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Abstract: Intelligent fault diagnosis methods based on deep learning becomes a research hotspot
in the fault diagnosis field. Automatically and accurately identifying the incipient micro-fault of
rotating machinery, especially for fault orientations and severity degree, is still a major challenge in
the field of intelligent fault diagnosis. The traditional fault diagnosis methods rely on the manual
feature extraction of engineers with prior knowledge. To effectively identify an incipient fault
in rotating machinery, this paper proposes a novel method, namely improved the convolutional
neural network-support vector machine (CNN-SVM) method. This method improves the traditional
convolutional neural network (CNN) model structure by introducing the global average pooling
technology and SVM. Firstly, the temporal and spatial multichannel raw data from multiple sensors is
directly input into the improved CNN-Softmax model for the training of the CNN model. Secondly,
the improved CNN are used for extracting representative features from the raw fault data. Finally,
the extracted sparse representative feature vectors are input into SVM for fault classification. The
proposed method is applied to the diagnosis multichannel vibration signal monitoring data of a
rolling bearing. The results confirm that the proposed method is more effective than other existing
intelligence diagnosis methods including SVM, K-nearest neighbor, back-propagation neural network,
deep BP neural network, and traditional CNN.

Keywords: intelligent fault diagnosis; convolutional neural network; support vector machine; global
average pooling; multichannel; data fusion; deep learning; rotating machinery

1. Introduction

The health condition monitoring and fault diagnosis of rotating machinery are of great importance
in modern industry [1,2]. Rotating machinery is one of the most important types of engineering
equipment [3]. In the past decade, with the rapid development of high-performance rotating machinery,
such as advanced supersonic vector aircraft engines, large generator sets, precision machine tool
spindles, and high-performance marine propulsion motor, etc., are developing increasingly toward
automation, unmanned, and ultrahigh speeds [4]. To ensure the safety and reliability of rotating
machines’ operation, it is necessary to establish a highly efficient and intelligent fault diagnosis and
health monitoring system [5]. In general, significant faults are gradually evolved from incipient
micro-faults. Incipient faults have a smaller effect on the stability of rotating machinery, and it is easy
to handle [6]. However, the features of incipient faults are not obvious, and the detection and diagnosis
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of micro-faults are more difficult than the significant faults. Nowadays, incipient micro-fault diagnosis
and monitoring methods are widely investigated by scholars in the field of fault diagnosis [1,6–9].

In general, fault diagnosis methods may be divided into two types: mechanism analytical
model methods [10] and data-driven methods [11]. The former needs to establish a high-precision
mathematical model to describe the evolution mechanism of a fault. Although this method can
obtain better results, it is difficult to establish a high-precision complex system model. In addition,
the established model is difficult to transplant to solve other similar problems [6]. Therefore, with the
increasing complexity of the mechanical system, the fault diagnosis methods based on mechanism
analytical models are restricted in actual applications. Nowadays, with the rapid rise and popularity
of the “internet+” and the internet of things, the advanced intelligent sensors and data acquisition
technology are widely used in rotating machinery and equipment [4,5]. The massive monitor data
such as the vibration, noise, temperature, current, and pressure of rotating machinery are easily
obtained, and those historical data records the life cycle health information of rotating machinery
from the beginning to end of service [5]. Therefore, engineers may perform a fault diagnosis by the
statistical analysis of huge historical data. In recent years, the data-driven fault diagnosis method is
widely popularized and applied [11]. For example, the Yangtze Three Gorges Hydropower Station of
China has about 60 large hydroelectric generator sets. Each generator set needs to monitor multiple
condition indicators including vibration, noise, pressure pulsation, efficiency, bearing temperature,
generator temperature, generator air gap, generator partial discharge, transformer oil and gas, etc. [12].
The monitoring data of each indicator is up to terabytes (TB). Therefore, it is unrealistic to rely on the
experience of engineers or experts only to analyze faults by extracting features manually. This situation
is very common in many other fields, such as aircraft engines, smart ships, unmanned vehicles, and
autonomous ships. Thus, it is extremely necessary to establish intelligent, automatic, and adaptive
data-driven fault diagnosis methods in the context of big data.

In recent years, with the gradual rise of machine learning and deep learning research, fault diagnosis
methods based on artificial intelligence (AI) have gradually become a hot topic [1–5]. Different from
the traditional fault diagnosis methods based on signal processing technology, the intelligent diagnosis
algorithm can automatically extract the useful representative features from monitoring data [2].
The traditional intelligent diagnosis method usually includes three steps: feature extraction, feature
selection, and fault classification [3]. Feature extraction is to process and transform the raw data signals
collected by the multiple sensors in the time domain, frequency domain, and time-frequency domain
and to extract useful representative features for subsequent fault identification [13–16]. The commonly
used feature extraction methods include wavelet transform (WT) [13], spectral analysis (SA) [14],
empirical mode decomposition (EMD) [15], and Fourier transform (FFT) [16]. Feature selection further
filtrates and removes the low sensitivity and useless data from the extracted features. The common
feature selection methods mainly include principal component analysis (PCA) [8] and independent
component analysis (ICA) [9]. Fault classification puts the selected features input into the fault
classifier for pattern recognition and, finally, outputs the classification results through repeated iterative
training [1–3]. Back-propagation artificial neural network (BPNN) [17], support vector machine
(SVM) [18,19], and K-nearest neighbor (KNN) [20] have become the most popular fault classifier in
the past decade [1]. Through application and verification, the above three algorithms have a poor
feature extraction ability due to their shallow network structure, and it is difficult to be applied to other
devices in the context of the big data [5]. At present, some scholars usually combine manual feature
extraction with shallow machine learning algorithms to perform an intelligent fault diagnosis [17–20].

The abovementioned existing intelligent fault diagnosis methods have been applied and obtained
certain effective results; however, there still exist four major shortcomings: (1) The massive monitoring
signals collected from rotating machinery under different working conditions are always very complex
and non-stable with heavy background noises [3]. (2) Engineers must master various advanced signal
processing techniques for data preprocess and feature extraction. However, the feature selection
excessively relies on the experience and prior knowledge of engineers [4]. Furthermore, it is very
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subjective, time-consuming, and blind [3]. (3) The extracted features are mainly used to solve specific
fault problems, and the versatility is poor [21]. Different fault types, fault locations, and fault severities
will affect the effect of feature extraction [3,21]. Also, manual feature extraction and selection methods
are difficult to adapt to the millions of samples of big data. (4) Manual operation is difficult to extract
the micro-features of an incipient fault. As the feature of an incipient fault is not very distinct and
would be covered by background noise easily, engineers may try hard to detect the micro-fault and may
delete it as noise. The inherent shortcomings mentioned above are derived from the shallow model
architectures employed in the traditional intelligent diagnosis methods. It would lead to an insufficient
feature extraction ability [3]. Consequently, there is an urgent need to develop deep network model
structures used for automatic data deep mining, feature extraction, and intelligent fault diagnosis of
rotating machinery.

In 2006, Hinton and Salakhutdinov jointly proposed the deep learning theory [22]. Deep learning is
a great breakthrough in the artificial intelligence field [3]. It uses the deep neural network architectures
to extract representative features layer by layer from the input data and automatically and greedily
learns the inner relation between the input data and labels [23]. One of the most important advantages of
deep learning methods is that they can automatically learn the representative features and the complex
nonlinear relationships from the raw data [24]. In addition, it can greatly get rid of the long-term
dependence of manual feature extraction and selection based on expert experience [3]. Currently
deep learning technology has been successfully applied in the fields of speech recognition [25], image
recognition [26], and natural language processing [27]. The recognition ability of images and the speech
of the deep learning model is over that of human beings. The powerful feature extraction capability of
deep learning has the potential to identify micro-fault features and to overcome the aforementioned
inherent defects of traditional intelligent diagnostic methods [1–4].

Since 2013, deep learning method and deep neural networks (DNN) have attracted more and
more attention and have been gradually applied in the mechanical fault diagnosis field. Jia et al. [28]
proposed a five-layer DNN model (including three hidden layer) by using the deep auto-encoder
method for an intelligent fault diagnosis of rolling bearings and planetary gearboxes, but the raw data
needed to be transformed into frequency spectra. Tamilselvan et al. [29] proposed a DNN method
based on a deep belief network used for an intelligence fault diagnosis of aircraft engines and power
transformers. Li et al. [30] proposed a 3-layer DNN based on the deep belief network (DBN) for a
fault diagnosis of rolling bearings. However, in their bearing experiments, the fault was simulated by
grooving, so the fault features obviously were a significant fault, which showed difficulty in reflecting
the effectiveness and ability of their model when used for dealing with a micro-fault diagnosis.

