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Abstract: Rapid detection of phosphorus (P) element is beneficial to the control of compound
fertilizer production process and is of great significance in the fertilizer industry. The aim of this
work was to compare the univariate and multivariate analysis of phosphorus element in compound
fertilizers and obtain a reliable and accurate method for rapid detection of phosphorus element.
A total of 47 fertilizer samples were collected from the production line; 36 samples were used as a
calibration set, and 11 samples were used as a prediction set. The univariate calibration curve was
constructed by the intensity of characteristic line and the concentration of P. The linear correlation
coefficient was 0.854 as the existence of the matrix effect. In order to eliminate the matrix effect,
the internal standardization as the appropriate methodology was used to increase the accuracy. Using
silicon (Si) element as an internal element, a linear correlation coefficient of 0.932 was obtained.
Furthermore, the chemometrics model of partial least-squares regression (PLSR) was used to analysis
the concentration of P in fertilizer. The correlation coefficient was 0.977 and 0.976 for the calibration
set and prediction set, respectively. The results indicated that the LIBS technique coupled with PLSR
could be a reliable and accurate method in the quantitative determination of P element in complex
matrices like compound fertilizers.
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1. Introduction

The use of compound fertilizers in agriculture to improve soil quality is very common. China’s
compound fertilizer use ranks first in the world according to statistics. Fertilization in some areas
is extremely unreasonable, causing serious environmental pollution [1]. Phosphorus(P) element is
a major nutrient element for crops and is very important in agriculture. Quality control is very
important for compound fertilizer manufacturers, and can help guarantee the quality of products.
At present, the real-time sensing rapid detection of compound fertilizer production has been mainly
manual sampling, sample preparation and laboratory testing. The traditional sensing method of P in
compound fertilizers is the phosphomolybdate quinoline gravimetric method [2], which is mature
and has high accuracy. However, this sensing detection technique commonly requires the dissolution
of the solid sample, which involves the use of high temperatures and strong oxidants. With the
development of sensing analysis technology, optical detection methods are increasingly used for the
detection of compound fertilizer components, such as flame atomic absorption spectrometry (FAAS),
and inductively coupled plasma-mass spectrometry (ICP-MS) [3,4], but, because of a typically high
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concentration in compound fertilizer, the sensing measurement of P needs to be diluted several times.
The aforementioned sensing detection methods are time-consuming, labor intensive, and expensive.
As a consequence, the use of the traditional detection techniques increases the systematic errors besides
producing large volumes of chemical residues [5].

Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique in the current
spectroscopic field. The LIBS technique has many advantages, such as in situ detection, real-time,
remote sensing capability, multi-elemental analysis, minimal sample preparation, and direct analysis
of any state of matter [6]. It has been successfully used in chemical and biological testing [7], water
pollution [8], coal combustion [9], agriculture [10], artifacts and jewelry identification [11], space
exploration [12], etc. Some works have used the LIBS technique for the analysis of the component
of compound fertilizer. Farooq et al. determined P, Mg, and Mn in the fertilizer using LIBS [13].
Quantitative LIBS analysis of phosphorus in 26 different organic and inorganic fertilizers has been
reported by Bruno S. Marangoni et al., however, the absolute error of the measurement for the two
verification samples is close to 5% [14]. The elements of Cu, K, Mg, Mn, Zn, As, Cd, Cr and Pb in liquid
fertilizers were analyzed with LIBS technique by Daniel Fernandes Andrade et al. [15]. S.C. Yao et
al. detected phosphorus and potassium elements in the compound fertilizer using LIBS, and the PLS
quantitative analysis model was established by using Unscrambler software [16]. Daniel Fandrade et
al. have reported an application of LIBS for quantification of the metal elements in solid compound
fertilizers [17]. However, quantitative aspects have generally been considered a shortcoming of LIBS,
which greatly limits its application. Thus, there are still many problems to be solved prior to routine
practical applications.

The univariate calibration considers the emission intensities of excited element and its
concentration. However, the fertilizer was a complex sample, which contains many elements of
Fe, Si, Mg, Al, and O. All of these elements may produce matrix effects, and also, due to the
fluctuations observed in LIBS technique associated with the instruments and sample non-uniformity,
many strategies are used for the calibration methods, such as different spectral preprocessing and
multivariate calibration models. Internal standardization is a common method used to minimize
fluctuations in LIBS technique, which consists of normalizing the analytical signal by an internal
signal. Usually, the internal element concentration must be nearly constant [18]. However, the internal
element concentration may slightly change from sample to sample, thus, the accuracy of quantitative
analysis results still needs to be improved. In chemometrics, partial least-squares regression (PLSR) is
one of the multivariate analytical techniques. It is very crucial to reduce the matrix effect when dealing
with complex sample [19].

