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Abstract: Docking technology plays a critical role in realising the long-time operation of autonomous
underwater vehicles (AUVs). In this study, a binocular localisation method for AUV docking is
presented. An adaptively weighted OTSU method is developed for feature extraction. The foreground
object is extracted precisely without mixing or missing lamps, which is independent of the position of
the AUV relative to the station. Moreover, this extraction process is more precise compared to other
segmentation methods with a low computational load. The mass centre of each lamp on the binary
image is used as matching feature for binocular vision. Using this fast feature matching method, the
operation frequency of the binocular localisation method exceeds 10 Hz. Meanwhile, a relative pose
estimation method is suggested for instances when the two cameras cannot capture all the lamps. The
localisation accuracy of the distance in the heading direction as measured by the proposed binocular
vision algorithm was tested at fixed points underwater. A simulation experiment using a ship model
has been conducted in a laboratory pool to evaluate the feasibility of the algorithm. The test result
demonstrates that the average localisation error is approximately 5 cm and the average relative
location error is approximately 2% in the range of 3.6 m. As such, the ship model was successfully
guided to the docking station for different lateral deviations.

Keywords: autonomous underwater vehicles; docking guidance technology; binocular vision

1. Introduction

In recent decades, autonomous underwater vehicles (AUVs) have played an increasingly crucial
role in marine exploration and development, such as resource detection, military technologies, and
underwater structure inspections [1]. To facilitate the flexibility of their movement, the power capacity
of AUVs is limited by their compact outfit. In addition, upon completion of undersea assignments,
AUVs have to return to the bank to obtain a new mission. Docking technology makes it possible for
the vehicles to upload data, download new assignments and recharge their batteries underwater [2,3].
This greatly extends the duration of their operation. To achieve this expected manipulation, AUVs
must be guided to the docking station during the first step. The guiding process is divided into two
stages: the homing stage and the docking stage [4]. AUVs are guided to the neighbourhood of the
docking station during the homing stage and then enter into it during the docking stage. Compared
with the homing stage, the docking stage requires higher localisation precision and directly determines
whether AUVs can get back to the docking station successfully or not. As such, the docking technology
for the docking stage is of vital importance.

In previous works, several types of docking technologies based on the use of different sensors
have been introduced.
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A combination navigation system including an ultra-short baseline (USBL) acoustic array and a
Doppler velocity log (DVL) was proposed by Allen et al. [5] for REMUS AUV docking. McEwen et al. [4]
developed a docking system for a 54-centimetre diameter AUV using USBL guidance technology
near the docking station. Vallicrosa et al. [6] also used USBL technology to guide Girona500 I-AUV
(Intervention AUV) to a docking station.

An electromagnetic (EM) docking system was first proposed by Feezor et al. [7] for the
Odyssey AUV. In recent years, Vandavasi et al. [8] from the India National Institute of Ocean
Technology described the concept and test of an electromagnetic homing guidance system (EMHGS).
Peng, S. et al. [9] from Hangzhou Dianzi University and Zhejiang Provincial Key Lab of Equipment
Electronics also developed a low-cost electromagnetic docking guidance (EMDG) system for
micro AUVs.

Acoustic signals are easily disturbed by reflecting surfaces such as the seabed and target structures,
which makes it hard to achieve high accuracy in a short operating range [10]. Electromagnetic signals
have a high attenuation velocity underwater and can only be valid within a relatively short range [8,9].
In recent years, with the gradual improvement in computational capacity, vision guidance technology
has been developed as a commonly used approach for AUV terminal docking due to its simplicity
and effectiveness. It has excellent performance in clear water and can be effective within a range of
0–15 m [11].

Park et al. [12] proposed a vision docking system for ISIMI AUV with lights equipped at the
entrance of the docking station and cameras equipped at the head of the AUV. By averaging the mass
centres of the lights, AUV can obtain the relative two-dimensional position to the docking station and
move towards its target. Their experiment was conducted in an ocean engineering basin (OEB) of the
Korea Ocean Research and Development Institute (KORDI).

