
sensors

Article

Hierarchical Multi-Scale Convolutional Neural
Networks for Hyperspectral Image Classification

Simin Li 1, Xueyu Zhu 2 and Jie Bao 1,*
1 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;

lism14@mails.tsinghua.edu.cn
2 Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA; xueyu-zhu@uiowa.edu
* Correspondence: bao@tsinghua.edu.cn

Received: 2 March 2019; Accepted: 7 April 2019; Published: 10 April 2019
����������
�������

Abstract: Deep learning models combining spectral and spatial features have been proven to be
effective for hyperspectral image (HSI) classification. However, most spatial feature integration
methods only consider a single input spatial scale regardless of various shapes and sizes of
objects over the image plane, leading to missing scale-dependent information. In this paper,
we propose a hierarchical multi-scale convolutional neural networks (CNNs) with auxiliary classifiers
(HMCNN-AC) to learn hierarchical multi-scale spectral–spatial features for HSI classification.
First, to better exploit the spatial information, multi-scale image patches for each pixel are generated
at different spatial scales. These multi-scale patches are all centered at the same central spectrum but
with shrunken spatial scales. Then, we apply multi-scale CNNs to extract spectral–spatial features
from each scale patch. The obtained multi-scale convolutional features are considered as structured
sequential data with spectral–spatial dependency, and a bidirectional LSTM is proposed to capture the
correlation and extract a hierarchical representation for each pixel. To better train the whole network,
weighted auxiliary classifiers are employed for the multi-scale CNNs and optimized together with
the main loss function. Experimental results on three public HSI datasets demonstrate the superiority
of our proposed framework over some state-of-the-art methods.

Keywords: hyperspectral image (HSI) classification; convolutional neural networks (CNNs);
bidirectional LSTM; multi-scale features

1. Introduction

Hyperspectral images (HSIs) [1] often contain hundreds of spectral bands varying from visible
wavelength to short infrared light. This rich information enables us to distinguish different materials
which look similar to the naked eye or the conventional RGB cameras. To benefit from this type of
data, HSI classification has become one of the most important tasks for various applications [2–6] and
many classification methods have been proposed.

In the last decades, many pattern recognition approaches, such as decision tree [7], support vector
machine (SVM) [8], random forest [9], and maximum likelihood estimate (MLE) [10] have been utilized
to perform HSI classification. Among these traditional methods, SVM is considered as a stable and
efficient method for HSI classification since it can handle the “curse of dimensionality” problem [11]
and requires a relatively small size of training data. In recent years, contextual information [12] has
been proven to be effective for HSI classification, leading to a growing interest in the research of
joint spectral–spatial features. Earlier methods include Gabor filters [13], gray-level co-occurrence
matrices [14] and mathematical morphological profiles [15]. Though these methods could improve
the classification results to some extent, the handcrafted features are strongly dependent on the prior

Sensors 2019, 19, 1714; doi:10.3390/s19071714 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9596-6227
http://www.mdpi.com/1424-8220/19/7/1714?type=check_update&version=1
http://dx.doi.org/10.3390/s19071714
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 1714 2 of 20

information assumed by the practical practitioners. Besides, the obtained joint spectral–spatial features
are relatively shallow and have a poor adaption to the spatial environment changes.

More recently, deep neural networks have attracted much attention due to their excellent
performances in computer vision tasks [16–18]. Motivated by these successful applications, deep
learning models have also been introduced to remote sensing field. At the early stage, deep belief
networks (DBNs) [19] and stacked autoencoders (SAEs) [20] were first applied in HSI classification
by Chen. The whole training process contains two phases, namely unsupervised pre-training and
supervised classification. During the unsupervised pre-training process, the parameters of the whole
network have been initialized to a relatively optimized stage, then they are fine-tuned given the
labels through a supervised logistic regression classifier. Later, convolutional neural networks (CNNs)
were introduced to HSI classification and have been widely applied due to its ability of hierarchically
extracting deeper features with much fewer parameters. Hu et al. [21] constructed a 1D CNN containing
convolutional layers, pooling layers and fully connected layers to extract deep spectral features for
each pixel. Later, Makantasis et al. [22] applied CNNs to spatial dimension to include spatial features
and obtained a joint spectral–spatial representation. Moreover, to reduce the computation complexity,
principal component analysis (PCA) has been applied to HSI cube first for dimension reduction. In [23],
Chen et al. proposed a 3D-CNN model where the convolutional operation is conducted simultaneously
on both spectral and spatial dimensions.

As an important branch of deep neural networks, recurrent neural networks (RNNs) [24] have
gained significant attention for their unique remembering ability and excellent performance in dealing
with structured sequential data in recent years. Since the spectral dimension of HSI has strong
correlation and the temporal variability of a sequential signal is similar to the spectral variability
of a hyperspectral pixel [25], RNNs have also been introduced to HSI classification field. In [25],
the spectrum of each hyperspectral pixel is treated as a sequential data for the first time and the
authors utilized a modified gated recurrent unit (GRU) network to model the spectral dependency
and produce the classification results. In [26], Zhou et al. applied a long-short-term-memory (LSTM)
network to extract spectral features and spatial features respectively, and obtained joint spectral–spatial
classification results.

Although these DL-based methods have made substantial improvements, seldom of them ever
consider the scale variation problems in remote sensing images (e.g., roofs with different shapes and
sizes), leading to the strong dependency on the empirical parameters (e.g., window size). Since the
objects in HSI plane have various sizes and shapes, conventional methods with the single input
scale as mentioned above might fail to capture crucial scale-dependent features [27] over the image
plane. Therefore, it is difficult to assign appropriate parameters to generate spatial features for all
kinds of objects. To address this problem, multi-scale contextual and structural information in the
spatial domain requires to be considered. In [28], Zhao proposed multi-scale convolutional neural
networks (MCNNs) which utilizes the first three principal components (PCs) of HSI to generate
pyramid image samples at each PC respectively and trained these image samples for spatial features.
Then he concatenated the obtained spatial features with spectral information and applied majority
voting for the final classification. Although the scale features were obtained in this method, the inherent
spatial dependency among different spatial scales are failed to discuss.

Motivated by this, we proposed a novel deep learning framework, namely hierarchical multi-scale
CNNs with auxiliary classifiers (HMCNN-AC) for HSI classification in this paper. As mentioned above,
the single input spatial scale would limit the observation field and fail to capture the scale-dependent
information. Hence, a multi-scale feature extraction technique is introduced to address this problem.
First, multi-scale hyperspectral patches for each pixel are generated with various spatial scales. Then we
apply multi-scale CNNs to these input patches to extract spectral–spatial features at different input
scales simultaneously. Since these multi-scale patches are spatial-dependent and share the same central
spectrum with the same class label, the extracted multi-scale features are considered as sequential
structured data with spatial–spectral correlation. Thus, a bidirectional LSTM is adopted to characterize

Sensors 2019, 19, 1714 3 of 20

the sequential property and extract a hierarchical representation for each hyperspectral pixel. To better
train the whole network, auxiliary classifiers are added as constraints for the multi-scale CNNs and
optimized together with the main loss during the training process. The main contributions of this
paper are summarized as follow:

1. An end-to-end framework (HMCNN-AC) combining multi-scale CNNs and a bidirectional LSTM
is proposed to generate discriminative features with spectral information, spatial information
and scale-dependency for HSI classification.

