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Abstract: In civil engineering quasi-distributed optical fiber sensors are used for reinforced
concrete monitoring, precast concrete monitoring, temperature monitoring, strain monitoring and
temperature/strain monitoring. These quasi-distributed sensors necessarily apply some multiplexing
technique. However, on many occasions, two or more multiplexing techniques are combined to
increase the number of local sensors and then the cost of each sensing point is reduced. In this work,
a signal analysis and a new signal demodulation algorithm are reported for a quasi-distributed optic
fiber sensor system based on Frequency Division Multiplexing/Wavelength Division Multiplexing
(FDM/WDM) and low-precision Fabry-Pérot interferometers. The mathematical analysis and the new
algorithm optimize its design, its implementation, improve its functionality and reduce the cost per
sensing point. The analysis was corroborated by simulating a quasi-distributed sensor in operation.
Theoretical analysis and numerical simulation are in concordance. The optimization considers
multiplexing techniques, signal demodulation, physical parameters, system noise, instrumentation,
and detection technique. Based on our analysis and previous results reported, the optical sensing
system can have more than 4000 local sensors and it has practical applications in civil engineering.

Keywords: quasi-distributed optical fiber sensor; wavelength/frequency division multiplexing;
Fabry-Pérot sensors; theoretical analysis; sensor simulation
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1. Introduction

Many practical applications for fiber optic sensors require measuring the same parameter in
different spatial locations. For such applications, quasi-distributed sensors can be applied. This sensor
type has received significant research attention and it necessarily applies some multiplexing technique.
Several basic multiplexing techniques such as time-division multiplexing, wavelength-, coherence-,
frequency-, spatial-, and code-division multiplexing have been proposed, demonstrated and applied
over the last 10 years [1–10]. However, the multiplexing capacities of many of these techniques are
limited to only a few sensors due to various factors including cross-talk, limited power budget and
wavelength bandwidth. To increase the multiplexing capacity, several hybrid systems using two or
more basic techniques have been developed [11–15]. These hybrid systems offer us some benefits such
as cost savings per sensing point and enhancement of the competitiveness of fiber-optic sensors in
their rivalry with conventional sensor technologies.

In reference [12], a quasi-distributed sensor based on wavelength-frequency division multiplexing
was experimentally proposed. The sensing system had two wavelength channels and each wavelength
channel had four frequency channels. Thus, the quasi-distributed sensor had eight Fabry-Pérot
interferometers where each interferometer acted as a local sensor. Later, the same sensing system was
applied for temperature measurement. In this case, the optical sensing system had three wavelength
channels and each channel had three frequency channels. There were then nine Fabry-Pérot fiber
sensors along the single array of the optical fiber. The authors reported only a resolution of 0.125 ◦C
and a sensitivity of 10 pm

◦C [13]. However, each Fabry-Pérot sensor has its own resolution and its own
sensitivity since each sensor has its own physical parameters as reported in references [16,17].

The optical system reported in [12,13], can be theoretically analyzed after stating three principal
problems: (a) a sensing system based on frequency division multiplexing, (b) a sensing system based
on wavelength division multiplexing and (c) a sensing system based on frequency-wavelength division
multiplexing. Problems (a) and (b) were reported in [16,17]. Both theoretical analyses considered the
capacity of the multiplexing technique, the instrumentation, the system noise, the signal demodulation,
the detection technique and the local sensor properties. Both theoretical analyses had their design and
functionality optimized, and both were corroborated by simulating the sensing system in operation.
However, to our knowledge, there are no analytic analyses of the third problem (c), so the limitations of
quasi-distributed sensors are not known. In this work, the third problem (c) is considered and therefore
a quasi-distributed fiber sensor based on frequency-wavelength (FDM/WDM) division multiplexing
is theoretically analyzed and numerically simulated. This analysis optimizes its design and its
implementation. The analysis considers the capacity of multiplexing technique, local sensor properties,
signal demodulation, detection technique, instrumentation and noise. To verify the theoretical analysis
and a new demodulation algorithm, we performed a numerical simulation of a quasi-distributed
sensor which has four wavelength channels and each channel has three frequency channels. Thus, the
simulated quasi-distributed sensor has twelve Fabry-Pérot sensors. The local sensors are low-precision
Fabry-Pérot interferometers which are formed by two identical Bragg gratings. All Bragg gratings
must have low reflectivity (~1%) and the same length. From the numerical results, each Fabry-Pérot
sensor has two resolutions due to the Fourier Domain Phase Analysis algorithm [18–20] as reported
in [16,17], confirming the optimal functionality of our optical sensing system under study. Theory and
simulation results are in concordance.

2. Optical System and its Reflection Spectrum

Figure 1 shows the optical system under study. The system consists of a light source, a 50/50
optical circulator, an optical spectrum analyzer (OSA spectrometer), a personal computer used for
signal processing and the quasi-distributed sensor. Particularly, the quasi-distributed sensor consists
of a serial arrangement of local sensors where each sensor is an interferometer formed by two
identical Bragg gratings imprinted in a single-mode fiber. All Bragg gratings have low reflectivity,
≈1% and their lengths are similar. Each interferometric sensor acts as a low-precision Fabry-Perot
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interferometer [13,16,17]. In the quasi-distributed sensor, Wavelength Division Multiplexing (WDM)
and Frequency Division Multiplexing (FDM) techniques were combined. The spatial resolution LSR
eliminates ghost interferometers.
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Figure 1. The quasi-distributed sensor based on Frequency Division Multiplexing/Wavelength Division
Multiplexing (FDM/WDM) techniques and low-finesse Fabry-Perot interferometers.