Y. Li et al. [13] built a vision docking algorithm that was a combination of monocular and binocular
positioning methods. The algorithm switches between the two operating modes depending on the
number of lights in the images captured by the two cameras and can obtain the six-dimensional
pose of the AUV. However, the computational burden of this vision-based navigation is heavy,
corresponding to approximately 1.5–2.5 s, and a dead reckoning algorithm is used for aided navigation.
The experiment was conducted in the water pool lab at Harbin Engineering University.

D. Li et al. [11] presented a vision docking method using one camera and one light. The four
stages taken to enable the AUV to obtain its relative distance to the docking station and navigate to the
target can be outlined as: image acquisition, binarisation of the captured images, elimination of noisy
luminaries, and estimation of the relative position. This system was tested in the swimming pool of
Yuquan Campus of Zhejiang University.

N. Palomeras et al. [14] proposed a range-only localisation algorithm to approach the docking
station and developed an associated estimation algorithm using active beacons and augmented reality
(AR) markers to complete the docking manoeuvre at short ranges. When the camera on the AUV can
capture all the lights at the docking station, the six-dimensional pose of the AUV can be estimated
using a non-linear least squares minimisation method. Otherwise, AR markers are used to guide
the AUV.

Park et al. [12] and D. Li et al. [11] were able to obtain the relative two-dimensional position in
pixel units of dock to AUV and control the heading direction of the AUV to the dock. Y. Li et al. [13] and
N. Palomeras et al. [14] were able to obtain the six-dimensional pose of the AUV, but the computational
burden of the former was heavy while the equipment required for the docking station was too
complicated for application in turbid water in the case of the latter.

This article focuses on the docking stage, assuming that the AUV has been guided to the lamp
field near the docking station using remote guidance technologies. In this study, a fast binocular
localisation method is proposed. The proposed scheme uses two packaged CMOS cameras installed
below a ship model and three navigation lamps equipped on a testbed docking station. An adaptively
weighted OTSU method is presented to extract the lamps more accurately and efficiently, which is
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described specifically in Section 3. By choosing the mass centres of the extracted lamp objects as the
matching feature, the six-dimensional pose of the AUV can be computed with a binocular localisation
method at an operation frequency greater than 10 Hz. To address situations in which two cameras
cannot capture all the lamps, an efficacious estimation method (D. Li et al. [11]) is applied to obtain the
relative two-dimensional position to control the heading direction only.

In the remaining part of this article, Section 2 presents the configuration for the proposed vision
guidance system. Section 3 describes the realisation of the proposed system, which includes the
processing of the raw images, the binocular vision algorithm, and the control strategy for the ship
model. Section 4 presents the experiment results. The final section is a summary of the main conclusions
of this study.

2. System Configuration

The platform applied in this article was a ship model. As shown in Figure 1, it contains five main
components: two monochromatic Complementary Metal Oxide Semiconductor (CMOS) cameras, two
rudders, one propeller, one control unit and one navigation computer. Table 1 presents the details of
the equipment specification of the proposed system. We chose a monochromatic camera due to its
higher sensitivity to light compared to colour cameras, whose colour filters result in a loss of more
than half of the incident light energy [15]. The field angle of the camera is 60 degrees. The CMOS
cameras are connected to the navigation computer by Universal Serial Bus (USB) port. The navigation
computer is embedded in a Linux operating system and is utilised in processing the images captured
by the cameras and then transmitting the visual computation results to the control unit by ethernet.
The control unit implements the control strategy (described in Section 3.3) to control the direction
and speed of the ship model. To be more specific, it can transmit Pulse Width Modulation (PWM)
instructions to the rudders and propeller through General-Purpose Input/Output (GPIO) ports.
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Table 1. Specifications of the main equipment.

Item Model Position Number

Monochromatic CMOS Camera MV-UB130T Below the ship 2
Navigation Computer MINI5728 Inside the ship 1

Control Unit STM32F103ZET6 Inside the ship 1
Underwater green lamp SF-SXD-001 At the entrance of the docking station 3
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Most of the vision guidance systems mount the navigation lamps at the entrance of the docking
station as active beacons. In this paper, we also adopt this method. However, instead of a real docking
station, we used an aluminium profile model with lamps equipped on it, which operated similarly
to the docking station in terms of the terminal docking process. Three common underwater green
lamps were symmetrically positioned on the aluminium profile model around the centre of the three
lamps, namely, the centre of the docking station (Figure 2). Green lamps were chosen because of the
wavelengths at which it is relatively difficult for seawater to either absorb or scatter the light [16].Sensors 2019, 19, x FOR PEER REVIEW 4 of 19 
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3. Vision Guidance Algorithm

As previously indicated, the vision guidance system primarily contains two cameras installed
below the ship model and three active lamps equipped on the simple docking station. This article
presents a fast binocular localisation algorithm to determine the relative position and attitude between
the AUV and the docking station. A relative localisation algorithm is applied when two cameras
cannot capture all three lamps.