2. To address the limitation of the single input spatial scale and effectively utilize the spatial
contexture, a multi-scale CNN based technique is introduced to extract spectral–spatial features
at various input scales simultaneously. In this way, different shapes and sizes of objects in HSI
could be considered during classification and the multi-scale features will make the performance
more robust compared with the single scale input.

3. A bidirectional LSTM is proposed to capture the dependency and correlation between
the obtained multi-scale features from a sequential perspective and output a hierarchical
representation for each pixel. Compared with the conventional concatenation method to
simply concatenate multi-scale features together, we can make full use of the correlation
between multi-scale features without losing scale-dependent information by adopting the
bidirectional LSTM.

4. In order to better train the whole network, weighted auxiliary classifiers are employed for
multi-scale convolutional features and optimized together with the main loss during the training
process. This helps to fully optimize the parameters in multi-scale CNNs and obtain robust
convolutional features without adding too many extra parameters.

The rest of the paper is organized as follows. Section 2 reviews the classical deep learning models
used in this paper, namely CNNs and LSTM networks. In Section 3, we give a detailed description of
our proposed HMCNN-AC framework. Experimental analysis and a comparative evaluation of other
baseline methods are reported in Section 4. Section 5 presents the final conclusion and gives directions
to the future work.

2. Background of CNNs and LSTM

2.1. CNNs

Convolutional neural networks (CNNs) have attracted much attention due to their outstanding
performance in computer vision tasks [29,30]. Typical CNNs consist of convolutional layers, pooling
layers, and a fully connected layer. The convolutional layers are composed of multiple convolutional
kernels. Each kernel is a weight matrix and generates a distinct feature map via the convolutional
operation with the input, which can be formulated as:

xj
i = F(W j

i ∗ xi−1 + bj
i), (1)

where xj
i is the jth channel’s feature map of the present layer i, W j

i is the jth convolutional kernel

matrix at layer i, bj
i is the bias term, xi−1 is the output feature maps of the (i− 1)th convolutional layer,

the symbol ∗ represents convolutional operation, and F(·) is an activation function.
Pooling layers are often after the convolutional layers to further reduce the redundancy by

partitioning the input data into a set of non-overlapped sub-regions and returning the average or
maximum values locally. Both convolutional layers and pooling layers can be repeated multiple times
to obtain the representative features. Finally, a fully connected layer is followed to further process the
extracted features and a multinomial logistic regression (MLR) layer is added at the end to convert the
output convolutional features into category or regression results.

Sensors 2019, 19, 1714 4 of 20

2.2. LSTM and Bidirectional LSTM

Recurrent neural networks (RNNs) are an important class of deep neural networks which has
“memory” functionality and can remember past state information while dealing with the current state.
This powerful function makes RNNs extremely suitable for processing sequential inputs. However,
the traditional RNNs are difficult to train in practice due to the vanishing or exploding gradient [31].

To address this issue, the long short-term memory (LSTM) network [32] was developed to capture
the long-term dependencies by designing a more sophisticated recurrent unit. The diagram of a basic
LSTM building block is presented as Figure 1. Compared with the traditional RNNs, LSTM explicitly
introduces a memory cell into the network together with some control gates to decide the information
flow. As we can see, every unit of the network takes three inputs, namely the current input data xt,
the previous hidden state ht−1 and the previous memory cell ct−1. Then we use them to calculate the
following values. The current hidden state ht is obtained by:

ht = ottanh(ct), (2)

where tanh(·) is the hyperbolic tangent function [33] and ot is the output gate at current state which
determines the percentage of the exposed memory content. The ot is determined as:

ot = σ(Woixt + Wohxt + bo), (3)

where the σ(·) is the sigmoid function, Woi and Woh represent the weight matrices of the input-output
and the hidden-output respectively, and bo is the bias of this layer. The ct is the memory cell of the
current state and it is updated by adding some new content of the candidate memory cell c̃t and
discarding part of the previous memory cell ct−1, as described in Equation (4):

ct = it � c̃t + ft � ct−1, (4)

where the input gate it controls the extent to which the candidate memory cell c̃t will be added to the
current memory cell ct, and the forget gate ft modulates the percentage of the previous memory cell
ct−1 should be forgotten. The operation � is an element-wise multiplication and the new candidate
memory cell c̃t is obtained by:

c̃t = tanh(Wcixt + Wchht−1 + bc). (5)

× +

		/ 		/
×

	"01! 		/

	"01!
×

&"
!"#$

2"#$
!"

!"

3" 4" 25" 6"

2"

LSTM	
cell

&"#$

!"#$

LSTM	
cell

&"%$

!"%$

Figure 1. A basic cell of LSTM. By explicitly introducing a memory cell ct together with some control
gates ft, it and ot to decide the information flow, LSTM can capture long-term dependencies of the
sequential inputs.

The input gate it and forget gate ft are calculated as follows:

it = σ(Wiixt + Wihht−1 + bi), (6)

Sensors 2019, 19, 1714 5 of 20

ft = σ(W f ixt + W f hht−1 + b f). (7)

The LSTM explores the dependencies of a current state with the previous states. However, when it
comes to the non-time sequential vectors, the dependencies exist in both the forward direction and the
backward direction. To solve this problem, a bi-directional LSTM [34] was proposed to utilize both
forward and backward relationship of a sequential data. In that case, we first apply a forward LSTM
to the input sequence to obtain a forward output, and then a backward LSTM is applied to obtain
a backward output. The final output of this layer is a concatenated version of the forward vector and
the backward vector.

3. Proposed Methods

In this section, we give a detailed description of our proposed hierarchical multi-scale CNNs
with auxiliary classifiers (HMCNN-AC) for HSI classification. The whole framework is shown in
Figure 2. To solve the limitation of the single input scale in conventional methods, multi-scale CNNs
are employed to extract multi-scale convolutional features at different spatial scales. In addition, to
fully explore the dependency and correlation of the obtained multi-scale features, a bidirectional LSTM
is adopted to characterize the sequential property and extract a hierarchical representation for each
hyperspectral pixel. Moreover, to better train the whole network, weighted auxiliary classifiers
are employed for these multi-scale convolutional features. The whole framework is trained in
an end-to-end supervised manner and all the parameters are optimized by mini-batch stochastic
gradient descent (SGD) algorithm [35].

Multi-scale patches

w*w

5*5

3*3

1*1

Multi-scale
features

MLR

MLR

MLR

MLR

MLR

Auxiliary
classification

Final output

HSI Data

𝑓"

𝑓#

𝑓$

𝑓%

…
…

…
…

…
…

…
…

P1

P2

P3

PS

label

C
onv

R
eLU

Multi-scale CNNs

C
onv

R
eLU

C
onv

R
eLU

C
onv

R
eLU

C
onv

R
eLU

Bidirectional
LSTM

Figure 2. The architecture of the proposed HMCNN-AC consisting of multi-scale CNNs and
a bidirectional LSTM. For each pixel in HSI, the generated multi-scale patches are sent to the multi-scale
CNNs with auxiliary classifiers to extract multi-scale spectral–spatial features, then a bidirectional
LSTM is employed to explore the scale-dependency of multi-scale features and output a hierarchical
representation for the final supervised classification.

