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Abstract: Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique in
which the Raman scattering signal strength of molecules, absorbed by rough metals or the surface of
nanoparticles, experiences an exponential growth (103–106 times and even 1014–1015 times) because
of electromagnetic or chemical enhancements. Nowadays, SERS has attracted tremendous attention
in the field of analytical chemistry due to its specific advantages, including high selectivity, rich
informative spectral properties, nondestructive testing, and the prominent multiplexing capabilities
of Raman spectroscopy. In this review, we present the applications of state-of-the-art SERS for
the detection of DNA, proteins and drugs. Moreover, we focus on highlighting the merits and
mechanisms of achieving enhanced SERS signals for food safety and clinical treatment. The machine
learning techniques, combined with SERS detection, are also indicated herein. This review concludes
with recommendations for future studies on the development of SERS.
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1. Introduction

Raman spectroscopy, as molecular vibration-based technique, is used to study molecular
structures based on the Raman scattering effect, discovered by C.V Raman in 1928. However,
for conventional Raman spectroscopy, the relatively weak Raman scattering process, with an incident
intensity of 10−10 times, reduces the sensitivity and limits the range of usage. Therefore, it is necessary
to utilize the enhancement effect of material surfaces for Raman studies. In 1974, Fleischmann et al.
measured pyridine molecules adsorbed on the surface of roughed silver electrodes, and it was found
that the Raman scattering signal intensity was increased by 106 times [1]. Afterwards, Van Duyne
verified this phenomenon and called it a surface enhancement effect [2]. The enhancement factor
(EF) of Surface-enhanced Raman spectroscopy (SERS) can reach as much as 1010, with resonance,
facilitating the development of an efficient analytical tool for detecting low-concentration analytes.
With the development of SERS, the low sensitivity of Raman spectroscopy can be improved, and the
structural information, which is difficult to detect with conventional Raman spectroscopy, can also be
obtained [3–7].

Electromagnetic (EM) theory suggests that the EF of SERS mainly depends on the characteristics
of SERS substrates [8,9]. During the analysis process, the analytes are adsorbed on an active SERS
substrate, and monochromatic radiation from a laser is applied to irradiate the substrate. The resulting
scattering can be analyzed via a Raman spectrometer. For practical applications, it is necessary to choose
an effective substrate that can offer reasonable enhancement, be reproduced and be reasonably robust.
Among various metals, gold and silver are commonly used to develop the substrates. With in-depth
research on nanomaterials and nanotechnology, much more attention has been paid to designing
desirable SERS substrates to generate hot spots. This research indicates that enhancing the local field
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of hot spots between two or multiple nanoparticles can significantly magnify Raman signals. Due to
the improved detection efficiency, SERS has been widely utilized to identify a variety of analytes,
such as DNA fragments, drugs of abuse, and proteins [10–15]. Conventional DNA analysis strategies
usually involve complicated analytical procedures and suffer from a high cost. Recently, SERS has
become a promising technique for the rapid recognition and structural characterization of DNA,
offering an ultrahigh sensitivity and detailed fingerprint information. Since diagnostic tests play an
important role in disease detection, developing a sensitive and specific analytical tool to measure
multiple protein markers simultaneously has gained tremendous attention [16–18]. Meanwhile, SERS
presents a satisfactory technique for multiplexed assays. Combined with chemometric methods,
SERS has a desirable resolution ability, analyzing and classifying complex spectral data. Due to its
unique advantages in drug detection, SERS also exhibits a powerful potential for drug safety and
medication guides.

Cailletaud et al. described recent advances in the applications of SERS in pharmaceutical
analysis [19]. In the present review, we will summarize the developments of SERS utilized in the field
of analysis, focusing on three aspects, including DNA, protein and drug detection. Herein, innovative
methods developed for the detection of microbe/disease-related DNA targets for food safety and
clinical diagnosis will be summarized. The application of SERS in the detection of protein in the blood
and disease-related protein markers will also be discussed in detail. In addition, we will review the
employment of a state-of-the-art SERS-based technique for drug detection. The advantages of applying
SERS for DNA, protein and drug detection will be highlighted in this article.

2. SERS for DNA Detection

DNA, the carrier of genetic information, can form genetic instructions and guide the biological
development and functional operation of life. To investigate the nature of life, much more attention has
been paid to genetic detection due to its important significance in the early diagnosis and prevention of
disease [20–23]. Nowadays, SERS has been successfully used to identify DNA sequences, distinguish
DNA from RNA in a mixture and monitor the hybridization of individual DNA in microfluidics [24–34].
We review the applications of SERS for DNA detection in the following sections.