If the quasi-distributed fiber optic sensor does not have external perturbation due to temperature
or strain, the reflection spectrum detected by the OSA spectrometer can be expressed as:

RT(λ) =

R11(λ) + R12(λ) + . . .+ R1M(λ)+
R21(λ) + R22(λ) + . . .+ R2M(λ)+
R31(λ) + R32(λ) + . . .+ R3M(λ)+

...
RK1(λ) + RK2(λ) + . . .+ RKM(λ)

(1)

or:

RT(λ) =
K∑

k=1

M∑
m=1

Rkm(λ) (2)

where RT(λ) is the total reflection spectrum, Rkm(λ)(k = 1, 2, . . . , K y m = 1, 2, . . . , M) are the
interference patterns produced by the Fabry-Pérot sensors. The light spectrum RT(λ) consists
of a series of wavelength channels and each wavelength channel contains a series of frequency channels.
Therefore, based on our previous work [16,17], the maximum number of interference patterns is:

K×M =
λw

∆λop
×

 λ2
BGk

8nLBG∆λ

 = λmax − λmin
∆λop

×

 λ2
BGk

8nLBG∆λ

 (3)

K×M indicates the maximum number of local optical sensors and the parameters are: ∆λop is the
dynamic range for all Fabry-Pérot sensors, λBGk is the k-th Bragg wavelength (wavelength channel),
n is the effective refraction index of the core, LBG is the length of the gratings, ∆λ is the spectrometer
resolution and λw = λmax − λmin is the working interval: λmax is the maximum wavelength and λmin is
the minimum wavelength. In this sensing system, all interference patterns have the same form:

Rkm(λ) = 2akm

(πn1LBG
λBGk

)2

sinc2

2n1LBG(λ− λBGk)

λ2
BGk

× 1 + cos

4πnLFPkm(λ− λBGk)

λ2
BGk

 (4)
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The physical parameters are: anm, the amplitude factors, π the constant 3.1415, n1 the amplitude of
the effective refractive index modulation of the gratings, λ is the wavelength and LFPkm is km–th cavity
length. Analysis of the interference pattern (4); each interference pattern consists of two functions:
enveloping and modulating. The enveloped is a sinc function which is the reflection spectrum of the
gratings, the width ∆BGk is the spectral distance between its +1 and −1 zeros:

∆BGk =
λ2

BGk
n1LBG

(5)

The modulating term of the cosine function whose frequency νFPkm is:

νFPkm =
2nLFPkm

λ2
BGk

(6)

The cosine function was produced due to the interference between two beams generated from
the interferometry sensor. On the other hand, if the quasi-distributed sensor experiences an external
perturbation due to temperature or strain, the physical variable affects the Fabry-Pérot sensor [18].
In contrast, the interference patterns have a small shift which is proportional to the magnitude of
the physical parameter. In this case, the optical spectrum detected by the OSA spectrometer can be
expressed as:

RT(λ, δλ) =

R11(λ− δλ11) + R12(λ− δλ12) + . . .+ R1M(λ− δλ1M)+

R21(λ− δλ21) + R22(λ− δλ22) + . . .+ R2M(λ− δλ2M)+

R31(λ− δλ31) + R32(λ− δλ32) + . . .+ R3M(λ− δλ3M)+
...

RN1(λ− δλN1) + RN2(λ− δλN2) + . . .+ RNM(λ− δλKM)

(7)

or:

RT(λ, δλ) =
K∑

k=1

M∑
m=1

Rnm(λ− δλkm) (8)

RT(λ, δλ) is the reflection spectrum due to the external disturbances and δλkm is the km-th Bragg
wavelength shift due to the measured change.

3. Frequency Spectrums

To calculate all frequency components of our optical spectrum RT(λ), we apply the
Fourier transform:

RT(ν) =

∞∫
−∞

RT(λ)e−i2πνλdλ (9)

RT(ν) is the frequency spectrum for the optical signal detected by OSA spectrometer if and only if the
quasi-distributed fiber optic sensor does not have external perturbations. Substituting Equation (2)
and Equation (4) into Equation (9), the frequency spectrum can be calculated through:

RT(ν) =
∞∫
−∞

K∑
k=1

M∑
m=1

2akm

[(
πn1LBG
λBGk

)2
sinc2

(
2n1LBG(λ−λBGk)

λ2
BGk

)]
×[

1 + cos
(

4πnLFPkm(λ−λBGk)

λ2
BGk

)]
e−i2πνλdλ

(10)
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invoking the Fourier transform properties, convolution properties, series properties and using the
identities: cos2(ϕ) = 1

2 [1 + cos(2ϕ)] and cos(ϕ) = eiϕ+e−iϕ

2 , then solving the frequency spectrum
RT(ν) is:

RT(ν) =
K∑

k=−K

M∑
m=−M

Rkm(ν) =
K∑

k=−K

M∑
m=−M

ckmtri
(
ν− νFPkm
νBGk

)
(11)

RT(ν) is two series of triangle functions and the function tri(x) has the following definition tri(x) =1− |x| |x| ≤ 1

0 otherwise
, ckm are amplitude factors, νFPkm is the km-th central frequency which was defined

by Equation (6) and νBGk is the bandwidth:

νBGk =
4n1LBG

λ2
BGk

(12)

From Equation (11), the spectrum RT(ν) consists of 2(K×M) + 1 triangle functions (frequency
components) and their central frequencies are between −νFPkm and νFPkm. The component νFP00 = 0
contains information from all Fabry-Perot sensors while the lateral components contain information from
each Fabry-Perot sensor. Positive semi-plane and negative semi-plane contain the same information.
If the quasi-distributed sensor has external perturbation, the perturbed frequency spectrum can be
calculated through:

RT(ν, δλ) =

∞∫
−∞

RT(λ, δλ)e−i2πνλdλ (13)

Substituting Equation (8) into Equation (13):

RT(ν, δλ) =

∞∫
−∞

K∑
k=1

M∑
m=1

Rnm(λ− δλkm)e−i2πνλdλ (14)

invoking the shift property
∫
∞

−∞
R(λ− δλ)e−i2πνλdλ = R(λ)e−i2πνδλ and solving the transformation,

the perturbed frequency spectrum will be:

RT(ν, δλ) =
K∑

k=−K

M∑
m=−M

Rkm(ν)e−i2πνδλkm (15)

Analyzing the Equation (15), the spectrum RT(ν, δλ) is the product of RT(ν) and two sets of
phases. We notice that the phases contain the information about the perturbations and then the Fourier
Domain Phase Analysis (FDPA) algorithm can be applied for the signal demodulation [18–20].