Sensors 2019, 19, 1714 6 of 20

3.1. Multi-Scale Convolutional Feature Extraction

Traditional CNNs can only extract deep spectral–spatial features from receptive fields with
one single input scale. Since objects in remote sensing images often appear with various shapes
and sizes, the fixed input scale will limit the effectiveness of spatial feature integration and fail to
capture the scale-dependent information. In order to accommodate the objects with different scales
and effectively utilize the spatial contexture, multi-scale CNN based technique is introduced to our
proposed framework. Specifically, our multi-scale convolutional feature extraction is composed of two
main phases: multi-scale patches generation and convolutional feature extraction.

To construct multi-scale patches, a sub-region image set with S scales {Ps}S
s=1 is generated for

each pixel from the original HSI cube. The first scale patch P1 is just the central spectrum itself with the
size of 1× 1×D, where D represents the number of spectral bands. The second scale patch P2 contains
P1 but with a larger spatial scale of 3× 3× D. In that case, an upper scale patch always contains the
lower scale patches, which results in a spatial dependency among multi-scale patches. Our last scale
patch Ps contains all the lower patches with a size of w× w× D, where w is the largest input scale,
namely the original input window. The window size w is carefully selected so that it would include
enough spatial information without increasing the outliers’ disturbance and the computing complexity.
For each pixel, all these generated multi-scale patches are spatial-dependent and share the same central
spectrum with the same class label, as seen in Figure 2. By utilizing multi-scale patches, we would
not only take multi-scale spatial information into account, but also put more emphasis on the central
spectra and reduce the unwanted noise.

In our second phase, we perform convolutional operations on the generated multi-scale patches
to extract spectral–spatial features at different input scales. To preserve as much spatial information
as possible, we exclude pooling layers from the multi-scale CNNs and treat each scale patch as
a conventional image with multiple channels on its own [23,36,37]. The convolutional operator is
formulated as below:

xj
i = F(W j

i ∗ xi−1 + bj
i), (8)

where xj
i denotes the jth feature map at the ith layer; xi−1 is the output of the (i− 1)th convolutional

layer; F(·) stands for the activation function; bj
i refers to the bias term; and W j

i is the jth convolutional
kernel at the layer i with the depth equaling to the channel number of xi−1. For the first convolutional
layer, the depth of W j

1 equals to the number of spectral bands D. The detailed architecture description
of the multi-scale CNNs is listed in Table 1. For the proposed model, we adopt the ReLU [38] function
as the activation function which is defined as follow:

F(x) = max(0, x). (9)

Table 1. The network architectures of multi-scale CNNs. For multi-scale input patches {Ps}S
s=1 with

various input scales, the detailed structures of each sub-network including the numbers of convolution
layers, kernel sizes and kernel numbers are specified.

Layer No. P1(1 × 1) P2(3 × 3) P3(5 × 5) P4(7 × 7) P5(9 × 9) P6(11 × 11) P7(13 × 13) P8(15 × 15)

1 1× 1× 32 1× 1× 32 3× 3× 32 3× 3× 32 3× 3× 32 3× 3× 32 3× 3× 32 3× 3× 32
2 1× 1× 32 3× 3× 32 3× 3× 32 3× 3× 32 3× 3× 32 3× 3× 32 3× 3× 32 5× 5× 32
3 3× 3× 64 5× 5× 64 3× 3× 64 5× 5× 32 5× 5× 64
4 5× 5× 64 5× 5× 64 5× 5× 64

After the convolutional layers, we adopt a fully connected layer for each spatial scale to obtain the
multi-scale convolutional features f1, f2, ..., fS for each pixel. Since these multi-scale features contain
discriminative characteristics from both spectral dimension as well as their respective spatial scales,
we can use them to improve the HSI classification results.

Sensors 2019, 19, 1714 7 of 20

3.2. Hierarchical Feature Learning

A conventional way to process the obtained multi-scale convolutional features is to concatenate
them together into a 1-D vector directly. However, this simple concatenation-based method ignores the
inherent correlation of the multi-scale features and will lead to the loss of scale-dependent information.
Since the multi-scale patches for each pixel are spatial-dependent and share the same central spectrum
with the same class label, we consider the extracted multi-scale features as sequential structured
data with spatial–spectral dependency. Thus, a bidirectional LSTM is proposed to characterize the
sequential property and extract a hierarchical representation for each hyperspectral pixel.

We apply one or two layers of bidirectional LSTM to the obtained multi-scale features fconv,
depending on the performance of different HSI datasets:

f = BiLSTM(fconv), (10)

where fconv = [f1, f2, ..., fS] is the multi-scale convolutional feature sequence with length S, S is the
scale number of generated multi-scale patches for each pixel; and BiLSTM is the bidirectional LSTM
operation which is introduced in Section 2. The obtained hierarchical feature f is regarded as the most
representative feature for each pixel and will be used for the final HSI classification.

3.3. Label Prediction

After the multi-scale CNNs and the bidirectional LSTM networks, we feed the output feature f to
a MLR layer for the final classification. The output size of the MLR is the same as the total number of
HSI classes and we use the Softmax function [39] as the activation function. The label of each pixel is
determined by the class with the largest probability:

y = Φ(WMLR f + bMLR), (11)

where WMLR and bMLR are the weight matrix and bias of the MLR layer, y is the predicted label and
Φ(·) is the MLR function which is defined as:

Φ(x) = argmax
i

(
exi

∑j exj
). (12)

3.4. Weighted Auxiliary Classifiers

A main difference between our proposed method and the traditional deep learning-based HSI
classification methods is the adoption of the weighted auxiliary classifiers for our multi-scale CNNs.
The motivation of employing these auxiliary classifiers is to better train the sub-networks of the
multi-scale CNNs in our proposed architecture and acquire robust multi-scale convolutional features,
especially for a deep model consisting of two neural networks. Since the final output feature f is
closer to the bidirectional LSTM part, the parameters in the bidirectional LSTM might have a dominant
position during the training process, while the parameters in the multi-scale CNNs may not get
fully optimized.

To address this issue, auxiliary classifiers are added as constraints for the multi-scale convolutional
features to perform sub-classification. The predicted label for each multi-scale feature is given as:

yi = Φ(Wi
aux fi + bi

aux), (13)

where fi is the ith scale convolutional feature from the multi-scale CNNs and i = 1, 2, ..., S, Wi
aux and

bi
aux are the weight matrix and bias of ith auxiliary classifier, Φ(·) is the MLR function which produces

the ith auxiliary predicted label yi. The total loss L of our proposed HMCNN-AC contains one main

Sensors 2019, 19, 1714 8 of 20

loss Lmain as well as S weighted auxiliary losses Li
aux, and measures the total difference between the

predicted outputs and the real labels, which is defined as:

L = Lmain +
S

∑
i=1

αiLi
aux, (14)

where Lmain is the main loss of the whole framework, Li
aux is the ith auxiliary loss for the i-th scale

convolutional feature fi; αi is the weight for its corresponding auxiliary loss and will be discussed
in later experiments; S is the number of multi-scale features. The whole network is trained in
an end-to-end manner and all the parameters are optimized simultaneously by minimizing the total
loss function L.