2.1. SERS in the Detection of Microbe-Related DNA Targets for Food Safety

2.1.1. Sandwich Detection Method

In the sandwich detection method, the capture probes (nanoparticles labeled with complementary
DNA sequences) and signal probes (DNA-functionalized nanoparticles labeled with Raman reporter
molecules) are designed [35]. The two DNA sequences are non-complementary, but both of them are
complementary to the target DNA. When the target DNA is introduced, hybridization between the
target DNA and probes results in the formation of a sandwich structure and the aggregation of the
nanoparticles, based on the complementation pairing rule. In this process, the concentration of hot-spot
formation is significantly increased, and the Raman signal of Raman reporters is greatly enhanced.
The SERS-based sandwich detection method provides a special hybridization method for detecting
DNA, with satisfactory selectivity and stability. The multiple detection of target DNA, as a trend in
SERS detection, is much more meaningful in reality because of its timesaving advantage. In order to
increase the specificity of DNA and Raman reporters on the probe, it is necessary to avoid overlapping
characteristic signals between Raman reporters. Zhang et al. used 5,5′-dithiobis(2-nitrobenzoic
acid) (DNTB) and mercaptobenzoic acid (MBA) as Raman reporters to simultaneously measure the
staphylococci S. aureus and S. typhimurium in pork, with detection limits of 35 cfu/mL and 15 cfu/mL,
respectively (Figure 1) [36]. Herein, gold nanoparticles were modified with MBA, DNTB and aptamer
to develop a signal probe, and an enhanced Raman intensity was obtained due to the utilization of
nanoparticles. Meanwhile, Fe3O4 magnetic gold nanoparticles were immobilized with aptamers to
prepare the capture probe. As single strand nucleic acids, which can normally form three-dimensional
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conformations, aptamers exhibited a high affinity with the target molecules. The specificity of this
method used for detecting S. aureus and S. typhimurium was investigated. This indicated that the signal
intensities of other bacteria, including Escherichia coli, Shigella dysenteriae, Vibrio parahaemolyticus and
Bacillus cereus, were much lower than those of the S. aureus and S. typhimurium. This could be attributed
to the high affinity and specificity of the aptamer with its target, facilitating the accomplishment of
sandwich detection.
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Figure 1. (A) Schematic illustration of the aptasensor, immobilized on Fe3O4 magnetic Au nanoparticles
(MGNPs) for the simultaneous detection of S. aureus and S. typhimurium, based on Au nanoparticles
(GNPs) enhanced by Raman intensity. (B) Raman scattering spectra of different concentration of
S. aureus and S. typhimurium (102 cfu mL−1, 103 cfu mL−1, 104 cfu mL−1, 105 cfu mL−1, 106 cfu mL−1,
and 107 cfu mL−1) (Zhang et al. [36]).

2.1.2. Amplification Method

For low-content DNA detection, the hot spots generated in the sandwich detection method are not
sufficient to obtain detectable Raman signals. In order to overcome this disadvantage, the amplification
method is investigated [37].

The amplification method can be divided into two categories: the product expansion and signal
amplification methods. The nature of the amplification method is based on DNA hybridization.
Product expansion is mainly based on the polymerase chain reaction (PCR). PCR, a special process
of DNA replication, can amplify specific DNA fragments and then sharply increase their content.
SERS can determine the existence of the target DNA (tDNA) sequence by detecting PCR products.
Isola et al. used SERS-active labels as primers to amplify related HIV genes by PCR, and the applied
SERS detected Raman labels to determine tDNA [38]. The results showed that the SERS-based PCR
can effectively improve the sensitivity and selectivity of detection.

In the signal amplification method, tDNA is used to trigger the hybridization in the long chains
between the specific structure of the DNA templates, immobilized on the substrate, and Raman labeled
primers fixed on nanoparticles. The long chains, containing lots of Raman labeled primers, are obtained
at the same time. Using this method, Bacillus thuringiensis (Bt) transgenic sequence was measured
with an limit of detection (LOD) of 50 pM (S/N = 3) [39]. To evaluate the selectivity of the proposed
method for detecting the Bt transgenic gene fragment (tDNA-Bt), a haipin DNA (H3) was introduced
to develop the biosensing platform. In this system, tDNA-Bt could hybridize with the complementary
sequences of the additional H3, resulting in DNA nanowires. Subsequently, gold nanoparticle probes
grew along the nanowires due to the strong affinity with the biotin-streptavidin system. Herein, gold
nanoparticle probes could form hot spots between particles, and a strong SERS signal was obtained.
This suggested that the detection of tDNA was not influenced by the addition of H3. In this work,
the accuracy and sensitivity of the proposed SERS-based method was comparable with real-time
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PCR. The 35S promoter gene, a marker of a genetically modified organism, has been detected by
SERS-based rolling circle amplification, with an LOD of 6.3 fM and detection range from 100 fM to
100 nM [40]. The rolling circle amplification (RCA) reaction was utilized to develop an RCA-SERS
sandwich assay for enhancing the SERS spectra of target molecules. Herein, an oligonucleotide probe
was immobilized on a gold slide, and 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) was applied to form a
self-assembled monolayer on gold nanorods. The concentration of the target was determined by the
SERS spectra of DTNB on the nanorods. In a traditional SERS sandwich assay, two target probes are
attached to rod-shaped gold nanoparticles and a gold slide. Then, they are hybridized with the target
oligonucleotides. Compared with the conventional SERS sandwich method, the RCA-SERS strategy
exhibited an improved sensitivity, and amplification occurred after the first hybridization, with the
probe on the target sequence and gold slide.

In order to obtain enhanced or amplified SERS signals, the product expansion and signal
amplification methods were both used to detect amplification products. Nevertheless, the difference
between them is that the former method amplifies the number of DNA fragments, and the later one
amplifies the length of DNA fragments. The amplification method has attracted much more interest
due to its flexibility in design and high sensitivity in detection. It provides a promising application
prospect for DNA detection.