Convolutional neural network (CNN) or CNNs were first proposed by LeCun et al. [31]. It is one
of the most important branches of deep learning [2]. Compared with the other DNN, CNN model
has fewer parameters due to shared filters [23]. CNN has a powerful feature extraction ability and is
mainly used in image recognition [26]. In recent years, some scholars have applied CNN in the field
of fault diagnosis. Xia et al. [4] proposed a DNN method by stacking two groups CNN model used
for intelligence fault diagnosis of bearings and gearboxes. However, their method still needed the
frequency spectra of raw data. Verstraete et al. [32] proposed a deep learning method by using the
CNN method for a fault diagnosis of rolling element bearings. Similarly, their methods still needed to
turn raw data into a time-frequency image. Although the above studies all used CNN algorithm, they
still needed the traditional feature extraction method to extract the features from raw vibration data.
It has not made full use of the CNN’s powerful feature extraction ability and has limited the further
improvement of the effectiveness of a fault diagnosis. Recently, Zhang et al. [33] directly put a 2-D
representation of raw vibration signals input into a CNN model for the fault diagnosis of bearings.
Although their methods were without the manual feature extraction from raw data, a shortcoming still
existed in their research. In their CNN model, the fully connected network structure was used. As the
parameter quantity of the fully connected structure in CNN model was too large, it led to a long time
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duration for training and testing [2,4]. This shortcoming would have a negative impact on a rapid
fault diagnosis and the real-time detection of micro-faults.

For the aforementioned shortcomings, in this paper, a novel method called the improved global
average pooling CNN-SVM algorithm is developed for the intelligent diagnosis of incipient faults in
rotating machinery. The proposed method improves the traditional CNN model structure, using a
combination of a 1 × 1 convolution layer and a global average pooling layer [34] to replace the fully
connected layer of 2–3 layers and using the SVM to replace the Softmax function in test stage. The deep
learning training skills are used to improve the algorithm generalization ability and to prevent model
over-fitting. The proposed method is divided into three main steps: Firstly, the temporal and spatial
multichannel raw fault data from multiple sensors are directly input into the improved CNNs-Softmax
model to complete the training of the CNN model. Secondly, the improved CNNs are used as feature
extractors to extract representative features from the new fault raw data. Finally, the extracted sparse
representative feature vectors are input into the SVM used for fault classification. The proposed
CNN-SVM method does not use any manual feature extraction and signal processing on the raw
vibration data. It can get rid of the dependence on expert experience and prior knowledge. In this
paper, the proposed method is applied to the diagnosis of rolling bearing 2-channel experimental
vibration signal data and is compared with traditional intelligent diagnosis methods including SVM,
KNN, BPNN, deep BP neural network (DBPN), and traditional CNN. The results confirm that the
proposed method is more effective than the other existing intelligent methods.

There are two main contributions in this paper. Firstly, a novel method of intelligent fault diagnosis
based on the combination of CNNs as a feature extractor and SVM as a fault classifier is proposed.
Multichannel 2-D raw input data based on multiple sensors are used as the input of CNN-SVM.
At the same time, the category and quantity of misclassification is visualized and quantified in the
proposed model by using a multi-class confusion matrix. Secondly, by improving the traditional
CNN network structure, the global average pooling layer is designed to replace the structure of the
fully connected network in CNN, which reduces the training parameter amount and calculation time.
Furthermore, the robustness and generalization of the proposed algorithm is improved by using
various deep learning training techniques such as data enhancement, dropout, and batch normalization.
The proposed method is more suitable for online monitoring and real-time rapid diagnosis of faults.

The rest of this paper is organized as follows. The basic theory and structure of CNN is briefly
introduced in Section 2. In Section 3, the intelligent diagnosis method based on an improved CNN-SVM
is described in detail. In Section 4, the experimental results are analyzed and discussed. Finally,
the conclusions are given in Section 5.

2. Standard Convolutional Neural Network

A convolutional neural network is a deep feed-forward neural network model that is used to
process data with mesh-like structures [23]. The CNN was first proposed by Yann LeCun in 1989
and is mainly used for handwritten figure recognition [31]. CNN has powerful feature extraction
abilities by constructing multiple filters and uses these filters to extract the representative features from
input data layer by layer [2]. It combines the sparse connection with the parameter weight sharing
mechanism, and the data dimension is down-sampled in time and space, which greatly reduces the
amount of training parameters and effectively avoids an over-fitting of the algorithm [35]. In CNN
model, the back-propagation (BP) algorithm is used to update the model parameters [24,35,36]. Due to
its good adaptability to the scaling, tilting, and translation of images, it is great widely applied in
image recognition and other similar problems [24,26,32,33,36]. A basic structure of CNN is shown in
Figure 1 [31].
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Figure 1. The basic structure of the convolutional neural network [31].

CNN is a multistage stacked neural network [4]. The simplest CNN model is composed by
one trainable feature extraction stage and one classification stage [2]. Each stage involves linear and
nonlinear operations, and each stage has a different role. The feature extraction stage contains three
kinds of layers: the convolutional layer, the activation layer, and the pooling layer [23]. A deep CNN
network can be constructed by alternately stacking multiple feature extraction stages. The feature
extraction stages are used for extracting representative features from the input data layer by layer.
The classification stage is a multilayer perceptron consisting of several fully connected layers [33].
The input and output of each stage are sets of matrices called feature maps [37]. The feedforward
calculation process [4] can be written as:

f (X) = fN(· · · f3( f2( f1(X,θ(1)),θ(2)),θ(3)), · · · ),θ(N)) (1)

where X = [x1, x2, · · · , xm] ∈ R1×m is the input feature map of raw input data, such as 2-D image data
or 1-D time series data including vibration, audio, pressure, and current signals from a mechanical
health monitoring system [5]; θ(1),θ(2), · · · ,θ(N) are the training parameters including weights and
biases; f1, f2, · · · , fN are the linear or nonlinear operations at each stage; and f (X) is the final output of
the original data X obtained by several convolution, activation, and pooling operations, etc.

2.1. Convolution Operation Layer

The convolutional layer is one of the most important core modules in CNN [2]. It contains
multiple convolution kernels (also known as filters). The filter is usually a rectangular matrix, and
each value of the matrix is a weight (also known as a characteristic value) learned from the input
data [23]. Each filter has different weights. These weights are calculated automatically by an error back
propagation algorithm [4]. In the convolutional layer, the input feature map is convolved with a bunch
of learnable convolution kernels to generate many new feature maps as the input to the next layer [4].
The calculation method principle schematic diagram of a convolution operation is shown in Figure 2.
In Figure 2, the left picture is an input feature map, the middle is a convolution kernel, and the right is
an output feature map.

In Figure 2, the convolution kernel can be moved on the input feature map along with the
up-down and left-right directions according to the stride [23]. Usually, the stride is larger than or equal
to 1. Multiply the corresponding element values of the coincident region between the convolution
kernel and input feature map and then add the offset to obtain a value of output feature map. In the
feedforward calculation process, the output feature maps of the convolutional layer can be obtained by
using the rectangular convolutional kernel to traverse each element on the entire input feature map.
The convolution operation of a multichannel input feature map can be described as follows [4]:
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i is the weight of the convolution kernel at the ith layer, the filter of cth channel in the kth

group convolution kernel; and B(k)
i is the bias of the kth group filter in the ith layer. If C = 3, it represents

the input feature map, a 3-channel array such as a color picture with three Red-Green-Blue channels.Sensors 2019, 19, 1693 6 of 37 

 
Figure 2. A schematic diagram of a convolution operation. 

In Figure 2, the convolution kernel can be moved on the input feature map along with the up-
down and left-right directions according to the stride [23]. Usually, the stride is larger than or equal 
to 1. Multiply the corresponding element values of the coincident region between the convolution 
kernel and input feature map and then add the offset to obtain a value of output feature map. In the 
feedforward calculation process, the output feature maps of the convolutional layer can be obtained 
by using the rectangular convolutional kernel to traverse each element on the entire input feature 
map. The convolution operation of a multichannel input feature map can be described as follows [4]:  

( ) ( , ) ( ) ( )
11

Ck c k c k
i i i ic
X W X B−=

= ⊗ +  (2) 

where ⊗  represents the convolutional operator; i denotes the index of the network layer; k 
represents the index number of the convolution layer output feature maps and also marks the kth 
group convolution kernel; each group contains C convolution kernel; k = 1, 2, …, K; c = 1, 2,…, C and is 
the channel index number of input feature maps; ( )

1
c
iX −  is the input feature map of channel c; ( )k

iX  
is the kth output feature map after the convolution calculation of the kth group convolution kernel 
and the input feature map; ( , )c k

iW  is the weight of the convolution kernel at the ith layer, the filter of 
cth channel in the kth group convolution kernel; and ( )k

iB is the bias of the kth group filter in the ith layer. 
If C = 3, it represents the input feature map, a 3-channel array such as a color picture with three Red-
Green-Blue channels.  