4. Sensor Conditions

To obtain the optimal signal demodulation is important to know the sensor limits. Therefore,
we mention some requirements for the optical sensing system presented in Figure 1 [16–18]:

First condition: The cavity length LFP should be in the interval of:

2LBG ≤ LFP ≤
λ2

BGk
4n∆λ

(16)

This condition ensures that the OSA spectrometer is able to detect the optical signal RT(λ) and
there is not overlapping between the components νFP11 and νFP00.

Second condition: The Bragg gratings should have approximately the same length and their
reflectivity is ≈ 1%. Thus, the cross-talk noise is eliminated.
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Third Condition: The spatial resolution should be given by

LFP >
λ2

BGk
4n∆λ

(17)

This condition eliminates ghost interferometers.
Fourth condition: The minimum distance between centers of gratings for the shortest interferometers

is given by:
LBGd = 2LBG (18)

This condition eliminates overlapping between triangle functions.
Fifth condition: The number of samples is given by:

N =
λw

δλ
=

4nλw(2LBG + LFPKM)

λ2
BG1

(19)

where λBG1 is the first Bragg wavelength (first wavelength channel) and LFPKM is the maximum cavity
length (last frequency channel and last wavelength channel). The relation (19) satisfices the Nyquist
theorem, considers the detection technique, the instrumentation and the sensor parameters.

Sixth condition: The maximum number of Fabry-Pérot sensors is given by Equation (3). This Equation
considers both multiplexing techniques (WDM and FDM), sensor parameters, optical source, optical
instrumentation and signal demodulation. If the six conditions are satisfied, then the sensing system
would have the optimal operation.

5. Signal Demodulation

Figure 2 shows, schematically, the signal demodulation procedure for the sensing system presented
in Figure 1. The signal demodulation applies the Fourier Domain Phases Analysis (FDPA) algorithm
and two banks of filters. The FDPA algorithm was described and also was applied in references [16–20].
The first bank of K filters is defined as [16]:

F(λ) =
K∑

k=1

rect
(
λ− λBGk

∆λop

)
(20)

The bank is a series of rect(·) functions in the wavelength domain where the rect function is

defined as rect(λ) =

1 |λ| ≤
∆λop

2

0 |λ| >
∆λop

2

, ∆λop is the dynamic range and λBGk is the wavelength channel.

The second bank of M filters is given by [17]:

F(ν) =
M∑

m=1

rect
(
ν− νFPkm
νBGk

)
(21)

The bank is a series of rect(·) functions in frequency domain and each rect function definition is

by rect(ν) =

1 |ν| ≤
νBGk

2

0 |ν| >
νBGk

2

, νBGk is the bandwidth and νFPkm is the centering frequency.

From Figure 2, the signal demodulation algorithm consists of two phases: calibration and
measurement. In the calibration phase, the references are estimated and five steps are required: (a) the
optical signal RT(λ) is acquired with the OSA spectrometer; (b) using the bank of K filters is filtered a
wavelength channel, Rm(λ) = F(λ)RT(λ); (c) the frequency spectrum Rm(ν) is estimated through:

Rm(ν) =

∞∫
−∞

Rm(λ)e−i2πνλdλ (22)
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Figure 2. Signal demodulation procedure represented schematically where the symbol = indicates the
Fourier transform, conj indicates the complex conjugate and k is the samples.

Rm(ν) is a series of triangle functions [13,16]; (d) a frequency channel (a triangle function) R̃m(ν)

is filtered using R̃m(ν) = F(ν)Rm(ν) and finally (e) its complex conjugate is estimated R̃∗m(ν) where the
symbol * indicates the complex conjugate. R̃∗m(ν) is the reference for one Fabry-Pérot sensor and then
steps a-d are essential for each interferometer sensor.

In the measurement phase, eight steps are required: (a) the optical spectrum RT(λ, δλ) is acquired
using the OSA spectrometer; (b) applying the bank of K filters is filtered the signal Rm(λ, δλ) =

F(λ)RT(λ, δλ); (c) the frequency spectrum Rm(ν, δλ) is determined by:

Rm(ν, δλ) =

∞∫
−∞

Rm(λ, δλ)e−i2πνλdλ (23)
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Rm(ν, δλ) is a series of triangle functions; (d) a frequency channel (a triangle function) R̃m(ν, δλ) is
filtered developing the operation R̃m(ν, δλ) = F(ν)Rm(ν, δλ); (e) the relative phase ϕm,rel is calculated
using both spectra R̃∗m(ν) and R̃m(ν, δλ); (f) the ambiguity 2πP is eliminated through a linear regression
and then the absolute phase ϕm,abs is calculated; (g) an adaptive filter is applied, and (h) the Bragg
wavelength shift δλm is calculated.

To minimize the noise influence and provide the best estimate, the absolute phase is multiplied by
a set of coefficients (step g). Those coefficients act as adaptive filters [20].