Detecting the microbes in food is important for guaranteeing the quality and safety of food,
avoiding the occurrence of food poisoning. A traditional microbial test is usually time-consuming,
with a long separation and cultivation process. In comparison, SERS can recognize the microbe by
detecting the related gene sequences in less time, with a high specificity and accuracy.

2.2. SERS in the Detection of Disease-Related DNA Targets for Clinical Diagnosis

The mutation or methylation of genes may lead to diseases. Nucleic acids, a type of important
cancer biomarker, can be used for disease diagnosis [41–43]. In this section, we summarize recent
applications of SERS for disease-related DNA target detection in clinical diagnosis.

2.2.1. DNA Hybridization Method

In the DNA hybridization method, Raman-labeled ssDNA is fixed on the nanoparticles as probes.
After introducing the target DNA, hybridization between the probes and the target DNA will change
the intensity of Raman molecules by changing the distance between the nanoparticles and Raman
molecules. The identification of the target DNA and detection of its content can be obtained by
measuring the intensity changes of the Raman molecules [44–46]. Based on the above mechanism,
dengue diagnosis and HIV-1 detection have been successfully achieved (Figure 2) [47,48].
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A homogeneous DNA bioassay-on-chip system was fabricated by utilizing SERS detection
on a bimetallic nanowave chip. Since SERS enhancement could decrease with an increase in the
Raman dye-metal surface distance, the Raman dye-chip’s surface distance presented low SERS signals.
The complementary target ssDNA was hybridized with the placeholders, and then the reporter probes
facilitated the formation of hairpin structures. This design enabled the achievement of strong SERS
signals, because Raman dyes were introduced close to the nanowave chip’s metal surface. Additional
Raman active molecules need to be introduced, although this method is flexible and rich in designing
systems. This bioassay-on-chip platform provided an efficient method for detecting the nucleic acid
sequence of dengue in point-of-care clinical diagnosis applications.

2.2.2. Asymmetry Signal Amplification Method

The SERS-based amplification method has a high sensitivity, specificity and accuracy. This
method exhibits satisfactory results in microbial detection in food as well as in clinical diagnosis.
The single base extension reaction-based SERS had a good result in detecting methylated DNA,
with an LOD of 3pM, and it could even distinguish a methylation level as low as 1% in the tumor
suppressor gene, CDKN2/p16/MTS1 (p16), from the mixtures [49]. Traditional methods used for the
DNA methylation assay were time-consuming and laborious. Herein, a simple and sensitive DNA
methylation assay based on SERS and a single base extension reaction was developed. Because of the
introduction of methylated DNA, gold nanoparticle-functionalized capture probes could attach to a
cyanine 5-deoxyribonucleoside triphosphate by a single base extension reaction.
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(B) SERS spectra for increasing concentrations of ATP (a, 0; b, 1.0 × 10−7; c, 5.0 × 10−7; d, 1.0 × 10−6;
e, 5.0 × 10−6; f, 1.0 × 10−5; g, 5.0 × 10−4; h, 1.0 × 10−4 M). (C) SERS spectra for increasing
concentrations of miR-203 (a, 0; b, 1.0 × 10−15; c, 5.0 × 10−15; d, 1.0 × 10−14; e, 5.0 × 10−14;
f, 1.0 × 10−13; g, 5.0 × 10−13; h, 1.0 × 10−12 M). (Ye et al. [50]).
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The local electromagnetic field increased after the further addition of gold nanoparticles, and a
high SERS signal was obtained. However, no SERS signal was observed when using unmethylated
DNA. Compared with the gold nanoparticle-based colorimetric assay and microarray-based
methylation sensitive single nucleotide primer extension assay, the sensitivity of this method was
enhanced by five and two orders of magnitude. The results indicated that the single base extension
reaction-based SERS offered a desirable strategy for the DNA methylation assay, owing to the initial
utilization of a bisulfite treatment, and this platform might be applied to monitor the methylation
status in tumor-linked genes for cancer diagnosis. The above amplification method was only suitable
for a type of molecule detection. For the sake of achieving the simultaneous detection of multiple
biomarkers with different levels, the asymmetric signal amplification method was explored [50].
Herein, the asymmetric signal amplification was initiated by the assembled bifunctional probe.
The quadratic signal amplification mode responds to low-concentration markers, and the linear
amplification mode corresponds to the high-concentration markers (Figure 3). By using the combined
bio-barcode probe and hybridization chain reaction amplification method, the LODs of microRNA
and ATP were 0.15 fM and 20 nM, respectively. This method provided an efficient method for the
simultaneous detection of various biomarkers with significantly different levels and an improved
detection sensitivity.