2.2. Activation Operation Layer 

After the convolution operation, a nonlinear transformation activation function is applied to the 
output of the convolution layer [2]. The purpose of the activation layer is to improve the expression 
ability of the model. Different activation functions can obtain different nonlinear transformations. 
Equation (2) can be rewritten as follows after adding the activation function:  

( ) ( )( ) ( ) ( , ) ( ) ( )
11

Ck k c k c k
i i i i ic
A f X f W X B−=

= = ⊗ +  (3) 

where ( )f ⋅ is the activation function and ( )k
iA is the kth output feature map after a nonlinear 

transformation by the activation layer.  
In CNN, the most commonly used activation functions include the Sigmoid, hyperbolic tangent, 

and rectified linear unit (ReLU). Their expressions and graphs are shown in Table 1. More activation 
functions can be seen in Reference [3]. As can be seen from Table 1, the sigmoid function is similar to 
the tanh function. The input value x of both sigmoid and tanh function is ~−∞ +∞ , and the output 
value ( )f x  of both the sigmoid and tanh functions respectively are 0–1 and −1–. Both of these 
functions have better nonlinear transformation capabilities, but the inherent disadvantage is a 
gradient disappearing and gradient saturation problem [38]. When the absolute value of the input 
value x is large, the output change values ( )f x  of the two functions almost is zero. In order to solve 

Figure 2. A schematic diagram of a convolution operation.

2.2. Activation Operation Layer

After the convolution operation, a nonlinear transformation activation function is applied to the
output of the convolution layer [2]. The purpose of the activation layer is to improve the expression
ability of the model. Different activation functions can obtain different nonlinear transformations.
Equation (2) can be rewritten as follows after adding the activation function:

A(k)
i = f

(
X(k)

i

)
= f

 C∑
c=1

W(c,k)
i ⊗X(c)

i−1 + B(k)
i

 (3)

where f (·) is the activation function and A(k)
i is the kth output feature map after a nonlinear

transformation by the activation layer.
In CNN, the most commonly used activation functions include the Sigmoid, hyperbolic tangent,

and rectified linear unit (ReLU). Their expressions and graphs are shown in Table 1. More activation
functions can be seen in Reference [3]. As can be seen from Table 1, the sigmoid function is similar
to the tanh function. The input value x of both sigmoid and tanh function is −∞ ∼ +∞, and the
output value f (x) of both the sigmoid and tanh functions respectively are 0–1 and −1–1. Both of these
functions have better nonlinear transformation capabilities, but the inherent disadvantage is a gradient
disappearing and gradient saturation problem [38]. When the absolute value of the input value x is
large, the output change values f (x) of the two functions almost is zero. In order to solve this problem,
the ReLU activation function only considers the forward signal, ignoring the influence of the negative
signal, and it has a good fitting ability and sparsity, which greatly improves the efficiency of the
calculation [2]. The ReLU function can effectively prevent a gradient disappearance and over-fitting
and has been widely used in recent years [35].
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Table 1. The commonly used activation functions in a convolutional neural network (CNN).
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2.3. Pooling Operation Layer  

The pooling layer (also known as subsampling or down-sampling) is located behind the 
convolutional layer. The main role of pooling is to reduce the dimension and quantity of trainable 
parameters of a CNN and to screen the main representative features from the activation layer output 
feature maps [2,4,24]. Usually, the convolution layer mainly relies on the increasing number of output 
channels to improve the feature extraction ability of the model. Each output channel corresponds to 
a filter. Each filter can only extract one type of feature because of sharing parameters [23]. Therefore, 
as many potential features as possible are extracted from the raw data using many filters in a CNN. 
As the convolution operation increases the number of output feature maps, the feature dimension 
will be increased sharply, so the dimensionality disaster is easily caused [39]. The pooling operation 
mainly uses a rectangular pooling kernel (also known as a pooling window) for feature screening 
[24]. The operation of pooling is similar to convolution. The pooling window can be set to different 
sizes, and the pooling kernel can also be moved on the feature map along with the up-down and left-
right directions according to the stride [23]. The stride is larger than or equal to 1. The calculation 
method principle schematic diagram of pooling operation is shown in Figure 3. 

 
Figure 3. A schematic diagram of a pooling operation. 

Different from the convolution operation, in Figure 3, the pooling operation generates a 
representative value to replace all elements in the pooling window. Pooling operations mainly 
include maximum pooling and average pooling [23,33]. In Figure 3, the middle graph is the raw 
feature map, the left is the average pooling operation, and the right is the maximum pooling 
operation. The maximum pooling (max-pooling) selects a maximum value as the representative value 
from all the elements in the corresponding area of the pooling window [35]. Average pooling 
calculates the average value from all the elements as the representative value in the corresponding 
area of the pooling window. Max-pooling is excellent at handling texture features, and average 
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The pooling layer (also known as subsampling or down-sampling) is located behind the
convolutional layer. The main role of pooling is to reduce the dimension and quantity of trainable
parameters of a CNN and to screen the main representative features from the activation layer output
feature maps [2,4,24]. Usually, the convolution layer mainly relies on the increasing number of output
channels to improve the feature extraction ability of the model. Each output channel corresponds to a
filter. Each filter can only extract one type of feature because of sharing parameters [23]. Therefore,
as many potential features as possible are extracted from the raw data using many filters in a CNN.
As the convolution operation increases the number of output feature maps, the feature dimension
will be increased sharply, so the dimensionality disaster is easily caused [39]. The pooling operation
mainly uses a rectangular pooling kernel (also known as a pooling window) for feature screening [24].
The operation of pooling is similar to convolution. The pooling window can be set to different sizes,
and the pooling kernel can also be moved on the feature map along with the up-down and left-right
directions according to the stride [23]. The stride is larger than or equal to 1. The calculation method
principle schematic diagram of pooling operation is shown in Figure 3.
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Different from the convolution operation, in Figure 3, the pooling operation generates a
representative value to replace all elements in the pooling window. Pooling operations mainly
include maximum pooling and average pooling [23,33]. In Figure 3, the middle graph is the raw
feature map, the left is the average pooling operation, and the right is the maximum pooling operation.
The maximum pooling (max-pooling) selects a maximum value as the representative value from all
the elements in the corresponding area of the pooling window [35]. Average pooling calculates the
average value from all the elements as the representative value in the corresponding area of the pooling
window. Max-pooling is excellent at handling texture features, and average pooling is more sensitive
to background information [23]. In CNN, the max-pooling is widely used in a pooling layer [35]. The
mathematical expression of max-pooling [33] is described as follows:
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P(k)
i = max

( j− 1)S + 1 < tx ≤ jS
( j− 1)H + 1 < ty ≤ jH

{
A(k)

i

(
tx,y

)}
(4)

where A(k)
i

(
tx,y

)
represents the tx,y th pixel value in the kth output feature map of the ith layer, S and H

are the width and height of the pooling window respectively,
{
A(k)

i

(
tx,y

)}
is a matrix of the shape S × H,

and P(k)
i is the output feature map after the pooling operation.

2.4. Fully Connection Layer

Fully connection layer is used in the classification stage in traditional CNN architecture. The main
role is to further extract the features of the output data of CNN and to connect the feature extraction
stages with the Softmax classifier [4,34]. In the traditional CNN, a fully connection layer is usually
composed of 2~3 layers fully connected to a feedforward neural network. The final output feature map
of a CNN is transformed into a one-dimensional array by a Flatten function. This one-dimensional array
is thought as the input of the fully connection layer. Finally, the output of the fully connection layer is
a one-dimensional vector. Each value of 1-D vector is a quantitative value of n classifications. In a fully
connected network, all neurons between layers are interconnected, with the following definition:

o(X) = f (W ·X + B) (5)

where f (·) denotes the activation function, X is the input of a fully connected layer, o(X) is the
output of a fully connected layer, and W and B are the weights and biases of a fully connected
network, respectively.