4. Experimental Results and Analysis

In order to evaluate our proposed model, three publicly available HSI datasets [40] are utilized to
perform classification. We choose several other HSI classification methods, including SVM, extended
morphological profiles with SVM (EMP-SVM) [15], stacked autoencoder (SAE-PCA) [20], CNN-based
structure on spatial dimension (CNN-MLR) [22], LSTM [25] and MCNN [28], as baselines for
a comparative evaluation. To evaluate the effectiveness of the adopted auxiliary classifiers and
the bidirectional LSTM in our proposed method, we also construct two other frameworks based on our
original proposed HMCNN-AC architecture, namely HMCNN and MCNN-AC, and compare their
classification results with other baseline methods.

For the evaluation metrics of all methods above, we adopt overall accuracy (OA), average accuracy
(AA), and κ coefficient [41] to measure the performance. OA is the overall accuracy for all classes and
is defined as follow:

OA =
∑i x(i)test,correct

N
, (15)

where x(i)test,correct is the i-th correctly classified test sample, N is the total number of test samples.
AA represents the averaged accuracy of each class, and is defined as:

AA =
1
M

M

∑
i=1

∑j=1 x(j)
i

Ni
, (16)

where M is the class number of each dataset, Ni is the total test sample number of the i-th class,
and x(j)

i,correct is the j-th correctly classified test sample of class i. Kappa coefficient [41] is a statistical
measurement of agreement degree, referred as κ. The higher of all our measurement metrics the better
of the classification performance. The experiments are performed on a desktop PC equipped with
an Intel Core 5 CPU and four GTX 1080 GPUs.

4.1. Dataset Description

We choose Salinas, Pavia University (PaviaU) and Kenned Space Center (KSC) as our evaluation
datasets and their corresponding false-color images and ground truth maps are shown as Figures 3–5.
Considering the dataset sizes, we randomly select 5% labeled samples of each class from Salinas and
PaviaU as training sets and use the rest 95% samples as test sets. As for KSC, 10% samples of each
class are chosen for training and the rest 90% samples for testing.

Sensors 2019, 19, 1714 9 of 20

Brocoli_green_weeds_1

Brocoli_green_weeds_2

Fallow

Fallow_rough_plow

Fallow_smooth

Stubble

Celery

Grapes_untrained

Soil_vinyard_develop

Corn_senesced_green_weeds

Lettuce_romaine_4wk

Lettuce_romaine_5wk

Lettuce_romaine_6wk

Lettuce_romaine_7wk

Vinyard_untrained

Vinyard_vertical_trellis

Figure 3. Salinas dataset description. The false-color image is generated from spectral band 52, 25, 10
and the groundtruth map together with the respective classes are displayed.

Asphalt

Meadows

Gravel

Trees

Painted metal sheets

Bare Soil

Bitumen

Self-Blocking Bricks

Shadows

Figure 4. PaviaU dataset description. The false-color image is generated from spectral band 56, 28, 5
and the ground truth map together with the respective classes are displayed.

Scrub

Willow swamp

CP hammock

CP/Oak

Slash pine

Oak/Broadleaf

Hardwood swamp

Graminoid marsh

Cattail marsh

Salt marsh

Mud flats

Water

Spartina marsh

Figure 5. KSC dataset description. The false-color image is generated from spectral band 56, 28, 5 and
the ground truth map together with the respective classes are displayed.

(1) Salinas Scene: This dataset was collected by AVIRIS sensor in 1992 which recorded the
remote sensing images of Salinas Valley, CA, USA. The hyperspectral image cube contains
512× 217 pixels in spatial dimension and 224 spectral bands. Owing to the noise’s influence,
we discarded 20 noisy bands to generate an experimental dataset with only 204 spectral dimension.
There are 16 different classes in this HSI, as shown in Figure 3. The training set and test set are
presented in Table 2.

(2) Pavia University Scene: The Pavia University Scene was a hyperspectral image dataset captured
by the reflective optics system imaging spectrometer (ROSIS) sensor in year 2001 over northern
Italy. The original image consists of 610× 340 pixels together with 103 spectral bands. Nine labeled

Sensors 2019, 19, 1714 10 of 20

material classes are available in this dataset, as shown in Figure 4. And the training data and test
data are displayed in Table 3.

(3) Kenned Space Center: Our last dataset, Kenned Space Center (KSC), was acquired by the
AVIRIS sensor in Florida on 23 March 1996. The spatial dimension of this hyperspectral image
is 512× 614 pixels and the original spectral dimension is 224 spectral bands. Due to the noisy
bands, we only use 176 bands for method evaluation. The image set contains 13 labeled categories,
which can be seen from the ground truth map in Figure 5. The training data and test data are
described in Table 4.

Table 2. Groundtruth classes for Salinas scene and the corresponding number of training samples and
testing samples for classification experiments.

Class Number Class Name Train Test

1 Brocoli green weeds 1 100 1909
2 Brocoli green weeds 2 186 3540
3 Fallow 99 1877
4 Fallow rough plow 70 1324
5 Fallow smooth 134 2544
6 Stubble 198 3761
7 Celery 179 3400
8 Grapes untrained 563 10,708
9 Soil vinyard develop 310 5893
10 Corn senesced green weeds 164 3114
11 Lettuce romaine 4 wk 53 1015
12 Lettuce romaine 5 wk 96 1831
13 Lettuce romaine 6 wk 46 870
14 Lettuce romaine 7 wk 54 1016
15 Vinyard untrained 363 6905
16 Vinyard vertical trellis 90 1717

total 2705 51,424

Table 3. Groundtruth classes for PaviaU scene and the corresponding number of training samples and
testing samples for classification experiments.

Class Number Class Name Train Test

1 Asphalt 331 6300
2 Meadows 932 17,717
3 Gravel 105 1994
4 Trees 153 2911
5 Painted metal sheets 67 1278
6 Bare Soil 251 4778
7 Bitumen 66 1264
8 Self-Blocking Bricks 184 3498
9 Shadows 47 900

total 2136 40,640

Sensors 2019, 19, 1714 11 of 20

Table 4. Groundtruth classes for KSC scene and the corresponding number of training samples and
testing samples for classification experiments.

Class Number Class Name Train Test

1 Scrub 76 685
2 Willow swamp 24 219
3 Cabbage palm hummock 26 230
4 Cabbage/oak hummock 25 227
5 Slash pine 16 145
6 Oak/broadleaf hummock 23 206
7 Hardwood swamp 11 94
8 Graminoid marsh 43 388
9 Spartina marsh 52 468
10 Cattail marsh 40 364
11 Salt marsh 42 377
12 Mud flats 50 453
13 Water 93 834

total 521 4690

4.2. Compared Methods

To demonstrate the effectiveness of our proposed HMCNN-AC, several classification approaches
are adopted. These compared approaches are based on two kinds of groups: one is based on
classical machine learning methods, which includes (RBF-)SVM and extended morphological profiles
(EMP) [15]; the other is based on deep learning models, which includes SAE-PCA (joint spectral–spatial
features) [20], CNN-MLR [22], LSTM [25], and MCNN [28]. Since the 3D-CNN method requires a long
training time, here we exclude this method.