6. Numerical Results and Discussion

6.1. Parameters

To verify our signal analysis and our signal demodulation algorithm, a quasi-distributed fiber optic
sensor based on the wavelength/frequency multiplexing techniques and low-precision Fabry-Pérot
interferometers was numerically simulated. The simulated quasi-distributed sensor can be seen in
Figure 1. The sensing system consists of four wavelength channels and each wavelength channel has
three frequency channels, therefore, the sensing system has twelve Fabry-Pérot sensors. Their physical
parameters are listed in Table 1.

Table 1. Simulated quasi-distributed optic fiber sensor parameters.

Wavelength Channel λBGk Frequency Channel νFPkm Fabry-Pérot Sensors Parameters
Channel k Value [nm] Channel m Value [Cycles/nm]

1 1536

1 νFP11 = 9.90
n = 1.46

LFP11 = 8 mm
LBG = 0.5 mm

2 νFP12 = 19.80
n = 1.46

LFP12 = 16 mm
LBG = 0.5 mm

3 νFP13 = 39.60
n = 1.46

LFP13 = 32 mm
LBG = 0.5 mm

2 1542

1 νFP21 = 6.14
n = 1.46

LFP21 = 5 mm
LBG = 0.5 mm

2 νFP22 = 14.73
n = 1.46

LFP22 = 12 mm
LBG = 0.5 mm

3 νFP23 = 29.47
n = 1.46

LFP23 = 24 mm
LBG = 0.5 mm

3 1548

1 νFP31 = 8.52
n = 1.46

LFP31 = 7mm
LBG = 0.5mm

2 νFP32 = 20.71
n = 1.46

LFP32 = 17 mm
LBG = 0.5 mm

3 νFP33 = 32.90
n = 1.46

LFP33 = 27 mm
LBG= =.5 mm

4 1554

1 νFP41 = 14.50
n = 1.46

LFP41 = 12 mm
LBG = 0.5 mm

2 νFP42 = 26.60
n = 1.46

LFP42 = 22mm
LBG = 0.5 mm

3 νFP43 = 45.94
n = 1.46

LFP43 = 38 mm
LBG = 0.5 mm

Discrete spectra were simulated applying these parameters. Noise was simulated by adding
pseudorandom numbers with Gaussian distribution to those samples, the interval was from

√
SNR =
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100 to
√

SNR = 104. Typical Bragg gratings with rectangular profiles, a refractive index modulation
were used. The number of samples was 4096. Given that, the Fast Fourier transform algorithm was
considered. The spatial resolution was LSR = 50 cm. For each Fabry-Pérot sensor, the reference
spectrum and 50 measurements were simulated. These measurements were within the interval in
Table 2. In the simulation a GHIA computer with 8 GB RAM memory and CPU frequency 3.6 GHz
was used.

Table 2. Applied displacement to each Fabry-Pérot sensor in the numerical simulation.

Wavelength Channel λBGk Frequency Channel νFPkm Displacement Applied to Each
Fabry-Pérot Sensor, δλkmFabry-Pérot Sensor Skm Value [nm] Channel m (Value)

S11
1536

1 (9.90) 0–0.2
S12 2 (19.80) 0–0.4
S13 3 (39.60) 0–0.8

S21
1542

1 (6.14) 0–0.32
S22 2 (14.73) 0–0.24
S23 3 (29.47) 0–0.85

S31
1548

1 (8.52) 0–0.57
S32 2 (20.71) 0–0.12
S33 3 (32.90) 0–0.28

S41
1554

1 (14.50) 0–0.7
S42 2 (26.60) 0–0.23
S43 3 (45.94) 0–0.77

Note: Skm indicates the km–th Fabry-Perot sensor of the quasi-distributed sensor.

6.2. Reflection Spectrum

Applying the parameters presented in Section 6.1, the optical signal RT(λ) was computed.
The normalized spectra can be observed in Figure 3. The composite reflection spectrum of a multi-point
Fabry-Perot sensor is a superposition of reflection spectra of all local sensors. From Figure 3,
the first wavelength channel (λBG1 = 1536 nm) has its bandwidth of ∆BG1 ≈ 3.2 nm, the second
wavelength channel (λBG2 = 1542 nm) has its bandwidth of ∆BG2 ≈ 3.24 nm, the third wavelength
channel (λBG3 = 1548 nm) has its bandwidth of ∆BG2 ≈ 3.3 nm and the fourth wavelength channel
(λBG4 = 1554 nm) has its bandwidth of ∆BG4 ≈ 3.308 nm. Each wavelength channel has its own
value and they have a very small variation between them. The working interval is λw = 24 nm:
λmax = 1556 nm and λmin = 1532 nm.
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6.3. Frequency Spectrum

Figure 4 shows the positive components for our frequency spectrum RT(ν). Analyzing Figure 4,
the quasi-distributed fiber optic sensor has twelve Fabry-Pérot sensors and each local sensor produces
one triangle function (frequency component, peaks). The red color corresponds to the frequency
channels, νFP11 − νFP13. Three peaks have the same bandwidth νBG1 = 1.23 and their central frequencies
are νFP11 = 9.90, νFP12 = 19.80, and νFP13 = 39.60. The blue color corresponds to the frequency channels
νFP21 − νFP23. Again, three peaks have the same bandwidth νBG2 = 1.22 and their central frequencies are
νFP21 = 6.14, νFP22 = 14.73 and νFP23 = 29.47. The black color corresponds to the channels νFP31 − νFP33.
Now, the bandwidth is νBG3 = 1.218 and their central frequencies are νFP31 = 8.52, νFP32 = 20.71 and
νFP33 = 32.90. Finally, the cyan color corresponds to the channels νFP41 − νFP43. The bandwidth is
νBG4 = 1.209 and the central frequencies are νFP41 = 14.50, νFP42 = 26.60 and νFP43 = 45.94, respectively.
The bandwidths νBG1 . . . νBG4 have small variations because each wavelength channel has its own
Bragg wavelength, see Equation (12). Each interference pattern has its own frequency because each
Fabry-Pérot sensor has its own cavity length and wavelength channel (see Equation (6)), see Table 1
and Figure 4.