In the conventional CNN network shown in Figure 1, the classification output layer is usually
composed of a fully connected layer and a Softmax classifier [4,33,39]. However, the inherent
shortcoming of a fully connected layer has too many trainable parameters [4]. In the traditional CNN,
the parameter quantity of the fully connected layer accounts for 80–90% of the total parameter quantity
of the CNN model [34,40]. This shortcoming offsets the advantages of pooling operations to reduce
the dimensionality and parameters in a large extent. Moreover, the number of parameters increases
exponentially with the increasing number of fully connected layers. Therefore, the structure of the
fully connected layer in a CNN not only occupies too many computing resources but also easily
leads to model over-fitting [34]. Worse, the test time will be too long when using the trained fully
connected CNN model to online diagnose the faults, leading to it being not suitable for applications
with rapid diagnosis and real-time online detection. Another disadvantage of the traditional CNN
network is that the Softmax function [41] is used as the final classifier. The Softmax classifier essentially
transforms the final classification result into a normalized operation that conforms to the probability
distribution [4]. It is not as powerful as SVM in a multi-class classification performance. The SVM has
powerful multi-class classification capabilities in reality [42]. However, the shortcoming of SVM is that
its capabilities of deep feature extraction and data mining are insufficient, and SVM is more suitable
for processing small sample data [1,6]. Therefore, it is difficult to play a more superior performance in
the diagnosis of micro-faults and big data samples.

3. The Improved CNN-SVM Intelligent Fault Diagnosis Method

3.1. Improved CNN-SVM Algorithm Construction

By analyzing the shortcomings of a traditional CNN algorithm construction, this paper improves
the traditional CNN model structure. Firstly, the global average pooling technology is introduced
to replace the fully connected network structure in CNN, which effectively reduces the parameter
quantity and calculation time of the CNN model. Secondly, the nonlinear SVM is used to replace the
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Softmax function in the test stage, which effectively improves the accuracy of the classification results.
The model structure of the improved CNN-SVM method is shown in Figure 4.
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In the improved CNN-SVM algorithm, it is mainly composed of an input layer, a feature extraction
layer, and a classification estimation output layer. The feature extraction layer is the core part of the
CNN-SVM algorithm. It consists of multiple convolutional layers, activation layers, and pooling layers
stacked in sequence. Different from a traditional CNN, the proposed method uses a combination of a
1 × 1 convolution layer [43] and a global average pooling layer [34] to replace the 2~3 layers of fully
connected layers. A detailed structural design is shown in Figure 5.
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In Figure 5, it is assumed that there are 10 classification categories. In a traditional CNN, the output
of the fully connection network should be 1 × 10. Here, it is assumed that the given size of an output
feature map of the bottom pooling layer is 6 × 6 × 32, where 6 × 6 denotes the size of an image
pixel is 6 × 6 and where 32 represents the channel number of a pooling layer output feature map.
In the traditional CNN model, the 6 × 6 × 32 multidimensional array is usually converted into a
one-dimensional array, which is considered as the input of the fully connection layer by a Flatten
function. The hidden layer of a fully connection layer is usually 2–3 layers [4]. The number of nodes in
the last hidden layer is set to be the number of categories of the classification. In this case, the final
output dimension is 10. Assuming that the number of nodes of the 2 hidden layers are 512 and 256,
respectively, the total amount of learnable parameters of fully connection layer is up to 724,234. The
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detailed calculation process is (6 × 6 × 32 + 1) × 512 + (512 + 1) × 256 + (256 + 1) × 10 = 724,234. This is
just a small-scale example, and the total amount of learnable parameters in the actual engineering is
much larger. Therefore, the full connection part occupies a huge computing resource. The calculation
effective of a traditional CNN is inefficient due to defects in the fully connected layer when processing
large-size images [34]. To solve this problem, the proposed method replaces the fully connected part
with global average pooling technology. The output format of a fully connection layer is 1 × 10, so the
output feature map size of the global average pooling should also be 1 × 10. To facilitate a CNN
calculation, the format of 1 × 10 is transformed into a 2-D image format of 1 × 1 × 10. The output
feature map shape of the global average pooling layer is 1 × 1 × 10, and the shape of the input feature
map is 6 × 6 × 32. The goal is to convert 6 × 6 × 32 into 1 × 1 × 10 and to finally get a 1 × 10 output, as
shown in Figure 5. The detailed improvement steps are described as follows:

Firstly, the shape of 6 × 6 × 32 is converted into 6 × 6 × 10. In order to accomplish this task,
a transitional convolution layer of 1 × 1 × 32 × 10 is specially designed. The size of a convolution kernel
is 1 × 1, the stride is 1, and the padding mode is “Same”. The role of the transitional convolutional
layer is to change only the number of output channels of the input feature map without changing
its image size. The 6 × 6 × 32 feature map is calculated by 1 × 1 × 32 × 12 convolution layers, and a
feature map of 6 × 6 × 10 is obtained. In Figure 5, the input channel is 32, and the output channel after
convolution calculation is 10. Therefore, if it wants to reduce the number of channels of the 32-channel
feature map to 10, it must set up 10 groups of convolution kernels. Also, the number of each group
convolution kernels should be 32 because the channel number of the input feature map is 32. Therefore,
in each group convolution kernel, there are 32 convolution kernels of 1 × 1. The 32 1 × 1 filters are
calculated by a convolution with 32 6 × 6 input feature maps, one each. The 32 6 × 6 feature maps
are still obtained because the 1 × 1 convolution operation does not change the input feature map size.
Then, the corresponding elements of the 32 6 × 6 feature maps are summed to obtain a total 6 × 6
feature map. Ten groups of 1 × 1 × 32 convolution kernels correspond to the 10 output feature maps.
Finally, a 6 × 6 × 10 output feature map is obtained, as shown in Figure 5.

Secondly, the shape of 6 × 6 × 10 is converted into 1 × 1 × 10. In order to realize this goal, a global
average pooling technology is applied. The 10 feature maps of 6 × 6 correspond to 10 global average
pooling kernels. Each pooling kernel size of the global average pooling layer is 6 × 6, the stride is 6,
and the padding mode is “Same”. The role of the global average pooling layer is to change only the
size of feature map without changing its number of output channel [34]. The 36-pixel values of each
6 × 6 feature map are averaged to obtain a global average value. According to this method, 10 feature
maps of 6 × 6 can obtain 10 output values of 1 × 1. Therefore, the final output feature map is 1 × 1 × 10,
as shown in Figure 5.

The improved CNN model using the global average pooling method is better than the traditional
CNN model used the fully connected layer [34]. The reason is that, on the one hand, the global average
pooling technique greatly reduces the number of training parameters of the CNN model and reduces
the risk of CNN model over-fitting. In this case, the total parameter amount of global average pooling
part is only 330. The calculation process can refer to Equation (19). However, the total parameter
amount of fully connection layer is up to 724,234. Also, the global average pooling has no trainable
parameters. On the other hand, the improved CNN model reduces the number of network layers of
the original CNN model and avoids the gradient disappearance problem caused by the fully connected
multilayer perceptron. Therefore, the train efficiency and calculation speed of the improved CNN
model is more efficient than the original CNN model. Behind the improved CNN model, the Softmax
layer and the SVM classifier are designed to be connected in parallel, are located in the improved CNN
model, and finally construct the CNN-SVM model. The basic components of the CNN-SVM algorithm
are as follows:

(1) Raw data input layer
The input layer is used for receiving the raw fault monitoring data from the rotating machinery,

and some necessary operations are conducted on the raw data such as data standardization and format
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normalization. The raw data need to be converted to the trainable type of CNN [4]. In general, the
input data format of a CNN model is 2-D pixel grid data (such as image data) or 3-D data (such as a CT
scan or color video data) [23,35]. In this paper, the one-dimensional time series fault vibration signal
data of the rotating machinery can be transformed into a two-dimensional input feature map form by
the data reconstruction method [44]. The data reshaping process is shown in Figure 6.
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(2) Feature extraction layer
The feature extraction layer is the same as in the traditional CNN model. It consists of the

convolutional layer, active layer, and pooling layer. A deep feature extraction layer could be constructed
by alternately stacking multiple convolution layers, activation layers, and pooling layers according to
the actual needs of the diagnostic object. A detailed description of the convolutional layer, activation
layer, and pooling layer are found in Sections 2.1–2.3.