When all three lamps are captured by both cameras, the fast binocular localisation algorithm is
able to compute the six-dimensional pose (including three-dimensional position and three-dimensional
attitude) of the AUV via a mass-centre matching method. Moreover, a relative localisation method
proposed by D. Li et al. [11] is applied when the two cameras cannot capture all the lamps. The
combination of these algorithms can improve the reliability of the system without a significant increase
in the computational burden. The flow chart of the visual localisation algorithm is shown in Figure 3.
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3.1. Image Processing

Light is attenuated and scattered during underwater propagation, and hence, images captured in
this environment may contain noise and artefacts. In this section, we utilise a median filter to remove
image noise and propose a weighted OTSU method to binarise the image and to extract the mass
centres of the captured lamps in the binary image.

3.1.1. Image Filtering

An underwater lamp consists of several small LEDs. As such, the captured image of an individual
lamp may be identified as several lamps instead of one. A median filter with a 5 × 5 pixel mask was
thus adopted to smooth the image and to remove salt-and-pepper noise while still retaining the edge
information of the object. Figure 4 shows the raw image and the image acquired after processing using
the median filter.
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3.1.2. Adaptively Weighted OTSU Method

Before feature matching, the object needs to be extracted from the processed image. It is feasible
to segment the foreground object and the background scene through thresholding. In this article,
we propose an adaptively weighted OTSU method to obtain the global optimal threshold for the
captured image. The traditional OTSU method defines the segmentation threshold as the solution that
maximises the between-class variance, which is established as follows:

σ2
B = ω0(µ0 − µT)

2 + ω1(µ1 − µT)
2 (1)

where ω0 and ω1 denote the probability that a pixel is divided into the object and the background
under the global threshold T, respectively. The variables µ0 and µ1 denote the average grey value of
the object zone and the background zone and µT is the average greyscale value of the entire image.
The number of pixels divided into the object and the background is denoted as N0 and N1, respectively.
Assuming m and n are the width and height of the image in pixel units, respectively, it can be induced
from the definition that ω0 = N0/(m × n) and ω1 = N1/(m × n) as well as N0 + N1 = m × n. Therefore,
it is obvious to induce that ω0µ0 + ω1µ1 = µT and ω0 + ω1 = 1.

After applying the traditional OTSU method, the image shown in Figure 4b becomes the binary
image as shown in Figure 5a. The result appears to be non-ideal. The reason for this is that most
regions of the image captured underwater are background scene. In other words, the proportion of the
pixels with a small grey value (i.e., the background) is much larger than the proportion of the pixels
with a large grey value (i.e., the object) in the captured image. Therefore, in order to maximise the
between-class variance, the optimal global threshold T calculated by the traditional OTSU method is
more likely to be smaller, that is, biases towards the grey value of the background. In this way, some
background pixels are segmented as the foreground object, so that the segmented object area is much
larger than the real object area and several lamps are mixed together as shown in Figure 5a. This
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method works well in the study by D. Li et al. [11], because only one light is used for guidance, thereby
avoiding the mixing problem. However, in this work, each lamp needs to be extracted individually for
the subsequent feature matching process.
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To fix the above problem, a weight coefficient is added to increase the proportion of the object in
the between-class variance formula. The modified between-class variance is established as follows:

σ2
B
′ = ωK

0 (µ0 − µT)
2 + ω2−K

1 (µ1 − µT)
2 (2)

where K is the added weight coefficient. Assuming ω0 and ω1 are constant coefficients between 0
and 1, the smaller the value of K is, the larger the value of ωK

0 and the smaller the value of ω2−K
1 will

be. This means that the proportion of the object in the between-class variance will be greater and the
extracted objective region will be smaller. Then, in order to maximise the between-class variance, the
output threshold of this modified method will bias toward the grey value of the objective region, i.e.,
the output threshold of this method will be higher than that of the original method. This conclusion is
proven in Figure 5.