In this work, 47 fertilizer samples provided by the compound fertilizer production line of
Hefei Hongsifang Chemical Fertilizer Plant, Anhui, China were used as the testing samples.
The concentration of phosphorus in compound fertilizerswas determined by inductively coupled
plasma (ICP). The univariate calibration was established by the LIBS intensity and the concentration
of P. Then, the internal standardization method and PLSR were used to quantitatively analyze the
phosphorus concentration. The main goal of this research is to prove that LIBS technique can be used
for on-line rapid detection of phosphorus element in compound fertilizer.

2. Materials and Methods

2.1. Sample Preparation

In this study, 47 compound fertilizer samples were collected and placed into sealed plastic bags
so as to avoid contamination by manufacturer. Since these samples had been pelletized, these samples
were smashed by using a grinder and sieved through a 60-mesh screen. 2 g powders from each
of 47 fertilizer samples was weighed. All fertilizer powders were pressed into tablets with 25 mm
diameter and 5 mm in thickness, using 5 MPa pressure for 1 min (769YP-40C, KQ, Tianjin, China).
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The actual concentration of P in these samples were analyzed by inductively coupled plasma (ICP).
The statistics of the P concentrations in compound fertilizer samples was listed in Table 1.

Table 1. Statistics of the Effective Constituents of Compound Fertilizer Samples.

Properties P2O5 (%)

Minimum value 46.27
Maximum value 49.22

Mean value 47.731
Standard deviation values 0.617

2.2. Experimental Setup

Figure 1 gave out the spectral acquisition system used in this experiment. The laser pulses were
generated by using a Q-switched Nd: YAG laser (ICE450, 1064 nm, 6 ns pulse duration, Big Sky
Laser Technologies, Morgan Hill, CA, USA; Note that the company has changed its name to Quantel
Laser). The laser pulse energy was 100 mJ and focused onto the sample through a lens of focal
length 5 cm. The spot size of beam was approximately 0.5 mm and the peak power density on the
surface of the compound fertilizer sample reached 2.2 GW/cm2.When the plasma generated from
the fertilizer sample, a quartz lens with 3.5 cm focal length, which was connected to a four-channel
spectrometer (Avantes-ULS2048-USB2, Avantes, Apeldoorn, The Netherlands) via a 200-µm diameter
optical fiber, was used to collect the spectra from the plasma. The spectrograph signal was integrated
with a charge-coupled device detector. This spectrometer can simultaneously take all spectra in
the wavelength ranges of 190–510 and 690–890 nm, and the resolution of the spectrometer was
approximately 0.1 nm. The laser Q-switch output was used to trigger the spectrometer, and the
spectrometer has a digital delay generator, which can control the gate delay. Here, the Q-switched delay
time selected for spectra acquisition was 1.28 µs and the integration time was 1.05ms (spectrometer
minimum integration time) [20]. A rotary platform on which the fertilizer sample was placed was
rotated uniformly to avoid continuous ablation of the same spot. During the experiment, each sample
was measured eight times, and each spectrum collected was an average of 20 laser spot, and during
each measurement, the fertilizer sample rotated once by adjusting the speed of the stepper motor.
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2.3. Chemometrics Methods

In LIBS technique, the calibration curve method, also called univariate analysis, is a traditional
quantitative analysis method. The element characteristic line intensity is proportional to the
concentration in the sample, when there is no self-absorption [21]. Therefore, the calibration curve can
be established by the element concentration and the intensity of LIBS signal. Then, the concentration of
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an unknown sample can be calculated according to the calibration curve. However, due to the matrix
effect, this method is not suitable for quantitative analysis of complex sample. Internal standardization
is usually used for quantitative analysis in LIBS technique, which can improve the accuracy of LIBS
technique and reduce the fluctuations observed in LIBS measurements, but, there are some principles
for selecting the internal standard element [22]. The concentration of the internal standard element
should be approximately constant, and the wavelength of the internal standard element should be
close to the analytical element. In addition, the excitation potential should be similar for the internal
standard element and the analytical element. The coefficient of determination and the root mean
squared error, for the calibration set and validation set, were adopted to evaluate the performance of
the internal standardization model.