(3) Global average pooling layer
The global average pooling layer is a new technique to solve the problem of too many learnable

parameters of a fully connected network in a traditional CNN [34]. Similar to the pooling layer
operation, global average pooling calculates a global average value from the whole output feature map
of the last convolution layer. The size of a pooling kernel is the same as the size of a feature map. The
value of the stride is the same as the size of pooling kernel, and the padding mode is “Same”. The
detailed contents of the global average pooling technique have been introduced above. For the n-class
classification problem, the number of output channels of the last convolutional layer is n, and n output
feature maps are obtained. Through the global average pooling operation, each output feature map
gets a representative value. Finally, the output of the global average pooling layer is a matrix of 1 × n.
The mathematical expression of the global average pooling can be rewritten as:

Sl
avg−pooling =

1
c

c∑
i=1

Xl
1:h, 1:w, i (6)

where Sl
avg−pooling represents the calculated result by the global average pooling of the lth feature map;

l is the index of feature maps; c represents the total number of element values in the global average
pooling kernel; 1:h denotes that the range of a pooling kernel in the height direction is from the 1st line
to the hth line; 1:w indicates that the range of a pooling kernel in the width direction is from 1st column
to the wth column; similarly, the h and w respectively represent the height and width of an output
feature map of the last convolution layer; and Xl

1:h,1:w, i represents the element value corresponding to
the global average pooling kernel.

(4) Softmax function layer
The Softmax function is an extension of the Logistic regression and mainly solves the multi-class

classification problem [4,41]. The output result of a fully connection layer or the global average pooling
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layer is a quantization matrix {Y}m×n of m rows and n columns. The m represents m samples, and
the n represents the n quantized value corresponding to n categories. {Y}m×n = {Y1, · · ·Yi, · · · , Ym}

T,

Yi = (y(1)i , · · · y( j)
i , · · · , y(n)i ), where y(1)i indicates that the ith sample belongs to the probability value of

the first class. The different element value in {Y}m×n has different magnitudes which do not conform
to the probability distribution [2]. In order to solve this problem, the Softmax function is usually
used to normalize the calculation. After a Softmax normalization, the output value conforms to the
probability distribution [4]. Assuming that the training input sample is x and the corresponding label
is y, the sample x is predicted to be the probability of category j, which can be defined as P(y = j

∣∣∣ x) .
Here, n categories can obtain n quantized probability values. Each quantized value has different
magnitudes. Then, the n probability values are input into the Softmax function. Finally, the output of
Softmax layer is the n-dimensional vector that conforms to the probability distribution. The Softmax
function mathematical expression is defined as [4,39]

Y ′i =


y(1) ′i
y(2) ′i

...

y(n) ′i



T

=


P(yi = 1

∣∣∣ xi)
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exT
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exT
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(7)

where Y ′i is the output value of the ith sample after normalization by Softmax; Y ′i =

(y(1)′i , · · · , y(l)′i , · · · , y(n)′i ); the range of each value of Y ′i is from 0 to 1 and
∑n

l=1 y(l)′i = 1, conforming
to the probability distribution; P(yi = 1

∣∣∣ xi) is the probability value of the ith sample, belonging to

category 1; exT
i
·w 1 represents converting y(1)i to a value between 0 and 1; 1/

∑n
l=1 ex

i
·wl is a normalization

function; and the maximum value of each row in Y ′i is the fault category predicted of the CNN model.
The loss error can be calculated by comparing the normalized prediction result with the

corresponding sample actual label. The commonly used loss function includes the mean square
error (MSE) loss function and the cross-entropy (CE) loss function [4]. In this paper, the cross-entropy
loss function is applied because the input labels belong to the classification flag [39]. The cross-entropy
cost function is defined as

J(w) = −
1
m
[

m∑
i=1

n∑
j=1

I
{
yi = j

}
log

exi·w j∑n
l=1 exi·wl

] (8)

where i represents the ith training sample, j represents the jth category (the total number of categories is
n), and I{·} is a logical indication function. If the value in the brackets is true, I = 1, else I = 0. y(i) is the

actual label of the ith sample. exT
i ·w j /

∑n
l=1 exi·wl is a probability value calculation function by Softmax

normalized, representing the probability value of the ith sample belonging to the jth category. J(w) is a
cross-entropy loss function. The training process of CNN is to constantly adjust the parameters in
Equation (8) to minimize the cost function J(w).

(7) SVM classifier
SVM is a classic two-class model [19]. It exhibits many unique advantages in solving small

sample, multi-class, nonlinear, and high-dimensional pattern recognitions [1,42]. In this paper,
the proposed CNN-SVM method mainly uses a nonlinear SVM as the backend multi-class classifiers.
The nonlinear SVM is applied to solve the nonlinear multi-classification tasks. Through transforming
linear indivisible problems into linear divisible problems by using nuclear skills and soft interval
maximization techniques, the linear SVM classification algorithm is used to solve the nonlinear
classification problem [42]. Usually, the fault data of rotating machinery are linearly inseparable.
Assume the training dataset is Z =

{
(x1, y1), · · · (xi, yi), · · · (xn, yn)

}
, where xi ∈ χ = Rn, yi ∈ψ = {+1,−1},

and i = 1, 2, · · · , n, then xi is the ith input feature vector and yi is the category label of xi. By introducing
a slack variable ξi, the learning problem of linear indivisible SVM can be described as a soft interval
maximization problem [42]:
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min
w,b,ξ

1
2‖w‖

2 + C
n∑

i=1
ξi

s.t. yi(w · xi − b) ≥ 1− ξi ∀(xi, yi) ∈ Z
ξi ≥ 0 , i = 1, 2, · · · , N

(9)

where w and b are optimization parameters, ξi is a slack variable, and C is a penalty factor. By
continuously adjusting w and b, the objective function is minimized. Finally, the maximum separation
hyperplane is obtained [42]. Solving the dual problem of Equation (9) and selecting the suitable
kernel function K(xi · x j) and the penalty factor C (C > 0), the separation hyperplane that solves the
nonlinearity can be obtained as:

n∑
i=1

α∗i yiK(x · xi) + b∗ = 0 (10)

where α∗i and b∗ are the optimal solutions. The classification decision function can be written as

f (x) = sign

 n∑
i=1

α∗i yiK(x · xi) + b∗
 (11)

The kernel function K(x · z) in Equation (11) is the core technology of a nonlinear SVM. This paper
uses the Gaussian radial basis function (RBF) as the kernel function of a nonlinear SVM in a CNN-SVM
model. The mathematical expression of RBF is defined as [42]:

K(xi, x j) = exp

−‖xi − x j‖
2

2σ2

 (12)

Finally, combining Equations (10) and (11), the classification decision function using the RBF
kernel function can be written as

f (x) = sign

 n∑
i=1

α∗i yi exp

−‖xi − x j‖
2

2σ2

+ b∗
 (13)

The SVM algorithm was originally designed for the 2-classification problem. When dealing with
multiple types of problems, it is necessary to construct a suitable multi-class classifier. The model
structure of SVM is shown in Figure 7. The constructing method of multi-class classifiers can be seen
in Reference [45].
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3.2. Intelligent Fault Diagnosis Based on Improved CNN-SVM Method

In this paper, a novel method called the improved global average pooling CNN-SVM method is
proposed for the intelligent diagnosis of incipient faults in rotating machinery. This method can be
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divided into three main steps. Firstly, the multichannel raw fault data of the temporal and spatial from
multiple sensors is directly input into the improved CNN-Softmax model for the training of a CNN
model by the back-propagation algorithm. Secondly, the trained CNN are used as feature extractors
to extract representative features of new fault raw data. Finally, the extracted sparse representative
feature vectors are input into the SVM used for fault classification. The framework structure of the
improved CNN-SVM model is shown in Figure 8. The proposed method is more effective and rapid
than the traditional CNN. The proposed CNN-SVM method need not any manual feature extraction
and signal processing operations on the raw data during the whole fault diagnosis process. The
multichannel raw fault data can be directly input into the proposed model, and the fault classification
result is automatically output. The proposed method which has an end-to-end algorithm structure has
a good operability and versatility.
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In Figure 8, the application object of the proposed method includes aircraft engines, generators,
electromotor, and other common rotating parts in machinery. The fault types contain the common
faults in rotating machinery such as the mechanical wear, fracture, deformation, and rotor eccentricity
imbalance, etc. The fault signal data include common monitoring signals such as vibration, noise,
current, and pressure, etc. In Figure 8, there are three modules in the proposed CNN-SVM fault
diagnosis framework. The lowest layer is the data acquisition module of the rotating machinery. The
top layer is the resulting output module of the fault diagnosis. The middle layer is the CNN-SVM
intelligent algorithm module. The proposed method can get rid of the dependence on manual feature
extraction and can overcome the limitations of traditional methods relying on expert experience. The
basic flow chart of the CNN-SVM intelligent fault diagnosis algorithm is shown in Figure 9.
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In Figure 9, there are two stages: the training process and the test process. In the training stage of
the CNN-SVM model, there are mainly three steps: Firstly, the Softmax function is combined with
multilayer CNN model, and the training of CNN model parameter is completed. The error between
the predicted result of the CNN model and the actual label of sample is calculated. The loss function
J(w) is minimized by the error back-propagation algorithm using the Softmax function. Secondly,
the representative feature of the raw input data is automatically extracted by using the trained CNN
model. Thirdly, the extracted low-dimensional representative feature data and their corresponding
tags are input into the SVM model to complete the training of SVM.
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In the test stage of the CNN-SVM model, there are mainly three steps: Firstly, the trained CNN
model is used to extract features from new fault data. Also, the sparse low-dimensional representative
feature vectors of new fault input data are obtained. Secondly, the extracted low-dimensional feature
data are input into the trained SVM classifier to complete the final fault classification. Finally, the result
of the fault diagnosis and time record is automatically output.