The traditional OTSU algorithm is a particular case of the weighted OTSU algorithm when K
is equal to 1, as shown in Figure 5a. Figure 5b–k shows the binary images obtained through the
weighted OTSU method with different weight coefficients. It can be observed that the smaller the
weight coefficient K is, the larger the output global threshold T will be. When K is too small, the
output threshold will extremely bias towards the grey value of the objective region. Therefore, the
lamps with relatively low grey values cannot be extracted. Taking this condition into consideration,
we would like to let K be adaptive according to the number of lamps in the segmented image. The



Sensors 2019, 19, 1735 7 of 19

procedures involved in the implementation of the adaptively weighted OTSU method is illustrated
in Figure 6. The final weight coefficient K* is selected by maximising the number of lamps in the
segmented image N:

K∗ = argmax
0.1≤K≤1

{N} (3)

In this method, the extracted lamps are neither mixed nor missed, irrespective of the distance of the
AUV from the station.
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3.1.3. Image Segmentation

As mentioned in the previous section, threshold segmentation methods (TSMs) are usually used to
segment the image into two classes: the objective zone and the background zone. When the boundary
threshold T is given, the segmented image can be obtained as follows:

g(i, j) =

{
255, f(i, j) ≥ T(i, j)

0, f(i, j) < T(i, j)
(4)

where f(i,j) and g(i,j) are the grey values of pixel point in the location (i,j) on the processed image and
on the binary image, respectively. The pixel point with a grey value greater than or equal to T(i,j)
becomes the bright group (grey value equal to 255) while the pixel point with a grey value smaller
than T(i,j) becomes the dark group (grey value equal to 0). As such, the greyscale image is divided into
the objective zone and the background zone.

Depending on whether the threshold T varies with the location of the pixel point, TSMs can
be divided into local TSMs and global TSMs. The threshold of the former method is determined
adaptively by the neighbourhood window that is centred on each pixel [17]. In the latter method, the
determination of the global threshold is of the most importance. Several studies on vision guidance
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technology have adopted diverse methods for determining the global threshold. Park et al. [12]
adopted a pre-specified threshold value to segment the greyscale image. D. Li et al. [11] applied a
traditional OTSU method to obtain the global optimal threshold, which has been commonly used for
image segmentation due to its excellent performance. Y. Li et al. [13] used a Mean-Shift algorithm
to extract the light source zone. This algorithm is an iterative optimisation approach, which is
computationally intensive. The computational burdens of the four aforementioned segmentation
methods and the proposed adaptively weighted OTSU approach are illustrated in Table 2. It is evident
that the Mean-Shift algorithm takes more than ten times as long as the TSMs and is unsuitable for the
real-time processing of images.

Table 2. Computational costs of different segmentation method.

Segmentation Method Computational Time/ms

Adaptive local TSM [17] 0.51777
Pre-specified TSM [12] 0.01926

Traditional OTSU TSM [11] 0.63905
Mean-Shift algorithm [13] 183.239

Adaptively weighted OTSU TSM 17.641

The threshold segmentation results of the four TSMs for the image shown in Figure 4b are
illustrated in Figure 7, and the threshold segmentation results for the image captured near the station
are shown in Figure 8. It can be concluded that the adaptive local TSM is unsuitable for underwater
lamp images due to its high sensitivity to the noise in the image. The pre-specified TSM is the fastest
algorithm, but it is inflexible, owing to the brightness of the captured lamps varying with the distance
between the AUV and the docking station. For example, when setting the pre-defined threshold as 125,
this method appears to be suitable for images captured far from the station (Figure 4b), but it fails to
precisely extract the object when the image is captured near the station (Figure 8c). With the traditional
OTSU TSM, it is likely to mix up the lamps when the AUV is far from the station, in which cases
most regions in the underwater captured images are background (Figure 7c). Moreover, the adaptively
weighted OTSU TSM can extract the object precisely without incurring a heavy computational burden,
irrespective of the distance between the AUV and the station. Therefore, it outperforms the other
four methods.
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(e) Adaptively weighted OTSU TSM, T = 235.