PLSR is widely used for quantitative analysis of LIBS spectra in recent years [23,24]. This method
performs quantitative spectral analysis by selecting latent variables [25,26]. Therefore, it is very
important to select the latent variables, which directly determined the predictive performance of the
calibration model. The PLSR model was established by the LIBS signal intensity and the concentration
of P for fertilizer samples. In order to avoid the overfitting of the PLSR model, and also to obtain a
reliable and robust PLSR model, full cross-validation was applied. The number of latent variables was
determined when the mean squared error was minimum. Furthermore, the statistic parameters for
evaluating the performance of PLSR model include the determination coefficient for calibration (RC

2)
and prediction (RP

2), the root mean square error for calibration (RMSEC) and prediction (RMSEP), and
residual predictive deviation (RPD) [27]. All data processing procedures were compiled with MATLAB.

3. Results

3.1. Spectral Analysis

The LIBS spectrum of the compound fertilizer pellet (No.1 sample) in the ranges of 210–220 and
250–260 nm is shown in Figure 2, which includes the emission lines of silicon (Si) and P. Compound
fertilizer production enterprises generally use phosphate ore as raw material. Thus, Si is one of the
main ingredients of compound fertilizers, and the characteristic lines of Si are 212.4 nm, 221.1 nm, and
221.7 nm according to the National Institute of Standards and Technology (NIST) database. It can be
seen from Figure 2 that the compound fertilizer sample contains abundant characteristic lines of P
element. The feature spectral lines of P element detected by LIBS were 213.6 nm, 214.9 nm, 215.4 nm,
253.4 nm, 253.6 nm, 255.3 nm, and 255.5 nm. The characteristic lines of 253.4 nm and 253.6 nm are
interfered by the characteristic line of Fe element in the compound fertilizer. The adjacent peaks of the
two characteristic lines of 255.3 nm and 255.5 nm can be clearly distinguished, and Lorentz double
peak fitting is needed when fitting the line intensity. The characteristic lines of 213.6 nm, 214.9 nm and
215.4 nm are not disrupted by other elements.
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Figure 2. LIBS spectrum of compound fertilizer sample in the ranges of 210–222 and 252–258 nm
(n = 20).
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In order to obtain a stable signal, the focus of laser beam was adjusted at the position of the
fertilizer sample. When the laser focus located on the surface of the fertilizer sample, the distance was
recorded as d = 0 mm. Then, the laser focusing system was adjusted, each time moving the laser focus
to the surface of the fertilizer sample 1 mm, up to 8mm. The P: 213.6 nm was selected as the analytical
line, the relationship of the line intensity and the signal-to-background ratio (SBR) with the laser focus
position was shown in Figure 3. The maximum value of the line intensity and the SBR of P were all
located at 3 mm below the surface of the fertilizer sample. When the focus of the laser beam gradually
moved downward from the surface of the fertilizer sample, the laser pulse energy was more absorbed
by the sample, so that the ablation amount was gradually increased, more atoms and ions were in an
excited state. But, as the distance between the laser pulse focus and the surface of the fertilizer sample
further increased, the radiant power of the laser pulse on the surface of the fertilizer sample gradually
decreased, so that the ablation amount of the composite fertilizer sample decreased. However, when
the focus of the laser pulse moved down to a certain distance, it was basically difficult to break down
the fertilizer sample, so the line intensity and the SBR of the phosphorus element tended to be stable.
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3.2. Univariate Analysis

Before modeling, 47 fertilizer samples were split into a calibration set (36 samples) and a prediction
set (11 samples) based on the K-S method. The univariate calibration model was constructed by the
line intensity (the height of Lorentz fits) of P versus the corresponding concentration [28]. The content
of P is in the range of 46.27–49.22%. Figure 4a–c show the calibration curve of three characteristic
lines of P. The spectral line (P: 213.6 nm) that obtained the best modeling result was applied for
subsequent analysis. Figure 4a indicates the linear trend between line intensity and concentration with
a coefficient of correlationof 0.854. For the prediction set, 11 fertilizer samples were used to estimate
the prediction accuracy of the LIBS technology. The predicted content of samples can be obtained by
taking the line intensity into the calibration fitting curve. The relation between the reference content
and LIBS-predicted content for P is shown in Figure 4d, with an R2 value of 0.923. Although the
relative error of the prediction set is not very large, but the correlation coefficient should be improved
for further quantitative analysis.