2.2.3. Gene Chips Method

A gene chip, SERS-based DNA array/sensor was used to detect pathogens or biomarkers
for fast and sensitive disease diagnosis. A pattern formed by multiple Au nanowire sensors was
developed for the multiplex sensing of the target DNA [51]. Au nanowire and Au NPs have gained
tremendous attention in relation to their application in SERS-active platforms due to their well-defined
geometry and superb physicochemical properties. Herein, Au nanowires on the substrate were
incubated with the target DNA. Subsequently, an Au particle-on-wire structure was prepared by the
sandwich hybridization of probe-target-reporter DNA. The resulting Au particle-on-wire structure
could create SERS hot spots in the gaps between nanowires and nanoparticles, when the target DNA
possessed sequences complementary to the reporter DNA and the probe DNA. This system was
operated by the self-assembly of Au NPs onto Au nanowire in the presence of target DNA, and the
particle-on-wire sensors could generate reproducible SERS signals only in proportion to a DNA
concentration ranging from 10 pM to 10 nM. A SERS-based assay was also applied to detect bacterial
meningitis pathogens [52]. Before the SERS assay, bacterial meningitis pathogen DNA, extracted
from patient clinical samples, was amplified by PCR. In this study, nine clinical samples presented a
satisfactory discrimination, which facilitated the identification of the pathogen via SERS. Furthermore,
various infectious diseases could be detected by changing the sequences of the reporter and capture
probes. This indicated that SERS combined with a gene chip could achieve multiplex detection and
quantitative detection due to its high sensitivity, accuracy and reproducibility. A gene chip is a
promising choice for future development directions, though it is mainly used in laboratories nowadays
due to its high cost [53,54].

A tissue slice sample can be utilized to obtain accurate information about patients for liver cancer
diagnosis. Nevertheless, the employment of a Raman spectrum in diagnosing liver cancer is mainly
limited to pure liver cell lines, and few researches focused on applying SERS for liver cancer and normal
tissue slices. Chen et al. applied the SERS technique in investigating the tissue sections of cancerous
and normal livers, obtaining information on the changes of biological composition in the tissues [55].
Herein, silver nanoparticles were added to improve the spectral signal of tissue slices due to the
specific physical and chemical characteristics of Ag-NPs. Combined with the principal component
analysis (PCA) and linear discriminant analysis (LDA), SERS presented a favorable resolution ability
for cancerous and normal liver tissues by acquiring complex spectral data. It was found that the
proportion of DNA in the liver cancer group was higher than that in the normal group. The PCA-LDA
method was utilized to analyze the sensitivity and specificity of the diagnosis. The results indicated
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that the fingerprint SERS spectra could discriminate normal and cancerous tissues, presenting a
promising potential in the clinical detection of liver cancer.

In addition to the field of food safety and clinical diagnosis, SERS can also be used to detect DNA
in other areas, such as the study of the interaction between DNA and small drug molecules or other
exogenous substances at the molecular level. The SERS-based assay displayed an important theoretical
significance in understanding the interaction mechanism of DNA and exogenous agents, including a
chemotherapeutic drug (cisplatin), an organic dye (methylene blue) and a metal ion (HgII) [56]. Herein,
binding information was presented by the specific and characteristic vibrational alterations of the SERS
spectra in Table 1.

Table 1. SERS for DNA detection.

Substrate Analyte Detection Limit Detection Method Ref.

PSA/Ag-NP
composite nanosphere 4-Aminothiophenol 10−9 M

Sandwich detection
method [35]

Gold nanoparticle S. typhimurium, S. aureus 15 fM Sandwich detection
method [36]

Gold nanoparticle Target DNA 50 pM Amplification
method [39]

Gold nanorod Target oligonucleotide
sequence 6.3 fM Amplification

method [40]

Gold nanoparticle DNA methylation 3 pM
Asymmetry signal

amplification
method

[49]

Gold nanoparticle MicroRNA, ATP 0.15 fM
Asymmetry signal

amplification
method

[50]

Gold nanoparticle Target DNA 10 pM Gene chips method [51]

3. SERS for Protein Detection

Proteins are the basis of life and the undertakers of life activities. Some simple proteins can be
determined by using SERS to identify the amino acid residues or polypeptide skeleton structure [57,58].
Moreover, the SERS-based antigen-antibody reaction can identify some functional proteins [59,60].
SERS for protein detection is mainly used in clinical diagnosis by detecting specific disease-related
protein biomarkers.

The death rate of cancer is very high, since people usually realize that they are suffering
from cancer in the middle-late stage of their lives, when it is already hard to cure [61–63]. There
are few differences between normal people and cancer sufferers on some special proteins, such
as the relative content and conformation. These differences can be used for diagnosing cancers.
Protein, as an important cancer biomarker, is expressed in cancerous parts in the early stages [64–67].
However, conventional methods have difficulty detecting the proteins at low levels. The SERS-based
immunoassay has the potential to detect protein biomarkers and be used in early diagnosis and
postoperative detection due to its high sensitivity. It is a win-win result of saving resources and
improving the survival rate of patients.