3.1.4. Feature Extraction

In this study, we chose the mass centres of the captured lamps as the matching feature of the
binocular algorithm. We extracted all the contours of the lamps from the binary image as shown in
Figure 9b. Then the coordinates of pixels on each contour were averaged to obtain the coordinate of
the mass centre of each contour, i.e., the mass centre of each lamp (Figure 9c). The origin of the pixel
coordinate frame is at the top left corner of the image while the positive directions of the x and y axis
are respectively point to the left and upper side of the image as shown in Figure 9d.

The mass centres were firstly sorted in terms of their vertical coordinates. To remove the reflected
lamps located at the top of the image, we only kept three mass centres that had larger vertical
coordinates (Figure 9e). Then we sorted the mass centres of three lamps in terms of their horizontal
coordinates and marked the three lamps in order. In this way, we can identify the lamps. When both
cameras capture all three lamps, each lamp captured by the left and right camera can be matched
in order.

When the roll angle of the AUV exceeds 60◦, this sorting method fails. However, this situation
rarely occurs. To ensure the normal functional operation of the AUV, IMU (Inertial Measurement
Unit), compass, or other sensors will be applied to maintain the variation of the roll angle on a small
fluctuation [18]. This is not discussed herein.

3.2. Binocular Vision Algorithm

In this study, we apply a parallel binocular vision algorithm to realise the localisation. The
position and attitude of the AUV relative to the docking station can be obtained using three co-planar
lamps and two parallel cameras.

Firstly, we adopt the method proposed by Zhang Z. et al. [19] to calibrate the cameras. Using the
calibrated internal coefficients and the external coefficients of two cameras, we can rectify the captured
images and ensure that the image planes of both cameras are ideally co-planar (Figure 10).
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Then, according to the similar triangle theorem, the position of a matching point in the left camera
coordinate Ol-XlYlZl can be computed as:

Xl =
Zl
f
(xl − cx) (5)

Yl =
Zl
f
(
yl − cy

)
(6)

Zl =
fB

xl − xr
(7)

where f is the focal length of the camera, B is the baseline length of the two cameras, xl and xr are the
horizontal positions of a point in the image coordinate of the left and right camera, respectively, while
yl and yr are the vertical positions. cx and cy are, respectively, the horizontal and vertical position of
the optical centre in the image plane.

The coordinate frames of the vision guidance system in this study are shown in Figure 11. In the
AUV body frame, the position of the matching point can be obtained as:

XA = Xl +
B
2
=

Zl
f
(xl − cx) +

B
2

(8)

YA = Yl =
Zl
f
(
yl − cy

)
(9)

ZA = Zl =
fB

xl − xr
(10)
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The dock coordinate refers to the earth or the inertial frame. The position of the matching points
in the AUV coordinate PA can be computed from Equations (8)–(10), while the positions of the three
lamps in the dock coordinate PD are determined. Therefore, using the three matching points, the
relative translation and rotation of the two coordinates, namely the position and attitude of the AUV
relative to the dock, can be computed by the transverse formula:

PA = RPD + T (11)

where T is the translation vector and R is the rotation matrix. Given that the average position of the
three lamps is the origin of the dock coordinate, T can be computed as the average position of the three
matching points in the AUV coordinate as follows:

T =

 X
Y
Z

 = Paver_in_AUV (12)
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Then, R can be computed from Equation (11) via the positions of the three matching points in the
AUV and dock coordinate. Assuming that ψ, θ and ϕ are the rotation angles of the AUV coordinate
relative to the dock coordinate in the X, Y, and Z direction, R can be described as:

R =

 cos θ cosϕ sinψ sin θ cosϕ− cosψ cosϕ cosψ sin θ cosϕ+ sinψ sinϕ
cos θ sinϕ sinψ sin θ sinϕ+ cosψ cosϕ cosψ sin θ cosϕ− sinψ cosϕ
− sin θ sinψ cos θ cosψ cos θ

 (13)

Assuming Rij is the element of matrix R in the ith row and the jth column, the attitude of AUV
can be obtained from Equation (13): 

ψ = arctan R32
R33

θ = −arctan R31√
R2

11+R2
21

ϕ = arctan R21
R11

(14)