Here, each frequency channel contains information from a specific Fabry-Pérot sensor and then
the demodulation algorithm described in Section 5 can be applied.

Sensors 2019, 19, x 10 of 15 

 

6.3. Frequency Spectrum 

Figure 4 shows the positive components for our frequency spectrum 𝑅 𝜈 . Analyzing Figure 4, 
the quasi-distributed fiber optic sensor has twelve Fabry-Pérot sensors and each local sensor 
produces one triangle function (frequency component, peaks). The red color corresponds to the 
frequency channels,𝜈 − 𝜈 . Three peaks have the same bandwidth 𝜈 = 1.23  and their 
central frequencies are 𝜈 = 9.90, 𝜈 = 19.80 , and 𝜈 = 39.60. The blue color corresponds 
to the frequency channels 𝜈 − 𝜈  . Again, three peaks have the same bandwidth 𝜈 = 1.22 
and their central frequencies are 𝜈 = 6.14, 𝜈 = 14.73 and 𝜈 = 29.47. The black color 
corresponds to the channels 𝜈 − 𝜈  . Now, the bandwidth is 𝜈 = 1.218 and their central 
frequencies are 𝜈 = 8.52, 𝜈 = 20.71 and 𝜈 = 32.90. Finally, the cyan color corresponds 
to the channels 𝜈 − 𝜈 . The bandwidth is 𝜈 = 1.209  and the central frequencies are 𝜈 = 14.50 , 𝜈 = 26.60  and 𝜈 = 45.94 , respectively. The bandwidths 𝜈 … 𝜈  have 
small variations because each wavelength channel has its own Bragg wavelength, see Equation (12). 
Each interference pattern has its own frequency because each Fabry-Pérot sensor has its own cavity 
length and wavelength channel (see Equation 6), see Table 1 and Figure 4. 

Here, each frequency channel contains information from a specific Fabry-Pérot sensor and then 
the demodulation algorithm described in Section 5 can be applied. 

 
Figure 4. Frequency channels generated by the quasi-distributed sensor.. 

6.4. Numerical Results 

Applying the demodulation algorithm described in Section 5 and using the parameters 
presented in Section 6.1, the quasi-distributed fiber optic sensor (Figure 1) was numerically 
simulated. Our numerical results are shown in Figure 5. We present the behavior of demodulation 
errors vs. signal-to-noise rate 𝑆𝑁𝑅 . If demodulation errors are called the “resolution” as in our 
previous work [16,17], then all low-precision Fabry-Pérot sensors have two resolutions. Both 
resolutions are possible because the signal demodulation (Figure 2) is based on the FDPA algorithm 
and this algorithm evaluates the Bragg wavelength shift twice. Observing Figure 5, each Fabry-Pérot 
sensor has its own high resolution; however each wavelength channel produces one low resolution 
because this resolution does not depend on the cavity length. Additionally, the transition from high 
resolution to low resolution was reported [16,17,19], again, our numerical results were presented. 
These results corroborate our signal analysis and our demodulation algorithm. 

[cycles/nm]
0 5 10 15 20 25 30 35 40 45 50

0

50

100

150

200

250

300

FP21
FP31

FP11

FP41

FP22

FP12

FP32

FP42

FP23
FP33

FP13

FP43

Frequency channels

Wavelength channel BG3=1548nm
Wavelength channel BG2=1542nm
Wavelength channel BG1=1536nm

Wavelength channel BG4=1554nm

Figure 4. Frequency channels generated by the quasi-distributed sensor.

6.4. Numerical Results

Applying the demodulation algorithm described in Section 5 and using the parameters presented in
Section 6.1, the quasi-distributed fiber optic sensor (Figure 1) was numerically simulated. Our numerical
results are shown in Figure 5. We present the behavior of demodulation errors vs. signal-to-noise rate
SNR

1
2 . If demodulation errors are called the “resolution” as in our previous work [16,17], then all

low-precision Fabry-Pérot sensors have two resolutions. Both resolutions are possible because the
signal demodulation (Figure 2) is based on the FDPA algorithm and this algorithm evaluates the Bragg
wavelength shift twice. Observing Figure 5, each Fabry-Pérot sensor has its own high resolution;
however each wavelength channel produces one low resolution because this resolution does not
depend on the cavity length. Additionally, the transition from high resolution to low resolution was
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reported [16,17,19], again, our numerical results were presented. These results corroborate our signal
analysis and our demodulation algorithm.Sensors 2019, 19, x 11 of 15 
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Figure 5. Numerical results obtained for the quasi-distributed fiber optic sensor.: (a) Wavelength channel
λBG1 = 1536 nm and frequency channels νFP11 = 9.90, νFP12 = 19.80, and νFP13 = 39.60; (b) Wavelength
channel λBG2 = 1542 nm and frequency channels νFP21 = 6.14, νFP22 = 14.73 and νFP23 = 29.47;
(c) Wavelength channel λBG3 = 1548 nm and frequency channels νFP31 = 8.52, νFP32 = 20.71 and
νFP33 = 32.90; (d) Wavelength channel λBG3 = 1554 nm and frequency channels νFP41 = 14.50,
νFP42 = 26.60 and νFP43 = 45.94.

For example: if the OSA spectrometer has ∆λ = 10 pm (a typical value), the broadband
source has λw = 100 nm and as ∆λop = λBG4 − λBG3 = 1554 nm − 1548 nm = 6 nm (see Figure 3),
the quasi-distributed sensor will have their limits as Table 3 illustrates.