3.1. SERS in the Detection of Protein in the Blood for Clinical Diagnosis

Cervo, S et al. investigated the application of SERS for detecting ‘luminal A’ breast cancer at different
stages [68]. It was found that the serum of patients presented a higher Raman peak intensity than
the serum of normal people, at 721, 1093, 1324, 1444 cm−1, using the Raman spectra combined with
PCA. Compared with the gold standard method mammography, recently utilized for screening
processes, SERS spectroscopy, associated with the multivariate data analysis method, exhibited
a promising potential in discriminating healthy subjects from breast cancer samples, with a high
sensitivity. Moreover, compared with other diagnostic methods, SERS displayed specific merits, such
as a minimally invasive application and a fast and portable operation. Non-invasive nasopharyngeal
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cancer detection was developed by mixing silver nanoparticles with blood plasma to enhance the
Raman scattering signals of biomolecules [69]. PCA and LDA were employed to analyze and classify
the blood plasma SERS spectra, obtained from cancer patients and health subjects. High diagnostic
sensitivity (90.7%) and specificity (100%) were achieved in this study. Another noninvasive cancer
detection strategy was explored by combing membrane electrophoresis and silver nanoparticle-based
SERS [70]. First, albumin and globulin proteins were isolated from blood plasma via membrane
electrophoresis. Subsequently, silver nanoparticles were mixed with the samples to perform the SERS
detection process. In comparison with the direct SERS analysis of untreated blood plasma, the proposed
method could reduce the spectral variability due to the elimination of exogenous substances and the
highly variable plasma constituents, except for the target proteins. As for the untreated samples, there
was some overlap between the patients and normal groups. Nevertheless, the PCA results indicated
that the data points for the normal group and cancer groups could form completely separated clusters,
with a 100% diagnostic sensitivity and specificity. Furthermore, to avoid the accidental situation caused
by a small sample and guarantee the accuracy and universality of the test results, it is necessary to
enlarge the sample size. PCA combined with SERS was also used to identify ricin B chain in blood [71].
Ricin B chain (RBC) is a lectin that attaches to galactose residues on the cell surface. In this study,
aptamer-funtionalized silver film-over-nanosphere (AgFON) substrate was used to obtain stable SERS
enhancement factors in human blood. The PCA of the SERS spectra could distinguish the AgFONs
exposed to RBC from those without RBC exposure. This work provided an efficient platform for
detecting and removing ricin from contaminated blood.

3.2. SERS in the Detection of Disease-Related Protein Markers for Clinical Diagnosis

The immunoassay is based on specific the identification and hybridization of the antibody
and antigen. The process is similar to DNA hybridization [72–74]. The SERS-based immunoassay
successfully identified tumor cancer cell protein markers [75–77]. As can be seen in Figure 4,
functionalized hollow gold nanospheres and magnetic beads were utilized to develop the SERS-based
immunoassay. Herein, the carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) were selected as
target marker proteins. The sandwich-type immunocomplexes between the hollow gold nanospheres
and magnetic beads were formed for CEA and AFP. Nevertheless, the hollow gold nanospheres and
magnetic beads did not form a sandwich complex in the absence of the antigen. The dual cancer
markers in blood serum could be detected simultaneously under a single excitation wavelength
The aptamer recognition method for protein detection is based on the bonding mechanism of protein
and aptamer. A novel core-satellite structure was constructed by using DNA as the linker (Figure 5).

In this method, aptamer was fixed on the nanoparticles as capture probes, and nanoparticle-based
aptamer complementary DNA fragments and Raman molecules were used as signal probes. The SERS
intensity of the core-satellite structure was associated with the number of satellite Ag nanoparticles
around the core Au nanorods. When the target protein was added, both the protein and DNA could
bond with aptamer. The competition between them led to changes in the Raman signal intensity,
which could be used to determine the target protein and forecast its content. Herein, the release
of the core-satellite assemblies occurred because of the high specific biorecognition of aptamer and
Mucin-1. In order to evaluate the sensitivity of this system, different Mucin-1 concentrations were
utilized to detect the SERS spectra of core-satellite structures. The method succeeded in determining
Mucin-1, with a detection limit of 4.3 aM [78]. Furthermore, He et al. optimized the signal probe by
embedding the Raman molecular tags into nanoparticles covered with chitosan [79]. In this study, one
magnetic chitosan modified with aptamer (or antibody) was used as a capture probe, based on the
affinity binding site of the protein. The other silver/chitosan nanoparticles, modified with aptamer and
encapsulated by Raman report molecules, were utilized as SERS sensing probes via the other binding
site of the protein. The sandwich complexes of aptamer/protein/aptamer were formed, and the
protein concentration could be detected by the intensity variation of the SERS signal of the Raman
report molecules. After optimization, the LOD of the platelet-derived growth factor BB was as low as
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3.2 pg/mL. The optimized signal probe could avoid the dissolution of the Raman tag molecules from
the nanoparticles and increased the stability of the signal molecules. Compared with the conventional
ELISA method, this aptamer recognition-induced target-bridged strategy exhibited a wider linear
range, lower cost and more convenient operation. Additionally, SERS combined with the imaging
technique possessed the ability to locate the lesion site and provided guides on tumor resection [80].
SERS was applied to monitor urine samples of subjects diagnosed with prostate cancer and healthy
controls [81]. LDA is a classification method that uses one linear function to discriminate between
the classes. By using PCA and LDA of the spectral data, the obtained classification model exhibited
a high sensitivity of 100% and specificity of 89%. The results indicated that diagnostics based on
urine SERS could discriminate prostate cancer from controls. In conclusion, SERS combined with the
aptamer/immune recognition method can achieve the effective, sensitive detection of proteins and has
the potential for clinical diagnosis (see Table 2).
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Figure 4. Schematic of the SERS-based duplex immunoassay using hollow gold nanospheres
(HGNs) and magnetic beads. (A) Conjugation of malachite green isothiocyanates (MGITCs) (Raman
reporter) and carcinoembryonic antigen (CEA) antibodies to HGNs (upper left), conjugation of
X-rhodamine-5-(and-6)-isothiocyanate (XRITCs) (Raman reporter) and α-fetoprotein (AFP) antibodies
to HGNs (upper right), anti-CEA immobilized magnetic beads (lower left), and anti-AFP modified
magnetic beads (lower right). (B) Formation of sandwich immunocomplexes between HGNs and
magnetic beads for CEA and AFP. (C) Raman spectra of HGN probes labeled with MGITC (blue),
XRITC (red) and a 1:1 mixture of HGNMG and HGNXR (green) (Chon et al. [76]).
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Table 2. SERS for protein detection.