Hence, the three-dimensional position and three-dimensional attitude of AUV relative to the
docking station are deduced. The matching features of the images captured by the two cameras are
discussed in Section 3.1 and are shown in Figure 12. With this feature matching method, the operation
frequency of the binocular ranging algorithm can exceed 10 Hz and the entire visual process can reach
5 Hz, which satisfies the control requirement.
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When both cameras cannot capture all the lamps, we can only calculate the relative distance at
the X and Y dimension between the docking station and the AUV. The average coordinates of the mass
centres of the captured lamps in the left and right image plane can be computed from the processed
image, denoted as (xl, yl) and (xr, yr), respectively, in pixel units. Then the position of the docking
station relative to the AUV (x, y) in pixel units can be computed as follows:

x =
xl + xr

2
− m

2
(15)

y =
yl + yr

2
− n

2
(16)

3.3. Control Strategy

The motion control system for AUV consists of two independent parts, namely, the control
strategies for the horizontal and vertical plane [20]. The control schemes for motion in two planes are
similar [11]. To avoid redundancy, we only focus on the tracking control strategy on one plane and
the other plane can be derived in a similar manner. Furthermore, during the docking stage in a real
scenario, the AUV tends to sail at a setting depth and to move on the horizontal two-dimensional plane.



Sensors 2019, 19, 1735 13 of 19

Hence, in this study, we only discuss the two-dimensional motion control on the horizontal plane and
carry out the experiment in the same way. The classical Proportion Integration Differentiation (PID)
control strategy is used to control the yaw angle of the ship model on the horizontal plane.

When both cameras are able to capture all three lamps, we can obtain the three-dimensional
position and attitude of the AUV relative to the docking station from the binocular vision algorithm.
From the obtained three-dimensional position, the horizontal yaw angle of the ship model relative to
the docking station can be obtained as follows:

θ = arctan
XA

ZA
(17)

where XA and ZA denote the position of the docking station in the X and Z direction of the AUV
coordinate, respectively.

When the two cameras cannot capture all three lamps, we can only obtain the relative position of
the docking station relative to the ship model in pixel units (x, y). In such cases, Equation (17) is not
applicable. Assuming that the field angle of the camera is α, we can obtain the following equation via
the geometric relationship and the camera model shown in Figure 13:

k·m/2
ZA

= tan
α

2
(18)

k·x
ZA

= tan θ (19)

where k is the proportional coefficient.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 19 

 

yത = y୪ + y୰2 − n2 (16) 

3.3. Control Strategy 

The motion control system for AUV consists of two independent parts, namely, the control 
strategies for the horizontal and vertical plane [20]. The control schemes for motion in two planes are 
similar [11]. To avoid redundancy, we only focus on the tracking control strategy on one plane and 
the other plane can be derived in a similar manner. Furthermore, during the docking stage in a real 
scenario, the AUV tends to sail at a setting depth and to move on the horizontal two-dimensional 
plane. Hence, in this study, we only discuss the two-dimensional motion control on the horizontal 
plane and carry out the experiment in the same way. The classical Proportion Integration 
Differentiation (PID) control strategy is used to control the yaw angle of the ship model on the 
horizontal plane. 

When both cameras are able to capture all three lamps, we can obtain the three-dimensional 
position and attitude of the AUV relative to the docking station from the binocular vision algorithm. 
From the obtained three-dimensional position, the horizontal yaw angle of the ship model relative to 
the docking station can be obtained as follows: θ = arctan X୅Z୅ (17) 

where X୅ and Z୅ denote the position of the docking station in the X and Z direction of the AUV 
coordinate, respectively. 

When the two cameras cannot capture all three lamps, we can only obtain the relative position 
of the docking station relative to the ship model in pixel units (xത, yത). In such cases, Equation (17) is not 
applicable. Assuming that the field angle of the camera is α, we can obtain the following equation via 
the geometric relationship and the camera model shown in Figure 13: k ∙ m/2Z୅ = tan α2 (18) k ∙ xതZ୅ = tan θ (19) 

where k is the proportional coefficient.  

 

Figure 13. Schematic of AUV on the horizontal plane. 