3.3. Multivariate Analysis

According the principles for selecting the internal standard element, the characteristic line of
Si 212.4 nm was selected as the internal standard line. The internal standard curve was constructed
by calculating the lineintensity ratio of the analytical element and the internal standard element.
The ratio of P line intensity (213.6 nm) to that of Si (212.4 nm) versus the concentration of P in fertilizers
was used for calibration. Figure 5a shows the internal standard curve for P element. The value
of R2 was obviously improved to 0.932 from 0.854. Similar to the univariate calibration method,
the sample content of prediction set were calculated. Figure 5b shows the relation between the
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reference concentration and LIBS predictedconcentration for P, with R2 changing from 0.923 to 0.946.
The range of relative error was 0.04–0.65%, which was improved with the univariate calibration
method. These results indicate that the internal standard method can partly eliminate the instability of
the LIBS signal, but the detection sensitivity and the prediction accuracy still need to be improved.
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(b) comparison of P content predicted by LIBS and the referencevalue (ICP).

Because of the complex fertilizer matrix, the analysis focusing only on one line intensity of an
element might result in the loss of valid information, which cannot meet the requirements of the
quantitative analysis of LIBS. PLSR is one of the multivariate analytical techniques, which can make
full use of the spectral information, reduce the matrix effect and improve the accuracy of quantitative
analysis. Sample sets were the same as those of the above univariate model and internal standard
model. Calibration set was used to construct a model correlating the LIBS signal and the concentration
of P; this correlation can later be used to predict concentrations of prediction set. In order to improve
the processing speed and avoid overfitting of the model, a proper spectral range was selected for
modeling analysis. A reduced spectral range from the full spectrum, which included most of the strong
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lines of P, was taken into account for PLSR model. The reduced wavelength ranges from 210 to 260 nm
for P was used to obtain calibration model. The MATLAB software was used for PLSR. Seven principal
components are used to construct the PLSR model. Figure 6a–b shows the calibration and prediction
results of PLSR model for P, respectively.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 9 

 

Because of the complex fertilizer matrix, the analysis focusing only on one line intensity of an 
element might result in the loss of valid information, which cannot meet the requirements of the 
quantitative analysis of LIBS. PLSR is one of the multivariate analytical techniques, which can make 
full use of the spectral information, reduce the matrix effect and improve the accuracy of 
quantitative analysis. Sample sets were the same as those of the above univariate model and internal 
standard model. Calibration set was used to construct a model correlating the LIBS signal and the 
concentration of P; this correlation can later be used to predict concentrations of prediction set. In 
order to improve the processing speed and avoid overfitting of the model, a proper spectral range 
was selected for modeling analysis. A reduced spectral range from the full spectrum, which 
included most of the strong lines of P, was taken into account for PLSR model. The reduced 
wavelength ranges from 210 to 260 nm for P was used to obtain calibration model. The MATLAB 
software was used for PLSR. Seven principal components are used to construct the PLSR model. 
Figure 6a–b shows the calibration and prediction results of PLSR model for P, respectively. 

46.0 46.5 47.0 47.5 48.0 48.5 49.0 49.5
46.0

46.5

47.0

47.5

48.0

48.5

49.0

49.5

Adj R2=0.977
Calibration set
(a)
PLSR

LI
B

S 
pr

ed
ic

te
d 

co
nt

en
t(%

)

Reference content(%)
46.8 47.1 47.4 47.7 48.0 48.3 48.6

46.8

47.1

47.4

47.7

48.0

48.3

48.6
Adj R2=0.976
Predication  set
(b)
PLSR

LI
B

S 
pr

ed
ic

te
d 

co
nt

en
t(%

)

Reference content(%)  
Figure 6. Comparison between LIBS predicted value (PLSR model) and reference value 
presented in (a) thirty-six calibration samples and (b) eleven prediction samples. 