Substrate Application Year Ref.

Silver nanoparticle Bluminal A breast cancer detection 2015 [68]
Silver nanoparticle Nasopharyngeal cancer detection 2010 [69]
Silver nanoparticle Noninvasive cancer detection 2011 [70]
Gold nanoparticle Cancer diagnostic immunoassay 2013 [75]
Gold nanoparticle Serological liver cancer biomarkers detection 2014 [77]
Silver nanoparticle Mucin-1 detection 2015 [78]
Silver nanoparticle Protein detection 2015 [79]

4. SERS for Drug Detection

Drugs present specific biological and physiological effects on bodies and are used in the
prevention, diagnosis, treatment and cure of diseases. Poison capsule events result from a lack
of effective detection. Therefore, reasonable and effective tests have important implications in drug
safety and human health. As a new means of detection, SERS has been successfully used in detecting
the pesticide content in fruit, quantifying the drug crystals, active ingredients and accessories, tracking
the drug release process in living cells [82–84]. This article will summarize the applications of SERS in
drug detection in detail.

4.1. SERS in the Detection of Illegally Added Drugs for Drug Safety

In recent years, much more attention has been paid to Traditional Chinese Medicines (TCMs),
which play an important role in medicine [85–88]. In order to gain more profits and quickly improve
the efficacy of drugs, some manufactures may add some chemicals to drugs illegally. This behavior may
do some harm to people who take the drugs. However, the phenomenon is becoming more common
recently because of the lack of an evaluation standard and market-governance. It is important to detect
the medicated additive, but many problems need to be solved, such as the complex pretreatment
process, time-consuming steps and other issues. It is urgent to establish a reasonable and effective
method to detect the illegal addition. Penicillin and its degradation product, 5-fluorouracil, have been
successfully distinguished by SERS [89–91]. This proved that SERS and SERS combined separating
technology have the potential to detect illegal drug addiction in guiding the establishment of a drug
quality standard due to the low requirement of SERS on the purity of analytes.
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4.1.1. Direct Detection Method

Direct detection method usually detects the sample by SERS, without any pretreatment. The basic
process includes following steps: first, the drugs are detected by SERS, and the corresponding
SERS spectrum is obtained in an appropriate condition. Second, the spectrum of suspicious illegal
additives detected at the same condition is evaluated. Finally, the illegally added ingredients are
identified according to the overlapping of characteristic peaks. We used SERS to detect the successfully
and illegally added drugs in Chinese Traditional Patent Medicines (CTPMs), such as Jiangtangshu
capsules [92]. Herein, silver colloidal used as a SERS substrate was prepared by a sodium citrate
reaction. After the optimization of silver colloidal aggregation and pH conditions, different chemicals
in CTPM could be detected simultaneously. Konjac pressed candy (KPC), a natural slimming
product (NSP), is used in the treatment of obesity. Sibutramine (SIB) is one of the most commonly
adulterated anorexic medicines found in NSP. SERS coupled with chemometrics was used for the
rapid discrimination and detection of SIB and its analogues (monodesmethyl- sibutramine, MDS;
didesmethylsibutramine, DDS) in KPC. The LODs of SIB, MDS and DDS were 5× 10−8 M, 5 × 10−7 M
and 10−6 M, respectively [93]. The direct determination method is simple, time-saving, inexpensive
and easy to operate. However, the complicated composition of TCMs usually induces background
interference and spectral overlap and reduces the accuracy of detection.

4.1.2. SERS Combined with Separation Technology

The combination of SERS and separation technology means that SERS is used for detection after
a separation process. This method can significantly reduce background interference and increase
the accuracy of the results. TLC-SERS, the most common combination of technologies, has been
utilized for the detection of dye in the art and pollution of aromatic hydrocarbons in water [94,95].
TLC-SERS has also been used to detect illegal adulterants in diet pills and plant dietary supplements.
Due to the uncontrollable stimulating side effects, adulteration of ephedrine and its analogue in
botanical dietary supplements (BDS) is prohibited. To directly identify trace adulterants, TLC was
utilized to separate four analogues prior to SERS detection [96]. Herein, ephedrine and its analogues,
including norephedrine, pseudoephedrine, and methylephedrine, were mixed, and the mixture was
used as the sample. The results indicated that the obtained TLC-SERS method was able to recognize
these four analogues, and eight common Raman peaks were extracted to establish the reference-free
detection model. Lu et al. also applied the TLC-SERS strategy to detect anti-diabetes chemicals used
to adulterate BDS for diabetes [97]. Under optimized experimental conditions, the highly sensitive
detection of 0.001% (w/w) adulteration could be achieved. In addition, chemicals in extremely
complex herbal matrices could also be identified by the TLC-SERS method. Lu et al. applied the
TLC to separate adulterants in BDS [98]. Then, dynamic surface enhanced Raman spectroscopy
(DSERS) detection was performed with a portable Raman spectrometer. It was found that a higher
SERS enhancement and stability were obtained, because 50% glycerol Ag colloid was chosen as
the active substrate. During the detection process, a large number of hot spots could be formed,
and the target molecules were automatically concentrated. This method displayed a desirable stability,
improved sensitivity, and could achieve separation and detection rapidly. To analyze real BDS samples,
one sample adulterated with benproperine phosphate was detected. Compared with the TLC-SERS
technique, the sensitivity has been improved by 1-2 orders of magnitude by using the TLC-DSERS
technique, based on the increased hot spots. The combination of SERS and other technologies is one of
the important development directions in SERS research.