Table 3. Quasi-distributed sensor limits
(
∆λ = 10 pm and λw = 100 nm

)
.

Parameter Value Equation

K 16 [wavelength channels] Equation (3)
M 40 [Frequency channels] Equation (3)

K ×M 640 [Fabry-Pérot sensors] Equation (3)

2LBG ≤ LFP ≤
λ2

BG4
4n∆λ 1 ≤ LFP ≤

λ2
BG4

4n∆λ [mm] Equation (16)

LFP >
λ2

BG4
4n∆λ LFP >

λ2
BG4

4n∆λ [mm] Equation (17)
LBGd = 2LBG 1 [mm] Equation (18)
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From Tables 1–3, the simulated quasi-distributed sensor satisfies the instrumentation and the
signal requirements. Observing Tables 1 and 3 and Figures 3–5, the numerical results are in concordance
with the theory. Thus, we confirm our theoretical analysis and our new demodulation algorithm.
The numerical results are shown in Figure 5. The theoretical analysis and our numerical results are
in concordance with experimental results reported by Shlyagin et al. [12] and Della-Tamin et al. [13].
Then, WDM/FDM techniques can be implemented on low-precision Fabry-Pérot sensors and our
new algorithm demodulates its optical signal. The presented study optimizes significantly the
quasi-distributed sensor implementation, its design and the sensibility of all local sensors.

6.5. Discussion

Based on our signal analysis and our numerical results, the quasi-distributed sensor would be built
through WDM/FDM techniques and low-finesse Fabry-Pérot interferometers. The theoretical analysis
optimizes the quasi-distributed sensor presented in Figure 1 which was experimentally proposed
in [12,13]. The optimization considers the multiplexing technique, the optical instrumentation,
the detection technique, the local sensor properties, the noise system, the spatial resolution and the
signal demodulation. Observing Figure 5, the quasi-distributed sensor has good functionality because
each Fabry-Pérot sensor is performing very well and our new algorithm can demodulate the optical
signal. The Fabry-Pérot sensors have high resolution when the signal-to-noise rate (SNR) is big, but
the same sensors have low resolution if and only if the signal-to-noise rate is low (the optical system
has many noise). The threshold value between both resolutions (high and low resolutions) can be
determined by:

σenvkm =
λ2

BGk
12nLFPkm

(24)

where σenvkm is the low resolution for the km–th Fabry-Pérot sensor. This value depends of the Bragg
wavelength and the cavity length. Applying the parameters presented in Table 1, the threshold values
were calculated as Table 4 shows.

Table 4. Threshold value calculated for each Fabry-Pérot sensor.

Local Sensors, Skm Parameter σenvkm Local Sensors, Skm Parameter σenvkm

S11 σenv11 = 0.016 S31 σenv31 = 0.019
S12 σenv12 = 0.0084 S32 σenv32 = 0.0079
S13 σenv13 = 0.0042 S33 σenv33 = 0.005
S21 σenv21 = 0.027 S41 σenv41 = 0.011
S22 σenv22 = 0.011 S42 σenv42 = 0.006
S23 σenv23 = 0.0056 S43 σenv43 = 0.003

Skm km-th Fabry-Pérot sensor (k = 1, 2, 3, 4 and m = 1, 2, 3).

From Table 4, each Fabry-Pérot sensor has its own threshold value. Combining the multiplexing
techniques (WDM and FDM), the number of local sensors was increased for the optical sensing system
presented in Figure 1. For example: if the frequency division multiplexing has forty frequency channels
(M = 40) [16] and if the wavelength division multiplexing has 100 wavelength channels (K = 100) [21,22],
then our sensing system would have MXK = 40 × 100 = 4000 local sensors. This confirms that the
quasi-distributed sensor has high capacity to measure some physical parameters along the optic fiber.
Additionally, applying the conditions 1–6 described in Section 4, ghost interferometers, cross-talk noise
and overlapping between two frequency components are eliminated, proving that the sensing system
will have optimal functionality.

Figure 1 showed a serial array of interferometer sensors and the topology permits the measurements
along of a cable. For the measurement over any surface, a serial/parallel topology can be applied. In this
case, the optical system consists of an optical broadband source, an OSA spectrometer, a 2XK-splitter
and a quasi-distributed sensor. The sensor would have K-fiber optics and each fiber optic can have
M-Fabry-Perot interferometers. The proposed optical sensor can be observed in Figure 6. Their
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practical application can be on: civil engineering, mechanical engineering, military applications, civil
protection and disaster risk reduction.Sensors 2019, 19, x 13 of 15 
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The quasi-distributed fiber sensor presented in this work applied the direct spectroscopic detection
(DSD) technique. On the one hand, this detection method has a simple configuration and it just
basically required an optical broadband source, an optical circulator, an optical spectrometer analyzer
(OSA spectrometer) and a PC computer, see Figure 1. On the other hand, the authors described that
the Optical Frequency Domain Reflectometry (OFDR) fell into two main categories [23]: incoherent (or
direct detection) OFDR (I-OFDR) and the coherent OFDR (C-OFDR). From the first category, there are
four derivations known as Network Analysis OFDR (NA-OFDR) [24], Incoherent Frequency-Modulate
Continuous Wave (I-FMCW) [25], Step-frequency method [26] and Sweep Frequency method [27].
Each method was previously applied on other sensing systems. Comparing the sensing system
presented in Figure 1 with the sensing systems reported by the authors of reference [23], the direct
spectroscopic detection technique has some benefits, for example: simple configuration, low cost, less
complexity and fewer instruments used, therefore, our sensing system has some advantages over other
detection techniques.