It can be seen from Figure 6 that most of the calibration and prediction data points were 
distributed around the fitting curve, which indicating that the PLSR model performed well in 
predicting of P content. The major statistic parameters that determine capacity of the regression 
model are RC2, RP2, RMSEC, RMSEP and RPD. All of the parameters for both calibration and 
prediction sets are presented in Table 2. The determination coefficient for calibration set (RC2) was 
changed from 0.932 to 0.977, while for prediction (RP2) set was improved to 0.976 from 0.946. The 
slope for both the calibration and prediction sets was close to one, which showed a strong correlation 
between predicted and reference values. Meanwhile, the value of RMSEC and RMSEP were 0.117 
and 0.113, respectively, which was better than the results reported by S.C. Yao et al. [16]. In [16], the 
RMSEC was 0.234, and in this case, RPD value exceeded 5, which suggesting that the established 
prediction models can be employed for robust quantitative analysis. In real agricultural applications, 
the measured value of P content in compound fertilizer is 1.5% plus or minus the standard value, 
and the absolute difference between different laboratory measurements is not more than 0.5% (ISO 
5315: 1984, MOD). In this paper, the difference between the predicted value of LIBS and the 
reference value isin the range of 0.02%–0.32%, which can fit the requirement. The total relative error 
for calibration and prediction set was 5.83% and 2.08%, respectively, which was better than the 
results reported by Bruno S. Marangoni et al. [14]. In [14], the average error of 15% found in 
cross-validation of LIBS quantification appeared feasible for P quantification in fertilizers. It is 
demonstrated that PLSR model can be developed to predict the concentrations of unknown samples. 
Thus, the measurement accuracy of this result can meet the measurement requirements [29]. 

Table 2. R2 Regression Coefficients, RMSEC, RMSEP, RPD for Calibration and Prediction 
Curve. 

Parameters RC2 RMSEC RP2 RMSEP RPD 

Figure 6. Comparison between LIBS predicted value (PLSR model) and reference value presented in
(a) thirty-six calibration samples and (b) eleven prediction samples.

It can be seen from Figure 6 that most of the calibration and prediction data points were distributed
around the fitting curve, which indicating that the PLSR model performed well in predicting of P
content. The major statistic parameters that determine capacity of the regression model are RC

2,
RP

2, RMSEC, RMSEP and RPD. All of the parameters for both calibration and prediction sets are
presented in Table 2. The determination coefficient for calibration set (RC

2) was changed from 0.932
to 0.977, while for prediction (RP

2) set was improved to 0.976 from 0.946. The slope for both the
calibration and prediction sets was close to one, which showed a strong correlation between predicted
and reference values. Meanwhile, the value of RMSEC and RMSEP were 0.117 and 0.113, respectively,
which was better than the results reported by S.C. Yao et al. [16]. In [16], the RMSEC was 0.234, and
in this case, RPD value exceeded 5, which suggesting that the established prediction models can be
employed for robust quantitative analysis. In real agricultural applications, the measured value of P
content in compound fertilizer is 1.5% plus or minus the standard value, and the absolute difference
between different laboratory measurements is not more than 0.5% (ISO 5315: 1984, MOD). In this
paper, the difference between the predicted value of LIBS and the reference value isin the range of
0.02%–0.32%, which can fit the requirement. The total relative error for calibration and prediction set
was 5.83% and 2.08%, respectively, which was better than the results reported by Bruno S. Marangoni
et al. [14]. In [14], the average error of 15% found in cross-validation of LIBS quantification appeared
feasible for P quantification in fertilizers. It is demonstrated that PLSR model can be developed to
predict the concentrations of unknown samples. Thus, the measurement accuracy of this result can
meet the measurement requirements [29].

Table 2. R2 Regression Coefficients, RMSEC, RMSEP, RPD for Calibration and Prediction Curve.

Parameters RC
2 RMSEC RP

2 RMSEP RPD

Values 0.977 0.117 0.976 0.113 5.31

4. Discussion

In this paper, the LIBS technique was used for univariate and multivariate analyses of P element in
compound fertilizers. Forty-seven samples were provided by Hongsifang production. The calibration
curve was established based on the three selected emission lines and the concentration of P. The results
showed that the characteristic line of 213.6 nm was most suitable for establishing calibration curves.
Due to the occurrence of matrix effects, the prediction accuracy of the method could not be achieved
by applying the univariate calibration method, which only using IP as the variable. The internal
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standardization method based on Si was naturally present in the samples, which showed the proper
correction of the P signal. The internal standard method was found to be better than the calibration
method because the correlation coefficient for the calibration set was changed from 0.854 to 0.932.
Moreover, the range of relative errors are 0.04–0.65%. Thus, the internal standard method can improve
the accuracy of the measurements in some extent. Then, PLSR was used as a multivariate analytical
technique for analysis of compound fertilizers in pellet form. From the results of PLSR regression,
calibration and prediction models were obtained for P element with very good correlation coefficients.
The values of RMSEC and RMSEP were 0.117 and 0.113, with RPD value of 5.31. All of these results
demonstrated that the PLSR regression method can improve the accuracy of LIBS measurement,
and the results in this study can provide the basis of real-time analysis of P in compound fertilizer.
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