4.2. SERS in the Detection of Drugs in Bodily Fluid for In Vivo Illegal Drugs Analysis

As the most common body fluids, saliva and urine are easy to obtain and sample extraction
causes little damage to the testee. The main ingredient in them is water, which does not significantly
interfere with the results. They are suitable for detecting illegal drugs in the body, and a direct
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test is easy to operate. Han et al. applied a portable kit for the rapid SERS detection of drugs in
human urine [99]. A 3 min pretreatment for the separation of amphetamines from human urine
was utilized. An ultraperformance liquid chromatography (UPLC) examination indicated that
the proposed pretreatment procedure was able to lower the high background signals of complex
components in urine. Using the substrate of 2D gold nanorod (GNR) arrays, methamphetamine
(MA), 3,4-methylenedioxymethamphetamine (MDMA) and methcathinone (MC) in volunteers’ urine
samples, with various clinical natures, were measured. Herein, thirty batches of GNR arrays could
generate an intensity of 1001 cm−1 in MA molecules, with an RSD of 7.9%. The LOD of amphetamines
in human urine was 0.1 ppm. Dong et al. successfully detected and directly read MDMA in human
urine using DSERS, with a portable Raman spectrometer on GNRs and a classification algorithm, called
support vector machines (SVM) (Figure 6) [100]. In this study, enhanced SERS signals were obtained
using DSERS, and then the SVM model was developed by choosing these data for fast identified and
visual results. One of the main advantages of this system was that the detection results were displayed
directly, without the need for an analysis of the spectra. The samples mixed with the colloidal sol
of GNRs could be applied without pretreatment, and the drugs were detected from a wet state to a
drying state. In comparison with the traditional method, in the lab, this method only consumed a 2 µL
sample volume and took less than 2 min for detection. This method is not suitable for drugs associated
with the SVM model, but it still has a satisfactory ability in conveniently and rapidly testing drugs
on-site for the police.
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4.3. SERS in the Detection of Drug Concentration for Medication Guides

Therapeutic drug monitoring is important for providing a clinical personalized treatment guide,
reducing side effects and improving drug resistance. The typical methods for detecting drug
concentration include: (1) HPLC, GC, which are suitable for the vast majority of drugs; (2) the immune
method, which is used for protein and polypeptide drugs; (3) the microbial method, which is used for
antibiotic compounds. These methods are time-consuming and relatively expensive. SERS, as a type
of simple method with a high efficiency and sensitivity, shows a promising application prospect in
nondestructive testing of the content of active ingredients and illegal drugs in blood. A silver colloid
was selected as the SERS active substrate for detecting pethidine hydrochloride agents [101]. Herein,
the SERS improvement efficiency of distinct substrate aggregates was explored to achieve optimal
experimental conditions. The LOD for pethidine hydrochloride in water was 0.1 µg mL−1, which was
lower than the typical administered dosages. Moreover, a favorable linear relationship between drug
concentration and the Raman intensity was observed for pethidine hydrochloride at a concentration
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range of 0.1 to 10 µg mL−1. Self-assembled Au@Ag nanorod dimers were utilized to develop SERS
substrates [102]. Benefiting from the enhanced electronic field after adding silver shell coating on an
Au nanorod dimer surface, ultrasensitive dopamine detection could be achieved, with an LOD of
0.006 pM. SERS, combined with the new SERS substrate or other separation technologies, is also used
to detect the blood drug concentration.

Cunningham et al. utilized a plasmonic nanodome array (PNA) surface as an integrated SERS
sensor for the point-of-care detection and real-time monitoring of intravenously delivered drugs via
tubing (Figure 7) [103].
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Figure 7. (A) (a) Image of the PNA surface fabricated on a flexible polymer sheet. (b) SEM image of the
completed PNA surface. Inset: close-up SEM image of the PNA surface, with a measured inter-dome
separation distance of 15-20 nm. (c) Image of the SERS sensor, assembled by the incorporation of
the flexible PNA substrate into a plastic flow cell. (d) Schematic of an in-line SERS sensor, where
two cylindrical openings at the ends of the SERS sensor are connected in a series with biomedical
tubing and a 785 nm laser, focused on the PNA surface by a 50 objective. (B) SERS spectra of
25 mg mL−1 promethazine solution for SERS sensors with varying chamber heights (H). Primary
SERS intensity peak for promethazine can be observed at 1037 cm−1. The inset represents the Raman
spectrum of 25 mg mL−1 promethazine solution, acquired when the laser was focused on a uniform
non-nanostructured gold surface. (by H. Y. Wu [103]).