4.2.1. Classical Machine Learning Methods

(a) The SVM method only utilizes spectral information of each pixel and we use the LibSVM [42]
for the classification in our experiments. (b) For the EMP method, spatial features are exploited
by the adoption of five opening and closing operations followed by morphological reconstruction
on the first three principal components of HSI. We use the disk structure element to perform the
morphological operations and the structure sizes range from 1 to 9. The generated features are then
sent to a conventional RBF-SVM for classification.

4.2.2. Deep Learning Based Methods

(a) For the implementation of SAE-PCA, first four PCs of each hyperspectral dataset are extracted
and flattened within a certain neighborhood region, then they are concatenated with spectral features
to obtain the joint spectral–spatial features for further processing. (b) For the CNN-MLR, the number
of PCs is determined by reserving at least 99.9% information of the original hyperspectral dataset,
then convolutional operations are applied to the reserved PCs on spatial dimension. (c) The LSTM
method only exploits spectral information and regards a spectrum as sequential data to explore the
spectral correlation within different spectral channels. (d) For MCNN, first three PCs are selected
and three spatial scale patches for each PC band are generated and down-sampled to the equally
spatial sizes for spatial feature extraction. The obtained spatial features are concatenated with
spectral information for each scale’s classification and the final results are obtained by majority
voting. Other parameter settings for SAE-PCA, CNN-MLR, LSTM and MCNN are set to the default
values in [20,22,25,28], respectively.

Sensors 2019, 19, 1714 12 of 20

4.3. Network Hyperparameters Discussion

The hyperparameters in our proposed deep model could influence the classification performance.
Except the weights in the networks can be automatically learned during the training process,
several other related hyperparameters need to be discussed, such as input scale number S, auxiliary
weights αi and layer settings in the bidirectional LSTM. In this section, we shall present the sensitivity
analysis and investigate the effects of these hyperparameters, and the overall process is shown
in Figure 6.

Figure 6. The flow chart of hyperparameter tuning process. For each HSI, we first fix auxiliary
weights αi and layer settings in Bi-LSTM, and adjust the input scale number S to find the optimal
one. Then we fix scale number S and layer settings in Bi-LSTM to find suitable auxiliary weights αi.
The same procedure goes for determining suitable layer settings in Bi-LSTM. Finally, we obtain all the
determined hyperparameters.

4.3.1. Input Scale Number S

Objects in remote sensing images often appear with various shapes and scales, it is necessary
to introduce multi-scale information into HSI classification. To quantitatively analyze the effects of
different input scales on the final accuracy of our proposed method, scale number S from 3 to 8
with its corresponding largest input window w from 5 to 15 is investigated in this section. Figure 7
shows the OA value changes with scale number S on three HSI datasets. It can be seen that OAs first
improve as the scale number S increases, but become saturated later on. On the one hand, classification
with a small S fails to collect enough scale-dependent features, resulting in relatively lower accuracy.
And a larger S allows us to consider more spatial scales, which helps to improve classification accuracy
to some extent. On the other hand, further increasing S does not further improve performance since
we already have enough spatial information. Moreover, it could incur an additional computational
expense. Accordingly, we choose a spatial scale number of S = 8 with corresponding window size
w = 15 for all three datasets.

3 4 5 6 7 8
S

0.95

0.96

0.97

0.98

0.99

Ov
er

al
l A

cc
ur

ac
y

PaviaU
Salinas
KSC

Figure 7. The curves of OA obtained by different input scale numbers S for three HSI datasets. The OAs
first arise with the increase of the input scale number S, and then become saturated for all three HSIs.
Thus, we choose the scale number S = 8 for all the HSIs for our proposed framework.

Sensors 2019, 19, 1714 13 of 20

4.3.2. Auxiliary Weights αi

The auxiliary classifiers help to better train the multi-scale CNNs and obtain robust convolutional
features. And the auxiliary weight αi is an important parameter since it determines the percentage of
each auxiliary loss Li

aux takes in the total loss L. In this study, we investigate the effects of auxiliary
weights on the final classification results. To simplify the experiment, the auxiliary weights for each
spatial scale are set to be equal αi = α. Since the upper-scale patches always contain the lower-scale
patches and we want to yield prediction of the central spectrum, equal weights assignment allows
us to put more emphasis on the central spectra and reduce the unwanted noise. Specially, we set α

from 0.1 to 1, with an increment of 0.1. The main loss weight is set to 1, as described in Equation (14).
Figure 8 reports the classification results with different α values. It is clear that Salinas datasets with
auxiliary weight α = 0.7, PaviaU dataset with α = 0.3, and KSC dataset with α = 0.8 achieved the best
classification results.

0.2 0.4 0.6 0.8 1.0
Auxiliary weights

0.975

0.980

0.985

0.990

0.995

1.000

Ov
er

al
l A

cc
ur

ac
y

Salinas
PaviaU
KSC

Figure 8. The curves of OA obtained by different multi-scale auxiliary weights for three HSI datasets.
The auxiliary weights are set from 0.1 to 1, with an increment of 0.1. The optimal α is determined
corresponding to the highest OA value for each HSI.

4.3.3. Layer Settings for Bidirectional LSTM

The bidirectional LSTM part in our proposed framework plays a crucial role in exploring
the spatial–spectral dependency of multi-scale convolutional features and extracting a hierarchical
representation for the final classification. In this section, the number of layers and the number of hidden
units for the bidirectional LSTM are investigated from the set {[32], [64], [128], [32, 64], [64, 64], [64, 128]},
where the number of digits in each square bracket represents the layer number of the bidirectional
LSTM, and the digits in square brackets indicate the unit numbers of their corresponding layers.
Figure 9 shows the OA values with different layer settings. Accordingly, the optimal hyperparameters
setting for Salinas is two-layer with 64 and 128 memory cells respectively. For Pavia University,
two-layer with 64 memory cells respectively achieves best results. As for KCS datasets, one-layer with
64 memory cells yields good performance due to its smaller data size.

4.4. Classification Results

In this section, we will report the classification results of the proposed HMCNN-AC along
with other compared methods. The parameters are chosen based on our experimental results.
To better train the whole network, batch normalization [43] and dropout technique [44] are adopted
after every convolutional layer to avoid overfitting. We use RMSprop [45] as the optimization
algorithm. The classification maps of different methods on three hyperspectral datasets are displayed in
Figures 10–12 and the quantitative assessments are shown in Tables 5– 7. As can be seen, among all the

Sensors 2019, 19, 1714 14 of 20

methods, HMCNN-AC achieves the best classification results on all three datasets, with OA = 99.88%
for Salinas with 5% training samples, OA = 99.83% for Pavia University with 5% training samples, and
OA = 98.27% for Kenned Space Center with 10% training samples, and yields the cleanest visualization
results much more similar to reference maps than others. Compared with other methods, SVM-RBF
and LSTM obtain relatively poor performances and exhibit noisy estimations in classification maps,
since they fail to consider spatial information. In contrast, the classification results of EMP-SVM,
SAE, CNN-MLR and MCNN methods show much improvement and deliver smoother appearance
in classification maps by combining spectral and spatial features, especially for MCNN method with
multi-scale features.

