score, the
hHMM outperformed in all activities except stairs, hopping, skipping, and side-step.

The edge-detection and the cycle segmentation methods all additionally needed an energy
threshold to distinguish between motion and rest. The generalizability of these parameters is limited as
seen by the wide variance of required effort, see Batch 1 in Figure 6a. Furthermore, the edge-detection
method requires clear edges within the pressure data and minimal data loss, which was not the
case for the data collected in Germany. The hHMM-based method has the capacity to detect several
different activities and is useful for detecting rest and activity without the need for manual selection of
parameters. However, it cannot be used in isolation and needs some training data to start the initial
training iteration. The high effort of the hHMM seen for activities such as hopping and stairs could be
reduced with more data and optimized features, which would also potentially allow an unrestricted
prediction reducing the effort further. Alternatively, the effort could be further lowered by including
personalized models.

For cycle only detection, the PD and LCE methods were equally useful. However, for less clear
activities than cycling, LCE should be superior due to its reliance of cyclicity and not only on peaks,
although it would still need a method for rest and activity classification.

The combination of these methods reduced the overall effort of labeling the complete dataset to
16.3%, with a miss rate of 10.4% and a false detection rate of 10.5% and the labeling of new data using
the current model can be expected to require only 14.1% effort overall and an F1-score of 93.0%. For
datasets dominated by different ranges and locations of walking or jogging bouts the labeling effort
would be under 10% with an overall F1-score of over 95%. In future applications a semi-supervised
or real time approach for task labeling could be implemented. Currently the pipeline used labelers
familiar with IMU-based motion data; however, the authors believe that because over 80% of the labels
suggested were correct, a labeler unfamiliar with such data would have a sharp learning curve.

6. Conclusions and Outlook

Medical applications of cyclic activity monitoring such as step-counting and gait analysis are
currently limited by a lack of realistic and labeled datasets. We provided a smart annotation pipeline
which reduces the percentage of labels which need manual adjustment to 14%, which has enabled the
production of a public dataset with over 150,000 labeled cycles, each with 2 phases from 80 participants.
The dataset is diverse with 12 activities, 10 of which are cyclic; it includes transitions, ranges of bouts,
and non-straight walking. For datasets such as home monitoring, where mostly walking data is
expected, the labeling effort of new datasets can be expected to be as low as 8%. We believe that
the smart annotation as well as the dataset will be instrumental in benchmarking other semi- and
unsupervised learning algorithms as well as simultaneous segmentation and classification algorithms.

In this paper, we have proposed the use of an iterative training technique for a hHMM. The
hierarchy of this model now includes cycle phases for each of the 10 cyclic activities. This method
enabled the dataset made public in [16] to be increased 4 times with a final miss rate of 0.6% and false
discovery rate of 7.6%. The complete pipeline achieves an F1-score of 89.5% with an expected accuracy
for new data of F1 score 93.0%. With this pipeline existing datasets will be able to be increased with far
less labeling effort and the current dataset and pipeline can be used as a benchmarking tool for further
smart annotation pipelines focusing on cycle analysis in human motion.
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The following abbreviations are used in this manuscript:

hHMM Hierarchical hidden Markov model
IMU Inertial measurement unit
Acc Accelerometer
AX Accelerometer axial plane
Gyr Gyroscope
GZ Gyroscope sagittal plane
Mag Magnetometer
FSR Force sensitive resistor
Mocap Motion capture
PD Peak detection
LCE local cyclicity estimation
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