In this study, the PNA structures were constructed using a nanoreplica molding process. Gold was
selected as the plasmonic material, because it was less susceptible than silver to oxidation. This sensor
was then incorporated into a miniature flow cell that was connected in a series with intravenous
drug delivery tubing. Ten pharmaceutical compounds were chosen as the model for SERS detection.
The LODs of hydrocodone, levorphanol, and mitoxantrone were low in ng/mL and well below
the typical administered dosages (mg/mL). This method also presented a desirable result in the
co-detection of multiple drugs, with a high reproducibility and stability for at least five days after the
drugs were administered. McLaughlin et al. applied surface-enhanced resonance Raman scattering
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(SERRS) to test for mitoxantrone in blood samples [104]. A simple, sensitive and fast method was
developed by employing a flow cell and silver colloid, as the substrate. The LOD was as low as
0.02 ng/mL, which was close to the results of HPLC. Huang et al. used microwave-treated gold
film-polyethylene beads as SERS substrates to detect the anti-cancer drug (paclitaxel) concentration in
blood plasma [105]. The representative Raman peak (1605 cm−1) intensity of paclitaxel was selected
to estimate the paclitaxel concentration after deducting the Raman background from the blood
plasma. A satisfactory linear relation was observed from 10−8 M to 10−7 M. This indicated that
microwave-modified Au-PS SERS substrates had a promising capacity to quickly and efficiently
monitor the anti-cancer drug distribution in blood plasma.

Blood contains a lot of information, and SERS has the potential for low concentration detection
due to its high sensitivity, although there are still some problems that need to be solved in detecting the
drug concentration in blood. For example, the strong interference of blood, the poor reproducibility of
the sol matrix, and last but not least, the low drug concentration in the body. AgNPs was prepared by
a hydroxylamine hydrochloride reaction as an SERS substrate, and we used an SERS-based two-step
centrifugation method to detect phenformin hydrochloride, with a detection limit of 500 fM, which
was about 10−5 times higher than that of other conventional methods [106] (Figure 8).
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Figure 8. Diagram of the detection process of phenformin hydrochloride by the SERS-based two-step
centrifugation method. (a) The concentrated AgNPs were flocculated when high concentration
phenformin hydrochloride was added. (b) Characteristic peak of the phenformin hydrochloride
were detected at 1000 cm−1. (c) The concentrated AgNPs were unflocculated, and an analyte-AgNPs
complex was formed when a low concentration analyte was added. (d) No characteristic peak of
the phenformin hydrochloride was detected. (e) An aggregated analyte-AgNPs complex and the
interparticle gap decreased after the second centrifugation. (f) Characteristic peak of the phenformin
hydrochloride were obvious at 1000 cm−1 (Chen et al. [106]).

This method included two steps: (1) centrifuging colloidal silver to concentrate it and increasing
the chance of analyte adsorption on nanoparticles; (2) centrifuging samples after the interest was
mixed with nanoparticles to increase the formation of hot-spot. This method was easy to operate and
produced a greatly improved sensitivity. The two-step centrifugation method had a great capacity
for drug blood concentration detection. Since drug blood concentration detection is the focus of
research at present and even in the future, efforts should be made to improve the method for accurately
detecting drug blood concentration in real samples. For cancer treatment, the ultrasensitive detection of
low-quantity drugs is essential for personalized therapy. SERS provides a useful method for precisely
identifying analytes based on the specific vibrational spectra. Four anticancer drugs, including
sunitinib, paclitaxel, irinotecan and SN-38, were detected by SERS [107]. PCA was performed with
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a built-in routine, running under MatLab R2012a. The results suggested that low concentrations of
sunitinib, irinotecan and SN-38 could be detected by SERS, with a 633 nm laser excitation. The three
drugs all exhibited a linearity range of 102–103 ng. Irinotecan and SN-38 possessed similar Raman
fingerprint due to their similar molecular structure, although the multivariate analysis combined with
Raman spectra facilitated the discrimination of these two drugs. This study developed an efficient
SERS-based technique for monitoring chemotherapy drugs in the cancer therapy process.

5. Conclusions and Perspectives

This review focuses on the innovative SERS-based strategies for detecting DNA, protein and
drugs. As an important modern spectroscopic technique, SERS has attracted tremendous attention in
bio-science due to its high-sensitivity, high-selectivity, the noninterference of water and non-destructive
testing of analytes.

Various methods, including the DNA hybridization method, asymmetry signal amplification
method, and gene chips method, present unique benefits in the detection of disease-related DNA
targets for clinical diagnosis. Moreover, the sandwich detection and amplification methods also
provide efficient protocols for detecting microbe-related DNA targets for food safety. Compared with
conventional microbial monitoring, the SERS-based strategy is a time-saving technique for detecting
gene sequences, with a high accuracy and specificity. Since proteins are important cancer biomarkers,
SERS utilized for detecting proteins plays an important role in clinical diagnosis. Furthermore,
multivariate data analysis associated with SERS facilitates the recognition and classification of
complicated spectral data. The combination of the separation technique and SERS has gained much
research interest in detecting illegally added drugs. To measure drug concentrations for medication
guides, multiplex detection based on SERS displays a promising prospect.

With the in-depth research on developing materials for the construction of active SERS substrates,
the combination of technologies, and the establishment of the Raman spectra database, we foresee a
promising potential in the application of SERS for DNA, protein and drug detection. However,
despite its tremendous potential, it is still necessary to enhance the analytical performances of
SERS. The challenge of this technique is to develop a standardized method for the formation of
homogeneous SERS covering on targets. Moreover, considerable efforts will continue to be made to
achieve quantitative detecting analytes in complex biological samples.
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