[32] [64] [128] [32,64] [64,64] [64,128]
layer number and size

0.980

0.985

0.990

0.995

Ov
er

al
l A

cc
ur

ac
y

Salinas
PaviaU
KSC

Figure 9. The curves of OA obtained by different layer numbers and hidden units in bidirectional
LSTM. The optimal hyperparameter choice for Salinas is two-layer with 64 and 128 hidden units
respectively, two-layer with 64 and 64 units for PaviaU, and one-layer with 64 hidden units for KSC
due to smaller data size.

Table 5. Classification accuracy (%) for Salinas dataset using 5% training samples via different
classification algorithms. The three proposed frameworks HMCNN, MCNN-AC and HMCNN-AC
outperform other baseline methods in results.

Class No. SVM EMP-SVM SAE-PCA CNN-MLR LSTM MCNN HMCNN MCNN-AC HMCNN-AC

1 98.11 99.27 100.00 100.00 96.51 100.00 100.00 100.00 100.00
2 99.52 99.49 99.91 99.93 98.31 98.64 100.00 100.00 100.00
3 99.68 99.52 99.09 98.68 97.22 96.84 99.85 100.00 99.90
4 99.17 98.56 98.17 97.99 98.71 97.49 99.49 99.71 100.00
5 97.27 94.46 100.00 99.28 91.78 98.47 99.59 99.77 99.81
6 98.36 99.81 99.82 99.75 99.62 100.00 100.00 100.00 100.00
7 98.67 98.59 93.26 99.94 99.36 100.00 100.00 100.00 100.00
8 91.52 88.61 92.81 89.36 88.36 94.03 98.00 98.53 99.86
9 98.96 99.56 99.74 100.00 98.63 99.93 100.00 100.00 100.00

10 94.09 96.56 96.35 96.18 89.51 99.31 97.94 99.78 99.32
11 90.24 98.91 94.42 99.04 91.67 99.83 100.00 98.92 100.00
12 99.19 99.78 99.88 100.00 99.12 99.56 100.00 100.00 100.00
13 98.85 98.27 99.54 99.81 98.36 100.00 100.00 99.88 100.00
14 97.93 95.96 98.99 99.14 89.81 99.32 98.35 98.73 100.00
15 68.15 89.09 91.62 84.26 55.71 97.23 96.12 98.34 99.74
16 96.62 94.52 96.96 98.72 96.46 99.21 100.00 99.85 100.00

OA (%) 92.33 95.08 95.69 95.22 89.37 97.73 99.14 99.38 99.88
AA (%) 93.47 96.93 96.32 96.56 93.07 98.69 99.14 99.59 99.91
Kappa 0.9144 0.9453 0.9520 0.9470 0.8821 0.9742 0.9875 0.9932 0.9987

Sensors 2019, 19, 1714 15 of 20

(f) (g) (h) (i)

(a) (b) (c) (d) (e)

(j)

Figure 10. Groundtruth and classification maps with 5% training samples from Salinas dataset.
(a) Groundtruth; (b) SVM; (c) EMP-SVM; (d) SAE-LR; (e) CNN-MLR; (f) LSTM; (g) MCNN;
(h) HMCNN; (i) MCNN-AC; and (j) HMCNN-AC. The proposed HMCNN-AC yields the cleanest
visualization maps with improved spatial consistency, which is most similar to the groundtruth map.

(a) (b) (c) (d)

(f) (g) (h) (i)

(e)

(j)

Figure 11. Groundtruth and Classification maps with 5% training samples from PaviaU dataset.
(a) Groundtruth; (b) SVM; (c) EMP-SVM; (d) SAE-LR; (e) CNN-MLR; (f) LSTM; (g) MCNN;
(h) HMCNN; (i) MCNN-AC; and (j) HMCNN-AC. The proposed HMCNN-AC yields the cleanest
visualization maps with improved spatial consistency, which is most similar to the groundtruth map.

Sensors 2019, 19, 1714 16 of 20

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12. Groundtruth and Classification maps with 10% training samples from KSC dataset.
(a) Ground truth; (b) SVM; (c) EMP-SVM; (d) SAE-LR; (e) CNN-MLR; (f) LSTM; (g) MCNN;
(h) HMCNN; (i) MCNN-AC; and (j) HMCNN-AC. The proposed HMCNN-AC yields the cleanest
visualization maps with improved spatial consistency, which is most similar to the groundtruth map.

Table 6. Classification accuracy (%) for PaviaU dataset using 5% training samples via different
classification algorithms. The three proposed frameworks HMCNN, MCNN-AC and HMCNN-AC
outperform other baseline methods in results.

Class No. SVM EMP-SVM SAE-PCA CNN-MLR LSTM MCNN HMCNN MCNN-AC HMCNN-AC

1 92.30 97.44 90.55 98.33 93.36 95.27 98.63 99.12 99.68
2 98.00 98.08 98.95 98.94 94.97 98.73 99.99 99.95 100.00
3 74.07 93.03 92.34 73.63 69.37 92.21 97.55 93.75 98.72
4 94.47 97.39 98.91 98.81 94.12 99.60 98.67 98.15 99.73
5 99.06 99.37 100.00 99.63 99.14 99.75 100.00 100.00 100.00
6 87.94 92.42 84.47 97.30 88.23 94.50 100.00 99.98 100.00
7 86.38 93.90 87.42 96.92 81.13 97.01 96.69 98.57 99.40
8 91.02 96.62 87.56 98.13 82.29 95.89 99.15 98.10 99.67
9 99.67 100.00 97.56 99.89 100.00 100.00 100.00 99.89 100.00

OA (%) 92.61 96.85 94.13 97.24 91.16 96.96 99.33 99.16 99.83
AA (%) 91.43 96.47 93.08 95.76 89.23 96.93 98.96 98.61 99.69
Kappa 0.9150 0.9582 0.9230 0.9647 0.8854 0.9625 0.9919 0.9893 0.9976

The main reasons for the superior performance of our proposed HMCNN-AC lie in two
aspects. On the one hand, multi-scale CNNs are adopted to capture the scale-dependent information
considering objects with different shapes and sizes. With the help of auxiliary classifiers, the whole
network could be better trained and robust convolutional features are acquired. On the other hand,
to fully explore the spectral–spatial correlation of the obtained multi-scale features, a bidirectional
LSTM is proposed to capture the dependency and extract a hierarchical representation for each
pixel, instead of simply concatenating these multi-scale features together. In order to validate
the effectiveness of the adopted auxiliary classifiers and the bidirectional LSTM, we construct two
other frameworks, namely HMCNN and MCNN-AC, based on our original proposed HMCNN-AC
architecture, and compare their classification performances on three HSIs with other baseline methods.
The detailed analysis is shown as below.