Therefore, the horizontal yaw angle of the ship model can be derived as: θ = arctan ൬2xതm × tan α2൰ (20) 

The PID control scheme is illustrated in Figure 14. The position of the docking station in the 
AUV coordinate P୅  can be obtained by the proposed vision localisation algorithm, while P୓ 
denotes the origin of the AUV coordinate. The deviation between P୅ and P୓, denoted as ∆P, is equal 

Figure 13. Schematic of AUV on the horizontal plane.

Therefore, the horizontal yaw angle of the ship model can be derived as:

θ = arctan
(

2x
m
× tan

α

2

)
(20)

The PID control scheme is illustrated in Figure 14. The position of the docking station in the
AUV coordinate PA can be obtained by the proposed vision localisation algorithm, while PO denotes
the origin of the AUV coordinate. The deviation between PA and PO, denoted as ∆P, is equal to PA.
Thereby, the yaw angle θ can be calculated by Equations (17) and (20). The compass can measure the
angle of the centre line of the AUV deviated from the centre line of the docking station θdock. The
deviation between θ and θdock, denoted as ∆θ, serves as the input of the controller, the coefficients of
which are determined by trial and error.
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4. Pool Experiment 
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Moreover, it is possible for AUV to obtain its six-dimensional pose relative to the docking station
when the binocular vision algorithm works. Therefore, except for the heading direction, the AUV can
control its speed as well. When the target position in Z direction PA(z) is larger than the reference
Z-distance Zref, which is set as 5 m, it is suggested that the AUV moves at a relatively high velocity.
When ZA is smaller than Zref, it is suggested that the AUV moves at a relatively low velocity to avoid
strong collision with the docking station. The relationship between the deviation ∆Z and the reference
velocity vref is established via the sigmoid function:

vref =
Kv

1 + e∆Z + v0 (21)

where v0 is the minimum velocity of the AUV and Kv + v0 is the maximum velocity. Kv is set as v0 so
that the maximum velocity is twice the minimum velocity.

In conditions where the two cameras cannot capture all three lamps, the AUV is either within
short range of the docking station or has a large deviation from the docking station. In this case, it
is desirable that the AUV moves slowly, and hence we let ZA be equal to 0 m. The control strategy
scheme on the horizontal plane is shown in Figure 14.

4. Pool Experiment

The aim of this research is to develop a method for a platform-based docking station such that
AUVs only need to be laid on the platform without the requirement of extremely high precision. In
this case, only the three-dimensional position is required to control the AUV to complete its docking
process. We initially tested the localisation accuracy of the distance in the heading direction, namely
the localisation accuracy of the proposed binocular vision system. A verification experiment was then
performed in the laboratory pool to validate the feasibility of the entire system.

4.1. Experiment Platform

The experiment aims to verify the feasibility of the presented localisation method in which the
impact of the experimental object size turns out to be small. The ship model used in this experiment
is shown in Figure 15. The binocular cameras are installed about twenty centimetres below the ship
model, while the navigation computer and control unit are contained in the inner cavity. The motor
and the rudders are located at its tail.
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Figure 15. The ship model used in this experiment.

The experiment was conducted in an indoor laboratory pool with dimensions of 4.2 × 2.4 ×
1.2 m3, as shown in Figure 16. A simple docking station with three navigation lamps was positioned
on one side of the water pool. Throughout the entire experiment, the ship model moves automatically,
without connecting to any wire cables. The starting and stopping of the ship are controlled via Wi-Fi
signals, while the movement is autonomous. The cameras installed below the ship model capture
images of the lamps and the navigation computer calculates the three-dimensional position of the ship
model relative to the docking station. This data is input into the control unit to control the yaw angle
of the ship on the horizontal plane, and to finally lead it to the docking station. The positions are then
recorded in the navigation computer.
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4.2. Test of Localisation Accuracy

To validate the accuracy of the binocular vision algorithm with the proposed feature matching
method, we performed a test on the localisation accuracy of the distances in the heading direction
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at fixed points. The distance in the heading direction instead of the deviation direction was selected,
because the former had a larger test range in the pool.

The binocular cameras were positioned at fixed points underwater within a range of 1.2 m to 3.6
m away from the simple docking station. The computed distances from the binocular vision algorithm
are compared with the actual distances measured by the tapeline, which is illustrated in Table 3. It
can be obtained that the average localisation error is approximately 5 cm and the average relative
localisation error is close to 2%, which satisfies the requirement for the tracking control of the AUV.