3.3. Deep Learning Training Skills

Due to the inconsistency of the raw fault dataset and the lack of training samples, the efficiency
of trained DNN model is poor. In order to improve the accuracy of fault diagnosis and to prevent
model over-fitting, deep learning training skills are usually used in the model training stage [4].
After long-term practice and summarization, some effective deep learning skills including batch
normalization, data augmentation, Dropout, mini-batch, and adaptive variable learning rate are
introduced [2,4,33].

(1) Batch normalization
Batch normalization is one of the most common training techniques in deep learning; the main

role is to process the output data to the same magnitude standard data [46]. In the CNN, the model
weight parameters are updated by a chain derivation method of backward propagating. The cost error
J(w) is propagated layer by layer from the end of the network to the front end. The gradient values
of the trainable parameters are accumulated during the update process. The gradient explosion or
gradient disappearance will occur when multiple gradient values greater than 1 or less than 1 are
multiplied in the deep neural network [23]. To solve this problem, the batch normalization method is
used for the output data of each layer. Batch normalization techniques can adjust the output value
of forward propagation having the same distribution to the largest extent. By batch normalization,
the sample distribution characteristics within the same layer are preserved while the distribution gap
between layers is eliminated. Therefore, the distribution of the data samples referenced in the backward
propagating calculation is consistent with the distribution in the forward propagating calculation [5].
Therefore, the weight adjustment of a model is more reasonable during the error back propagation
process [46]. The batch normalization function can be defined as:

x′i =
xi − x
xvar

=
xi −

1
n
∑n

j=1 x j√
1
n
∑n

j=1

(
x j − x

)2
(14)

where x is the average value of n input data x and xvar is the variance value of n input data x.
(2) Data augmentation
CNN is suitable for processing large data sample sets. The over-fitting problem is easily generated

in a CNN when the training samples are insufficient [4]. The over-fitting problem will result in a good
fitting performance of the trained model to the training dataset but a poor generalization ability to
the new fault data [23]. Data augmentation technology is an effective method to solve the sample
shortage in deep learning. It expands the original dataset and improves the generalization ability of
the model by a series of small-scale random images transformations to the original feature image. It
has been widely used in image recognition [47]. The common data augmentation operation includes
random cropping, rotation, flipping, etc. For the one-dimensional time series vibration signal fault
data of the rotating machinery, it can be reconstructed into a 2-D feature map firstly, and then, the
data augmentation operations are applied according to the image processing method, as shown in
Figure 10. In Figure 10, the left side is the original training data feature map. The right side is six
data augmentation operations including random cropping, left-right flipping, left rotation, average
blurring, up-down flipping, and right rotation of the original data.
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Figure 11. A comparison of the normal and dropout networks: (a) A standard network and (b) a 
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(3) Dropout technology
The dropout technology is a very simple and effective method to prevent the over-fitting of the

model and was proposed by Srivastava and Hinton [48]. Because the fault data collected in most
engineering practices are not absolutely pure, it contains some abnormal data [23]. As the fault dataset
contain abnormal data, the CNN model has difficultly completely separating the data of different
categories. Because the CNN model learns those abnormal data as normal data, this results in the
trained model being distorted and over-fit [42]. The over-fitting model has a high accuracy on the
training set but a low accuracy on the test set and other generalization applications. In actuality, the
abnormal data are usually much less than the normal data in a sample. Therefore, the abnormal data
have less occurrence probabilities than the normal data in the same situation. The main idea of Dropout
is to reduce the impact of such abnormal data on the model [46]. The dropout technology abandons
a certain proportion of neurons in the network randomly and temporarily [2]. This operation can
effectively reduce the occurrence probability of abnormal data and the impact on the model. Because
the neurons are randomly discarded, each mini-batch is trained in a different network. Therefore, the
total training parameter quantity of the model is unchanged [23]. The dropout technique is only used
for the training process of the model, and all neurons of the model still work during the test stage.
After using the dropout skill, each unit of the neural network in the training process needs to add a
probability process, as shown in Figure 11 [48].
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The expression of a standard network without a dropout operation (Figure 11a) can be written as:
z(l+1)

j =
n∑

i=1
w(l)

i, j y(l)i + b(l)

y(l+1)
j = f (z(l+1)

j )
(15)

where y(l)i represents the input value of the ith neuron in the lth layer; y(l+1)
j represents the final output

value of the jth neuron of the (l + 1)th layer; z(l+1)
j represents the linear combined output value of

the jth neuron of the (l + 1)th layer; i and j represent the ith and jth neurons, respectively; l and l+1
represent the lth layer and the (l + 1)th layer of the model; w(l)

i, j represents the weight value between

the ith neurons of the lth layer and the jth neuron of the (l+1)th layer; b(l) is the bias of the lth layer;
and f (·) is the activation function.

The feed-forward operation calculation of a Dropout network (Figure 11b) can be written as:

s(l)i ∼ Bernoulli(p)

y(l)i = s(l)i ∗ y(l)i

z(l+1)
j =

n∑
i=1

w(l)
i, j y(l)i + b(l)

y(l+1)
j = f (z(l+1)

j )

(16)

where s(l)i is the vector of Bernoulli random variables which has a probability p. When s(l)i = 0, it means

that the neuron is discarded. When s(l)i = 1, it means that the neuron is retained.
(4) Mini-batch adaptive learning rate optimization algorithm
The gradient descent algorithm is used for minimizing the loss function J(w) according to the

rule of error back propagation [24,35]. The weight and bias of the model’s trainable parameters are
updated in the training process of the CNN model. In deep learning, according to the ratio of training
samples accounting for the total sample dataset in each iterative calculation, the training methods can
be divided into the following three types: Batch gradient descent (all samples), Stochastic gradient
descent (single sample), and Mini-batch gradient descent (mini-batch samples) [23]. The most common
training mode in deep learning is the mini-batch [33]. The mini-batch avoids the slow convergence
of the model, and it reduces the gradient disappearance and convergence instability [23]. Therefore,
in this paper, the mini-batch gradient descent is applied.

The learning rate is an important indicator of model training. It determines the amplitude
magnitude of the model parameter update. When the learning rate is too high, the training speed will
increase, but the result will be difficult to converge to a minimum or to fluctuate around the minimum.
If the learning rate is too low, the training accuracy of each epoch iteration will be improved, but the
convergence speed of the model is too slow and easy to fall into the local optimum [39]. In this paper,
the Adam [49] optimization algorithm is applied to train the CNN model. In the Adam algorithm,
the learning rate can automatically adjust the learning step size according to the local error surface of
the mini-batch sample. The learning rate increases when the error approaches the target in a reduced
trend. The learning rate decreases when the error exceeds a certain multiple of the previous error in an
increasing way. At the same time, the update operation that increases the error is deleted. The learning
rate adjustment method can be described as follows:

η(k + 1) =


kinc η(k), E(k + 1) < E(k)
kdec η(k), E(k + 1) > (1 + c)E(k)
η(k), E(k + 1) = E(k)

(17)
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where η(k) represents the learning rate of the current training, η(k + 1) indicates the next updated
learning rate, kinc is the learning rate increment factor, kinc > 1, kdec is the learning rate reduction factor,
kdec < 1, E(k) represents the current error value, E(k + 1) represents the error value of the next iteration
after the update, c is a constant, and c > 0. The basic training process of the Adam adaptive learning
rate optimization algorithm can be seen in Reference [49].