Sensors 2019, 19, 1714 17 of 20

Table 7. Classification accuracy (%) for KSC dataset using 10% training samples via different
classification algorithms. The three proposed frameworks HMCNN, MCNN-AC and HMCNN-AC
outperform other baseline methods in results.

Class No. SVM EMP-SVM SAE-PCA CNN-MLR LSTM MCNN HMCNN MCNN-AC HMCNN-AC

1 95.46 100.00 99.07 98.54 91.85 95.66 100.00 100.00 100.00
2 82.56 100.00 81.48 97.53 75.31 99.17 98.35 99.59 99.76
3 90.00 66.67 96.48 91.41 86.33 98.05 95.31 98.04 99.22
4 46.46 99.56 66.26 58.73 63.89 78.97 82.14 74.60 88.97
5 46.52 78.95 53.42 76.40 57.14 82.61 90.06 80.12 93.17
6 50.48 79.89 60.70 81.66 48.91 91.27 91.26 95.63 88.21
7 93.61 100.00 99.05 95.24 30.48 100.00 100.00 97.14 100.00
8 88.63 97.10 94.56 98.35 72.85 92.10 94.81 98.76 98.27
9 98.71 100.00 100.00 100.00 92.12 99.42 99.61 100.00 100.00

10 93.38 98.35 97.52 96.04 79.21 99.75 96.53 99.75 99.85
11 96.02 99.21 98.09 100.00 98.57 100.00 100.00 100.00 100.00
12 77.87 98.89 97.42 92.64 81.91 99.60 97.41 97.81 98.61
13 97.60 99.64 99.46 99.89 99.68 100.00 100.00 100.00 100.00

OA (%) 86.40 95.36 92.07 93.82 82.98 97.06 96.74 97.07 98.27
AA (%) 79.81 93.71 87.96 91.26 75.25 95.12 95.81 95.50 97.39
Kappa 0.8535 0.9528 0.9204 0.9380 0.8186 0.9620 0.9673 0.9707 0.9758

4.5. Effective Analysis of Auxiliary Classifiers

To further examine the effectiveness of the auxiliary classifiers, we construct another framework
named HMCNN based on our original proposed HMCNN-AC architecture as the baseline.
The network of HMCNN as well as other parameter settings is the same as our original proposed
HMCNN-AC. The only difference between these two frameworks is whether adopting auxiliary
classifiers. In that case, we could demonstrate the effectiveness of the auxiliary classifiers by comparing
the classification performances of these two models on three HSI datasets. The quantitative assessments
of HMCNN are also shown in Tables 5–7 with other baseline methods, and the visualization results
can be seen in Figures 10–12, subfigure (h). To clearly demonstrate the comparison results, we plot the
OA values of the two proposed frameworks on three HSIs in Figure 13. The red bars represent the
results of our original proposed HMCNN-AC with weighted auxiliary classifiers, and the blue ones
indicate the newly constructed HMCNN without auxiliary classifiers. From the figure, it is clear to see
a decline in OA for all three datasets with HMCNN architecture, which confirms the effectiveness of
our auxiliary classifiers in improving HSI classification.

Salinas PaviaU KSC
0.90

0.92

0.94

0.96

0.98

1.00

Ov
er

al
l A

cc
ur

ac
y

HMCNN-AC
HMCNN

Figure 13. OAs comparison of HMCNN and HMCNN-AC on three datasets for effective analysis of
auxiliary classifiers. For all three HSIs, OA value decreases for the constructed HMCNN framework,
which confirms the effectiveness of the adopted auxiliary classifiers.

4.6. Effective Analysis of Bidirectional LSTM

To analyze the effectiveness of the adopted bidirectional LSTM in exploring the spectral–spatial
correlation of the multi-scale features and learning hierarchical features, we replace the bidirectional

Sensors 2019, 19, 1714 18 of 20

LSTM part in our original proposed architecture with one simple concatenation layer as the baseline
and keep other parameter settings the same. The constructed framework is named MCNN-AC and
the concatenation layer concatenates the obtained multi-scale features into 1D vector for the final
classification. The quantitative metrics and visualization maps of MCNN-AC on three HSIs are also
compared with other methods in Tables 5– 7 and Figures 10–12, respectively. To better evaluate the
effectiveness of adopting the bidirectional LSTM, we present the OA values of MCNN-AC and our
original proposed HMCNN-AC on three datasets, as displayed in Figure 14. From the comparison,
we can observe that the OAs of MCNN-AC decrease a little when replacing the original bidirectional
LSTM with the concatenation layer, which validates the effectiveness of the bidirectional LSTM in
spectral–spatial correlation exploration and hierarchical feature learning.

Salinas PaviaU KSC
0.90

0.92

0.94

0.96

0.98

1.00

Ov
er

al
l A

cc
ur

ac
y

HMCNN-AC
MCNN-AC

Figure 14. OAs comparison of the proposed MCNN-AC and HMCNN-AC on three datasets for
effective analysis of bidirectional LSTM. For all three HSIs, OA value decreases for the constructed
MCNN-AC framework, which validates the effectiveness of the adopted bidirectional LSTM.

5. Conclusions

In this paper, a novel hierarchical multi-scale CNN with auxiliary classifiers (HMCNN-AC) is
proposed for HSI classification. Unlike the conventional spectral–spatial classification methods where
only one single input scale is considered for spatial feature integration, our proposed method could
extract spectral–spatial features at various input scales simultaneously by adopting the multi-scale
CNNs technique. To fully explore the spectral–spatial dependency of the obtained multi-scale features,
a bidirectional LSTM is proposed to capture the correlation and extract a hierarchical representation
for each hyperspectral pixel from a sequential perspective. In order to better train the whole network,
weighted auxiliary classifiers are employed for the multi-scale CNNs and are optimized together with
the main loss function. Experimental results on three public datasets demonstrate the superiority of
our proposed method with the highest OA values and the cleanest visualization maps compared with
other baseline methods.

Although our proposed HMCNN-AC model has achieved remarkable performance, some details
are worth further investigation. For instance, the convolutional features from different spatial scales
might exert different influence on the final classification and equal weights assignment would fail to
reflect this difference in our current setup. Besides, the parameter settings in the multi-scale CNNs are
also worth further discussion for better performance.

Author Contributions: Conceptualization, S.L.; Formal analysis, X.Z.; Methodology, S.L.; Resources, J.B.; Software,
S.L.; Supervision, J.B.; Visualization, S.L.

Funding: This work is supported by Beijing National Research Center for Information Science and Technology
and Beijing Innovation Center for Future Chips.

Acknowledgments: The authors would like to thank http://www.ehu.eus/ for providing the original
remote-sensing images, and also thank the Editors and anonymous reviewers for their careful reading and
valuable comments.

http://www.ehu.eus/

Sensors 2019, 19, 1714 19 of 20

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jensen, J.R.; Lulla, K. Introductory digital image processing: A remote sensing perspective. Geocarto Int.
1987, 2. [CrossRef]

2. Manolakis, D.; Marden, D.; Shaw, G.A. Hyperspectral image processing for automatic target detection
applications. Linc. Lab. J. 2003, 14, 79–116.

3. Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.;
Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing.
Remote Sens. Environ. 2009, 113, S110–S122. [CrossRef]

4. Bajwa, S.; Bajcsy, P.; Groves, P.; Tian, L. Hyperspectral image data mining for band selection in agricultural
applications. Trans. ASAE 2004, 47, 895. [CrossRef]

5. Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 010901. [CrossRef]
[PubMed]

6. Bouaziz, M.; Matschullat, J.; Gloaguen, R. Improved remote sensing detection of soil salinity from a semi-arid
climate in Northeast Brazil. C. R. Geosci. 2011, 343, 795–803. [CrossRef]

7. Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data.
Remote Sens. Environ. 1997, 61, 399–409. [CrossRef]

8. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines.
IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [CrossRef]

9. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
10. Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of

Hirotugu Akaike; Springer: Berlin/Heidelberg, Germany, 1998; pp. 199–213.
11. Pal, M.; Foody, G.M. Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci.

Remote Sens. 2010, 48, 2297–2307. [CrossRef]
12. Tarabalka, Y.; Fauvel, M.; Chanussot, J.; Benediktsson, J.A. SVM and MRF-based method for accurate

classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 736–740. [CrossRef]
13. Bau, T.C.; Sarkar, S.; Healey, G. Hyperspectral region classification using a three-dimensional Gabor filterbank.

IEEE Trans. Geosci. Remote Sens. 2010, 48, 3457–3464. [CrossRef]
14. Soh, L.K.; Tsatsoulis, C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices.

IEEE Trans. Geosci. Remote. Sens. 1999, 37, 780–795. [CrossRef]
15. Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas

based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [CrossRef]
16. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.

Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [CrossRef]
17. Fragkiadaki, K.; Levine, S.; Felsen, P.; Malik, J. Recurrent network models for human dynamics.

In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; pp. 4346–4354.

18. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object
detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158. [CrossRef] [PubMed]

19. Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [CrossRef]

20. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [CrossRef]

21. Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image
classification. J. Sens. 2015, 2015, 258619. [CrossRef]

22. Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral
data classification through convolutional neural networks. In Proceedings of the 2015 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962.

23. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral
images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251.
[CrossRef]

http://dx.doi.org/10.1080/10106048709354084
http://dx.doi.org/10.1016/j.rse.2007.07.028
http://dx.doi.org/10.13031/2013.16087
http://dx.doi.org/10.1117/1.JBO.19.1.010901
http://www.ncbi.nlm.nih.gov/pubmed/24441941
http://dx.doi.org/10.1016/j.crte.2011.09.003
http://dx.doi.org/10.1016/S0034-4257(97)00049-7
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1109/TGRS.2009.2039484
http://dx.doi.org/10.1109/LGRS.2010.2047711
http://dx.doi.org/10.1109/TGRS.2010.2046494
http://dx.doi.org/10.1109/36.752194
http://dx.doi.org/10.1109/TGRS.2004.842478
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TPAMI.2015.2437384
http://www.ncbi.nlm.nih.gov/pubmed/26656583
http://dx.doi.org/10.1109/JSTARS.2015.2388577
http://dx.doi.org/10.1109/JSTARS.2014.2329330
http://dx.doi.org/10.1155/2015/258619
http://dx.doi.org/10.1109/TGRS.2016.2584107

Sensors 2019, 19, 1714 20 of 20

24. Mandic, D.P.; Chambers, J. Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and
Stability; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001.

25. Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification.
IEEE Trans. Geosci. Remote Sens 2017, 55, 3639–3655. [CrossRef]

26. Zhou, F.; Hang, R.; Liu, Q.; Yuan, X. Hyperspectral Image Classification Using Spectral-Spatial LSTMs.
Neurocomputing 2019, 328, 39–47. [CrossRef]

27. Fauvel, M.; Chanussot, J.; Benediktsson, J.A. A spatial–spectral kernel-based approach for the classification
of remote-sensing images. Pattern Recognit. 2012, 45, 381–392. [CrossRef]

28. Zhao, W.; Du, S. Learning multiscale and deep representations for classifying remotely sensed imagery.
ISPRS J. Photogramm. Remote Sens. 2016, 113, 155–165. [CrossRef]

29. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T.
Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International
Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; ACM: New York, NY, USA, 2014; pp. 675–678.

30. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

31. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf.
Process. Syst. 2014, 27, 3104–3112.

32. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
33. Fan, E.G. Extended Tanh-function Method and its Applications to Nonlinear Equations. Phys. Lett. A 2000,

277, 212–218. [CrossRef]
34. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997,

45, 2673–2681. [CrossRef]
35. Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010;

Springer: Berlin/Heidelberg, Germany, 2010; pp. 177–186.
36. Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral

image classification. Isprs J. Photogramm. Remote Sens. 2017, 145, 120–147. [CrossRef]
37. Chen, C.; Jiang, F.; Yang, C.; Rho, S.; Shen, W.; Liu, S.; Liu, Z. Hyperspectral classification based on

spectral–spatial convolutional neural networks. Eng. Appl. Artif. Intell. 2018, 68, 165–171. [CrossRef]
38. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models.

In Proceedings of the ICML 2013, Atlanta, GA, USA, 16–21 June 2013; Volume 30, p. 3.
39. Gold, S.; Rangarajan, A. Softmax to softassign: Neural network algorithms for combinatorial optimization.

J. Artif. Neural Netw. 1996, 2, 381–399.
40. Computational Intelligence Group of the Basque University (UPV/EHU). Hyperspectral Remote Sensing

Scenes. Available online: http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes (accessed on 12 July 2018).

41. Thompson, W.D.; Walter, S.D. A reappraisal of the kappa coefficient. J. Clin. Epidemiol. 1988, 41, 949–958.
[CrossRef]

42. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST)
2011, 2, 27. [CrossRef]

43. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine
Learning-Volume 37, Lille, France, 6–11 July 2015; pp. 448–456.

44. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

45. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International
Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TGRS.2016.2636241
http://dx.doi.org/10.1016/j.neucom.2018.02.105
http://dx.doi.org/10.1016/j.patcog.2011.03.035
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.004
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/S0375-9601(00)00725-8
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1016/j.isprsjprs.2017.11.021
http://dx.doi.org/10.1016/j.engappai.2017.10.015
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://dx.doi.org/10.1016/0895-4356(88)90031-5
http://dx.doi.org/10.1145/1961189.1961199
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background of CNNs and LSTM
	CNNs
	LSTM and Bidirectional LSTM

	Proposed Methods
	Multi-Scale Convolutional Feature Extraction
	Hierarchical Feature Learning
	Label Prediction
	Weighted Auxiliary Classifiers

	Experimental Results and Analysis
	Dataset Description
	Compared Methods
	Classical Machine Learning Methods
	Deep Learning Based Methods

	Network Hyperparameters Discussion
	Input Scale Number S
	Auxiliary Weights i
	Layer Settings for Bidirectional LSTM

	Classification Results
	Effective Analysis of Auxiliary Classifiers
	Effective Analysis of Bidirectional LSTM

	Conclusions
	References