Table 3. The test results of the distances in the heading direction.

The Measured Distance
(mm)

The Computed
Distance (mm)

The Absolute Error
(mm)

The Relative Error
(%)

1200 1188.9 11.1 0.92
1500 1512.18 12.18 0.81
1800 1795.55 4.45 0.25
2100 2040.12 59.88 2.85
2400 2361.62 38.38 1.60
2700 2575.64 124.36 4.61
3000 3088.04 88.04 2.93
3300 3238.22 61.78 1.87
3600 3501.35 98.65 2.74

4.3. Docking Experiment

To verify the feasibility of the entire visual system, the ship model was positioned approximately
3.1 m from the docking station at different initial lateral deviations. The experiment results are shown
in Figures 17–19.
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Figure 17. Horizontal trajectories of the ship model at different initial lateral deviations: the blue line
illustrates the motion situation on the horizontal plane when the ship model starts at the right side of
the docking station; the red line illustrates the situation when the ship model starts at the left side.

The blue line in Figure 17 illustrates the motion displacement computed by the binocular vision
algorithm on the horizontal plane when the ship model starts at the left side of the docking station. Its
path is in reverse at the beginning, because it is in a slant direction. It takes time for the ship model to
move towards the docking station by adjusting its yaw angles at a small P coefficient, as determined
by the control strategy. The red line illustrates the condition in which the ship model starts at the right
side of the docking station.
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Figure 19. Several photographs acquired during the docking process when the ship model starts at 
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Figure 18. Several photographs acquired during the docking process when the ship model starts at
the right side of the docking station: The ship model (a) sets off from the initial position on the right;
(b) turns left to the target; (c) moves towards it; (d) achieves the docking station successfully.
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Figure 19. Several photographs acquired during the docking process when the ship model starts at the
left side of the docking station: The ship model (a) sets off from the initial position on the left; (b) turns
right to the target; (c) moves towards it; (d) achieves the docking station successfully.

When the ship is approximately 1.1 m away from the docking station, the cameras cannot capture
all the lamps, so the ship cannot obtain its three-dimensional position relative to the docking station.
In such circumstances, the ship model keeps moving to the docking station according to the computed
relative two-dimensional position in pixel units. Figures 18 and 19 show that the ship model can
successfully achieve docking irrespective of its initial position relative to the docking station.

5. Conclusions

This study presents a fast binocular localisation method in combination with a relative pose
estimation method for the instance when two cameras cannot capture all the lamps. A detailed
description of the system configuration is proposed. Through image processing, including image
filtering, image segmentation using an adaptively weighted OTSU method and feature extraction, the
mass centres of the lamps are obtained as the matching features of the binocular algorithm. A control
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strategy based on this vision algorithm is then provided. The test at fixed points shows that the
relative localisation error in the heading direction within 3.6 m is approximately 2%, which satisfies
the requirements for tracking control. A verification experiment was conducted in the laboratory pool
using a ship model to evaluate the feasibility of the entire system. The ship model can achieve docking
no matter whether it starts at the right side or the left side of the docking station.

Compared with the other vision guidance systems mentioned in the introduction, the vision
guidance system presented in this article has the following advantages. Firstly, an adaptively weighted
OTSU method is proposed to segment the captured image with good performance and a relatively low
cost of computation compared with other TSMs. Secondly, the frequency of the proposed binocular
localisation method can reach up to 10 Hz, and the entire algorithm can achieve 5 Hz. Furthermore,
the vision algorithm includes a relative pose estimation method in the case when there are one or more
lamps out of the viewing field of the cameras. The vision guidance algorithm will work even if only
one of the cameras captures lamps, greatly extending its working range.

However, some defects still exist in this article and can be optimised in the future. For example,
the pool experiment conducted in this article uses a model ship to validate the proposed algorithm.
In future work, experiments using a full-sized AUV will be conducted in a deep-water area to evaluate
the effectiveness of the proposed system in an actual sea environment. The motion in the vertical plane
will be taken into consideration. Moreover, to make this vision guidance algorithm more practical, a
dead reckoning algorithm could be used as an assisted algorithm for circumstances when the target
is lost from the sight of both cameras during the docking stage. In addition, a laser source may be
considered in the future to extend the effective range of the vision guidance system.
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