4. Experimental Verification Based on Multichannel Vibration Signals

In order to evaluate and verify the effectiveness and accuracy of the proposed CNN-SVM method
for the intelligent diagnosis, in this paper, the proposed method is applied to diagnose the experimental
vibration signals data of rolling bearing and is compared with traditional intelligent diagnosis methods.
In general, the vibration signals are the most common monitoring indicators for rotating machinery,
it is easy to acquire by using the accelerometers [50]. In order to increase the diagnosis accuracy and
reliability, in this paper, the multichannel fusion fault dataset is established by collecting the signal data
of multiple vibration sensors. The vibration signals from different working conditions and different
sensors can be aligned into a 3-D matrix as the input of the CNN-SVM model. The temporal and
spatial information of the bearing fault data is integrated. The results confirm that the proposed
method is more effective than other existing intelligent methods such as SVM, KNN, BPNN, DBPN,
and traditional CNN.

4.1. Multichannel Fusion Fault Dataset of Rolling Bearing

Rolling bearings are the most important rotating shore components in rotating machinery, and their
running accuracy and safety reliability directly affect the overall performance of rotating machinery [3].
In a practical work, rolling bearings have various faults due to an alternating load, thermal fatigue,
and mechanical wear under the complicated and variable working conditions at high speeds for a
long time operation. In this study, the experimental vibration data of rolling bearing are from the
motor experimental bench of the Electrical Engineering Laboratory of Case Western Reserve University
(CWRU) [51], as shown in Figure 12. The experimental device uses a 2-horsepower three-phase electric
motor (left) produced by Reliance of India as the power source [51]. A dynamometer (right) is used
to generate the experimental load. A torque transducer/encoder (middle) is mounted between the
electric motor and the dynamometer for measuring speed and torque. The test bearing is used for
supporting the motor shaft. The vibration signal data of the drive end bearing and the fan end bearing
are collected by using a 16 channel DAT recorder and 2 accelerometers [51]. The 2 accelerometers
are respectively mounted at the 12 o’clock positions at both the drive end and fan end of the motor
housing by a magnetic seat.
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The bearing geometry specifications of the drive end and fan end are listed in the Table 2 [51].
The bearings on the drive end and fan end are deep groove ball bearings, and the modes are 6205-2RS
JEM and 6203-2RS JEM respectively, produced by SKF, Sweden. By analyzing the failure mechanism of
rolling bearings, it is known that the failure types mainly include the pitting, wear, gluing, and plastic
deformation. Also, the location where the fault occurs is mainly distributed in the rolling elements,
inner ring, and outer ring of the bearing. Pitting is usually the most common and earliest failure type,
showing the tiny pitting and pits on the rolling element, inner ring, and outer ring, and the pitting
size gradually increases with time [7]. In this experiment, the single point faults are introduced to
simulate the pitting failures of rolling bearings. The pits with different sizes are machined on the test
bearings by using electro-discharge processing methods. Pits with fault diameters of 0.007 inches,
0.014 inches, and 0.021 inches are machined on the rolling element, the inner ring, and the outer
ring of the bearing, respectively. The difference in fault diameters represents the evolution process
of a pitting fault gradually increasing from micro-fault to significant fault. To investigate the fault
characteristics under different working conditions, the vibration signal data of the rolling bearing are
collected under four load conditions: 0 horsepower (1797 r/min), 1 horsepower (1772 r/min), and 2
horsepower (1750 r/min). The sampling frequency of all data is 12 KHz, and the sampling time is about
10 s.

Table 2. The bearing size of the drive end and fan end.

Parameter Type
Inside

Diameter
Outside

Diameter Thickness Ball
Diameter

Pitch
Diameter

Size: (inches)

Drive end bearing 0.9843 2.0472 0.5906 0.3126 1.5370

Fan end bearing 0.6693 1.5748 0.4724 0.2656 1.1220

Based on the above work, a multichannel fault dataset of rolling bearings under the multiple
working conditions are established, as shown in Table 3. The detailed description of the fault dataset
establishment process is as follows:

Table 3. The description of the rolling bearing multichannel fault dataset under 0–2 hp load condition.

Class Label Fault
Location

Fault Size
(inches) Fault Severity Sample

Length
Sample
Number

0 Normal None None 500 × 2 200 × 3

1 Ball Diameter: 0.007,
Depth: 0.011 incipient fault (F−) 500 × 2 200 × 3

2 Ball Diameter: 0.014,
Depth: 0.011 moderate fault (F) 500 × 2 200 × 3

3 Ball Diameter: 0.021,
Depth: 0.011 significant fault (F+) 500 × 2 200 × 3

4 Inner Raceway Diameter: 0.007,
Depth: 0.011 incipient fault (F−) 500 × 2 200 × 3

5 Inner Raceway Diameter: 0.014,
Depth: 0.011 moderate fault (F) 500 × 2 200 × 3

6 Inner Raceway Diameter: 0.021,
Depth: 0.011 significant fault (F+) 500 × 2 200 × 3

7 Outer Raceway Diameter: 0.007,
Depth: 0.011 incipient fault (F−) 500 × 2 200 × 3

8 Outer Raceway Diameter: 0.014,
Depth: 0.011 moderate fault (F) 500 × 2 200 × 3

9 Outer Raceway Diameter: 0.021,
Depth: 0.011 significant fault (F+) 500 × 2 200 × 3
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Firstly, the vibration signal data of different bearing states under different working conditions are
collected. The established fault dataset contains 10 bearing health statuses, including one normal state
and nine fault types. Nine fault states correspond to three fault locations and three fault severities,
respectively. The three fault locations are rolling ball, inner raceway, and outer ring. The three fault
levels are the incipient micro-fault, the less obvious moderate fault, and the obvious significant fault
corresponding to the fault size from 0.007–0.021 inches.

Secondly, each health state contains 2 channel vibration data, one from the drive end vibration
sensor and the other from the fan end vibration sensor. Each vibration sensor collects 10-second
vibration signals and obtain 12,000 data points per second under the sampling frequency of 12 KHz.
Therefore, there are a total of 120,000 vibration data points in each channel.

Thirdly, the vibration signal of each channel is split into multigroups of equal length data segments.
On the one hand, data segmentation could prevent inputting 120,000 data points into the CNN-SVM
model at one time and can cause computer memory overflow. On the other hand, data segmentation
can create more samples to facilitate training and testing the CNN-SVM model. The process of dividing
signals into segments is shown in Figure 13. In this experiment, as the speed range of the four loads
is 1750–1797 r/min, each sensor can collect 400–412 signal points (12000 × 60/1797 ≈ 400) under the
per revolution of the motor shaft. In order to ensure the confidence of the fault data, in Figure 13, the
length of each data segment is defined as 500 sample points. So, each fault sample is a 500 × 2 data.
The first 100,000 sample points are intercepted from the original 120,000 sample points. Therefore,
each health state contains 200 500 × 2 samples.Sensors 2019, 19, 1693 21 of 37 
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Fourthly, the vibration signals of the same healthy state under multiple load conditions are fused.
The multichannel fault dataset under the multiple working conditions is shown in Table 3.

In generally, rolling bearings often need to bear multiple working conditions with alternating
variable loads in actual work. The same fault will produce different magnitudes of vibration shock
signals under different loads. Therefore, the fault diagnosis model should be able to accurately identify
each fault type of bearings under different load. It is noted that the same load will produce different
magnitude impact forces under different fault sizes, but the frequency of the shock vibration signal is
the same. As different loads have different rotational speed, the magnitude and frequency of shock
vibration signals of the same fault types under different loads are different. In order to further use
the monitoring data under the various working conditions to accurately diagnosis the fault types of
bearing, in this paper, the multiple working conditions that compound the fault dataset of a rolling
bearing is established by combining the vibration data under the three loads including 0 horsepower,
1 horsepower, and 2 horsepower. There are 3 load conditions, so each health state contains 200 × 3 = 600
samples. Finally, the established composite dataset has a total of 6,000 samples, and the total number
of vibration data points is 6 million.

Figure 14 shows that the vibration data time-domain waveforms of the 9 fault types of the drive
end rolling bearing are collected under the 0 horsepower load. Figure 14a–i are the waveforms of 1 to 9
fault types listed in Table 3, respectively. Due to the limited space of the article, the data descriptions
and waveform of other loads are not listed here.
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4.2. Fault Data Processing

In order to better train the CNN-SVM model, the necessary data processing is performed on the
rolling bearing fault dataset shown in Table 3. It mainly includes the input data format reconstruction,
standardized input data, and dataset partition. The details are as follows:

(1) Input data format reconstruction
In Table 3, each sample is a 2-channel one-dimensional time series data. According to the data

reconstruction method shown in Figure 6, the two-channel one-dimensional time series original data
(500, 2) are reconstructed into a 3-dimensional input feature map form (25, 20, 2), where 2 represents
2 channels, 25 represents the height of feature map, and 20 represents the width of feature map. The
data reconstruction process is shown in Figure 15.
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(2) Input feature map data standardization
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Data standardization is a common input data processing method. To eliminate the magnitude
difference between different data, data standardization converts all input data into values between [0,1].
Avoid the network prediction errors that are too large due to excessive differences in the magnitude of
the input data. In this paper, the input samples are standardized by the maximum–minimum mean
method, and the mathematical expression is described as follows:

X = {xi} =
xi − xmin

xmax − xmin
(18)

where xmax represents the maximum value in the input sample, xmin represents the minimum value in
the sample, X is the result after standardization, and the value range is between 0 and 1.