Our future work is in the following direction: the transition between both resolutions could
be determined using the physical parameters, instrumentation, the FDPA algorithm and noise.
The quasi-distributed sensor application would be in this other direction.

7. Conclusions

In this work, a quasi-distributed fiber sensor was theoretically analyzed and also was numerically
simulated. The quasi-distributed sensor was based on wavelength/frequency division multiplexing
and low-finesse Fabry-Pérot interferometers. Theory and simulation were in concordance. During the
analysis and the simulation, we considered the signal processing, multiplexing techniques, the optical
instrumentation, the system noise, the detection technique and the local sensor parameters. The signal
analysis and signal demodulation algorithm optimize the sensor implementation while the numerical
simulation demonstrated its excellent functionality. From our numerical results, we confirmed that
each Fabry-Pérot sensor has two resolutions since the Fourier Domain Phase Analysis algorithm makes
two evaluations of the Bragg wavelength shift as previously reported by us. This quasi-distributed
sensor finds many potential industrial applications due to its functionality, low cost by sensing point,
high resolution and high sensitivity.



Sensors 2019, 19, 1759 14 of 15

Author Contributions: J.T.G.B., H.G.B. and A.C.Z. developed the signal analysis; V.M.R.B. and M.E.S.M. conceived
and designed the experiments. A.G.B. and L.G.O. performed the experiments; J.T.G.B. wrote the paper.

Funding: The authors thank the Mexico’s National Council of Science and Technology (CONACyT) and University
of Guadalajara for the support granted. This investigation was carried out following the line of research
“Nanostructured Semiconductor Oxides” of the academic group UDG-CA-895 "Nanostructured Semiconductors"
of CUCEI, University of Guadalajara.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Grattan, K.T.V.; Sun, T. Fiber optic sensor technology: An overview. Sens. Actuators 2000, 82, 40–61.
[CrossRef]

2. Kashyap, R. Photosensitive Optical Fibers: Device and Applications. Opt. Fiber Technol. 1994, 1, 17–34.
[CrossRef]

3. Cao, D.; Fang, H.; Wang, F.; Zhu, H.; Sun, M. A fiber Bragg-Grating-Based Miniature Sensor for the Fast
Detection of Soil Moisture Profiles in Highway Sloped and Subgrades. Sensors 2018, 18, 4431. [CrossRef]
[PubMed]

4. Li, W.; Yuan, Y.; Yang, J.; Yuan, L. In-fier integrated quasi-distributed high temperature sensor array.
Opt. Express 2018, 26, 34113–34121. [CrossRef] [PubMed]

5. Huang, J.; Zhou, Z.; Zhang, L.; Chen, J.; Ji, C.; Pham, T. Strain Model Analysis of Small and Light Pipes Using
Distributed Fibre Grating Sensors. Sensors 2016, 16, 1583. [CrossRef] [PubMed]

6. Ben Zaken, B.B.; Zanzury, T.; Maka, D. An 8-Channel Wavelength MMI Demodultiplexer in Slot Waveguide
Structures. Materials 2016, 9, 881. [CrossRef] [PubMed]

7. Cibula, E.; Donlagic, D. I-line short cavity Fabry-Perot strain sensor for quasi-distributed measurement
utilizing standard OTDR. Opt. Express 2007, 15, 87198730. [CrossRef]

8. Wezinger, S.; Bergdolt, S.; Engelbrecht, T.; Schmauss, B. Quais-Distributed Fiber Bragg Grating Sensing Using
Stepped Incoherent Optical Frequency Domain Reflectometry. J. Lightwave Technol. 2016, 34, 5270–5277.
[CrossRef]

9. Weng, Y.; Ip, E.; Pan, Z.; Wang, T. Advances Spatial-Division Multiplexing Measurement Systems Propositions-From
Telecommunications to Sensing Applications: A Review. Sensors 2016, 16, 1387. [CrossRef]

10. Nazmi, A.M.; Hatem, O.E. Ultra-sensitive quasi-distributed temperature sensor based on an apodized fiber
Bragg grating. Appl. Opt. 2018, 57, 273–282.

11. Shlyagin, M.G.; Miridonov, S.V.; Tentori Santa-Cruz, D. Frequency multiplexing of in-fiber Bragg grating
sensors using tunable laser. In Proceedings of the Conference on Micro-optical technologies for measurement,
Sensors and Microsystems II and Optical Sensor Technologies and Applications, Munich, Germany,
24 September 1997; Volume 3099, p. 6.

12. Shlyagin, M.G.; Miridonov, S.V.; Márquez Borbón, I.; Spirin, V.V.; Swart, P.L.; Chcherbakov, A. Multiplexing
twin-Bragg grating interferometer sensor. In Proceedings of the Optical Fiber Sensors Conference Technical
Digest (OFS 2002), Portland, OR, USA, 6–10 May 2002; pp. 191–194.

13. Della Tamin, M.; Meyer, J. Quasi-Distributed Fabry-Perot Optical Fibre Sensor for Temperature Measurement.
IEEE Access 2018, 6, 66235–66242. [CrossRef]

14. Liu, J.; Lu, P.; Mihailov, S.J.; Wang, M.; Yao, J. Real-time random grating sensor array for quasi-distributed
sensing based on wavelength-to-time mapping and time-division multiplexing. Opt. Lett. 2019, 44, 379–382.
[CrossRef] [PubMed]

15. Li, X. Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature
sensor. Opt. Express 2012, 20, 12076–12084. [CrossRef] [PubMed]

16. Guillen Bonilla, J.T.; Guillen Bonilla, A.; Rodríguez Betancourtt, V.M.; Guillen Bonilla, H.; Casillas Zamora, A.
A Theoretical Study and Numerical Simulation of a Quasi-Distributed Sensor Based on the Low-Finnesse
Fabry-Perot Interferometer: FrequencyDivision Multiplexing. Sensors 2017, 17, 859. [CrossRef] [PubMed]

17. Guillen Bonilla, J.T.; Guillen Bonilla, H.; Casillas Zamora, A.; Vega Gómez, G.A.; Franco Rodríguez, N.E.;
Guillen Bonilla, A.; Reyes Gómez, J. Twin-gratin Fiber Optic Sensors Applied on Wavelength-Division
Multiplexing and its Numerical Resolution. In Numerical Simulation in Engineering and Science, 1st ed.;
Rao, S., Ed.; IntechOpen: London, UK, 2018; pp. 179–195. ISBN 978-1-78923-451-0.

http://dx.doi.org/10.1016/S0924-4247(99)00368-4
http://dx.doi.org/10.1006/ofte.1994.1003
http://dx.doi.org/10.3390/s18124431
http://www.ncbi.nlm.nih.gov/pubmed/30558214
http://dx.doi.org/10.1364/OE.26.034113
http://www.ncbi.nlm.nih.gov/pubmed/30650839
http://dx.doi.org/10.3390/s16101583
http://www.ncbi.nlm.nih.gov/pubmed/27681728
http://dx.doi.org/10.3390/ma9110881
http://www.ncbi.nlm.nih.gov/pubmed/28774006
http://dx.doi.org/10.1364/OE.15.008719
http://dx.doi.org/10.1109/JLT.2016.2614581
http://dx.doi.org/10.3390/s16091387
http://dx.doi.org/10.1109/ACCESS.2018.2877956
http://dx.doi.org/10.1364/OL.44.000379
http://www.ncbi.nlm.nih.gov/pubmed/30644904
http://dx.doi.org/10.1364/OE.20.012076
http://www.ncbi.nlm.nih.gov/pubmed/22714194
http://dx.doi.org/10.3390/s17040859
http://www.ncbi.nlm.nih.gov/pubmed/28420083


Sensors 2019, 19, 1759 15 of 15

18. Miridonov, S.V.; Shlyagin, M.G.; Tentori, D. Twin grating fiber optic sensor demodulation. Opt. Commun.
2001, 191, 253–262. [CrossRef]

19. Miridonov, S.V.; Shlyagin, M.G.; Tentori, D. Digital demodulation of Twin-Grating Fiber-Optic sensor.
In Proceedings of the SPIE Conference on Distributed and Multiplexed Fiber Optic Sensors VII, Boston, MA,
USA, 5–7 September 1999; Volume 3541, pp. 271–278. [CrossRef]

20. Miridonov, S.V.; Shlyagin, M.G.; Spirin, V.V. Resolution limits and efficient signal processing for fiber
optic Bragg grating with direct spectroscopic detection. In Proceedings of the SPIE Conference on Optical
Measurement Systems for Industrial Inspection III, Munich, Germany, 23–26 June 2003; Volume 5144.
[CrossRef]

21. Wang, Y.; Gong, J.; Wang, D.Y.; Dong, B.; Bi, W.; Wang, A. A quasi-distributed sensing network with time
division multiplexing. IEEE Photonics Technol. Lett. 2010, 23, 70–72. [CrossRef]

22. Shlyagin, M.G.; Miridonov, S.V.; Diana Santa-Cruz, D.; Mendieta Jiménez, F.J.; Spirin, V.V. Multiplexing of
grating-based fiber sensors using broadband spectral coding. In Proceedings of the Conference on Fiber
Optic and Laser Sensors and Applications, Boston, MA, USA, 1 November 1998; Volume 3541, pp. 271–277.

23. Yuksel, K.; Wuilpart, M.; Moeyaert, V.; Mégret, P. Optical Frequency Domain Reflectometry: A Review.
In Proceedings of the 11th International Conference on Transparent Optical Networks, Azores, Portugal,
28 June–2 July 2009. [CrossRef]

24. Dolfi, D.W. High-resolution optical frequency domain reflectometry. In Proceedings of the Optical Fiber
Communication Conference, San Diego, CA, USA, 18 February 1991. [CrossRef]

25. MacDonald, R.I. Frequency domain optical reflectometer. Appl. Opt. 1981, 20, 1840–1844. [CrossRef]
[PubMed]

26. Nakayama, J.; Lizuka, K.; Mielsen, J. Optical fiber fault locator by the step frequency method. Appl. Opt.
1987, 26, 440–443. [CrossRef] [PubMed]

27. Dolfi, D.W.; Nazarathy, M.; Newton, S.A. 5-mm-resolution optical-frequency-domain-reflectometry using a
coded phase-reversal modulator. Opt. Lett. 1988, 13, 678–680. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0030-4018(01)01160-9
http://dx.doi.org/10.1117/12.339102
http://dx.doi.org/10.1117/12.501160
http://dx.doi.org/10.1109/LPT.2010.2089676
http://dx.doi.org/10.1109/ICTON.2009.5185111
http://dx.doi.org/10.1364/OFC.1991.FC6
http://dx.doi.org/10.1364/AO.20.001840
http://www.ncbi.nlm.nih.gov/pubmed/20332843
http://dx.doi.org/10.1364/AO.26.000440
http://www.ncbi.nlm.nih.gov/pubmed/20454153
http://dx.doi.org/10.1364/OL.13.000678
http://www.ncbi.nlm.nih.gov/pubmed/19746002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Optical System and its Reflection Spectrum 
	Frequency Spectrums 
	Sensor Conditions 
	Signal Demodulation 
	Numerical Results and Discussion 
	Parameters 
	Reflection Spectrum 
	Frequency Spectrum 
	Numerical Results 
	Discussion 

	Conclusions 
	References