(3) Dataset division
All the samples of each type fault after standardization are randomly divided into a training stage

dataset and a test stage dataset. The ratios are 70% and 30%, respectively [4]. Then, 20% of the samples
of the training stage dataset are randomly taken as the verification dataset. The description of the
dataset partition is shown in Table 4.

Table 4. The description of the dataset division.

Class Label Fault Location Sample
Length

Sample
Number

Training
Dataset

Verification
Dataset

Testing
Dataset

0 Normal 500 × 2 200 × 3 112 × 3 28 × 3 60 × 3
1 Ball 500 × 2 200 × 3 112 × 3 28 × 3 60 × 3
2 Ball 500 × 2 200 × 3 112 × 3 28 × 3 60 × 3
3 Ball 500 × 2 200 × 3 112 × 3 28 × 3 60 × 3
4 Inner Raceway 500 × 2 200 × 3 112 × 3 28 × 3 60 × 3
5 Inner Raceway 500 × 2 200 × 3 112 × 3 28 × 3 60 × 3
6 Inner Raceway 500 × 2 200 × 3 112 × 3 28 × 3 60 × 3
7 Outer Raceway 500 × 2 200 × 3 112 × 3 28 × 3 60 × 3
8 Outer Raceway 500 × 2 200 × 3 112 × 3 28 × 3 60 × 3
9 Outer Raceway 500 × 2 200 × 3 112 × 3 28 × 3 60 × 3

As shown in Table 4, there are 200 × 3 samples in each type of fault, where 3 represents 3 load types.
In order to ensure dataset equalization in the operation of dataset dividing, firstly, randomly take 70%
(140 samples) from the 200 samples under each load as the training stage dataset, and the remaining
30% (60 samples) is used as the test dataset. Then, randomly take 20% samples (140 × 0.2 = 28) from
the training stage dataset as the verification dataset and the remaining 80% (112 samples) as the
training dataset. Finally, the training dataset, verification dataset, and testing dataset of each health
state under three loads are respectively combined into a total training set (112 × 3 = 336 samples),
a total verification set (28 × 3 = 84 samples), and a total testing set (60 × 3 = 180 samples). Therefore,
the total number of training datasets, verification datasets, and test datasets corresponding to the 10
bearing health states are 112 × 3 × 10 = 3360, 28 × 3 × 10 = 840, and 60 × 3 × 10 = 1800, respectively.

In this paper, the training dataset is used for training the CNN-SVM model. During the training
process, the model hyper-parameter is compared and selected according to the verification set precision
curve. Simultaneously, the verification dataset is used for verifying the accuracy of the trained
CNN-SVM model. When the error on the verification set is larger than the error on the training set,
it indicates that the model may be over-fit, and the model training is stopped in time [2,4]. Usually
the training process takes a relatively long time. Finally, the test dataset is used for the final fault
classification and accuracy assessment of the model.

4.3. Hyper-Parameters Selection of CNN Model

The CNN as the feature extractor of the CNN-SVM model has a great influence on the final fault
diagnosis result of the CNN-SVM model. In the process of constructing the CNN model, selecting
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the appropriate CNN model hyper-parameters can effectively improve the fault diagnosis accuracy,
training speed, and test speed of the CNN-SVM model. In general, the hyper-parameters that are
important influence the performance of the CNN model and mainly include activation functions,
optimizers, learning rates, convolution kernels, and pooling kernels [32,39]. To investigate the influence
of different hyper-parameter settings on the performance of the CNN model, a reference CNN model
is established by multiple repeated trials. The established multichannel fault composite dataset under
a 0–2 hp load condition are used for the training of the reference model. The impact of different
indicators on the model performance is investigated by changing the different hyper-parameters of this
benchmark CNN model. The experiment results are used to guide the design of the CNN-SVM model.
This reference model includes a 2-layer CNN feature extraction module, a 2-layer fully connected
network, and a Softmax classifier. The hyper-parameters of the benchmark model are listed in Table 5.
The model uses the Adam adaptive optimization algorithm and the cross-entropy loss function, and
the learning rate is adaptively adjusted. The experiment is completed on the computer with Intel
i5-7500 CPU, 16GB memory, and NVDIA 1050 Ti GPU.

Table 5. The descriptions of the hyper-parameters of the CNN reference model.

Layer Type Hyper-Parameter Settings Output Shape Learnable
Parameters

Input layer (batch, 25 × 20, 2) (batch, 25 × 20, 2) 0

Convolution layer 1 Filter = (3 × 3, 2, 64), strides = (1, 1),
padding = “Same” (batch, 25 × 20, 64) 1216

Activation layer 1 activation function (batch, 25 × 20, 64) 0

Max-Pooling layer 1 Ksize = (1, 2 × 2, 1), strides = (2, 2),
padding = “Same” (batch, 12 × 10, 64) 0

Convolution layer 2 Filter = (3 × 3, 64, 32), strides = (1, 1),
padding = “Same” (batch, 12 × 10, 32) 18,464

Activation layer 2 activation function (batch, 12 × 10, 32) 0

Max-Pooling layer 2 Ksize = (1, 2 × 2, 1), strides = (2, 2),
padding = “Same” (batch, 6 × 5, 32) 0

Flatten layer flatten Max-Pooling layer 2 to 1-D shape (batch, 960) 0
FC-Dense layer 1 128 hidden layer neuron nodes (batch, 128) 123,008

FC-Activation layer 1 activation function (batch, 128) 0
FC-Dense layer 2 10 hidden layer neuron nodes (batch, 10) 1290

Softmax output layer Softmax activation function (batch, 10) 0

The calculation method of the parameter quantity in each network layer in Table 5 is as follows:{
CNNnum = Knum × kheight × kwidth × Inum + Bnum

FCNnum = Ninput ×Noutput + Bhidden
(19)

where CNNnum is the parameter quantity of the convolution layer, FCNnum is the parameter quantity of
the fully connected layer, Knum is the quantity of convolution kernels (the number of output channels),
kheight × kwidth represents the height × width of the convolution kernel, Inum is the number of input
data channels, Bnum is the number of biases of the convolutional layer, Ninput ×Noutput represents the
product of the number of neuron nodes between two adjacent layers in the fully connected layer, and
Bhidden is the bias of the hidden layer.

(1) Selection of activation function
The activation function has a great influence on the training of the CNN network. Usually, the

activation function is selected according to working experience [3]. However, this method is too casual
and not convincing. In this paper, the dataset of Table 4 is calculated according to the CNN model
setting of Table 5. The iterations epoch is 100. The effects of the three most commonly used activation
functions are compared by using the reference CNN model. The activation functions include Sigmoid,
Tanh, and Relu. The experimental calculation results are listed in Table 6.
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Table 6. The experiment results of the activation function.

Serial
Number

Convolution
Layer 1

Convolution
Layer 2

Fully Connected
Layer Accuracy Training

Time (s) Test Time (s)

1 relu relu relu 0.9768 117.104 0.1275
2 tanh tanh tanh 0.9814 120.652 0.1404
3 sigmoid sigmoid sigmoid 0.7309 121.302 0.1875
4 relu relu tanh 0.9897 117.392 0.1404
5 relu relu sigmoid 0.9692 124.728 0.1455
6 sigmoid sigmoid relu 0.3938 122.864 0.1572
7 sigmoid sigmoid tanh 0.3106 123.896 0.1704
8 tanh tanh relu 0.9683 123.924 0.1946
9 tanh tanh sigmoid 0.9692 123.416 0.1404

In Table 6, the two convolutional layers use the same activation function. By comparing the
9 experimental results in Table 6, the following conclusions can be obtained: in terms of accuracy,
experiment 4 has the highest training accuracy rate. Comparing experiments 1, 2, and 3, it shows that
experiment 3 has the worst performance. The results of experiments 3, 6, and 7 are very poor, indicating
that the sigmoid function has the worst effect on the convolutional layer. Comparing experiment 2, 4,
and 7, the effect of the Relu function is the best in the convolutional layer. Comparing experiments
1, 4, and 5, the effect of the Tanh function is the best in the fully connected layer. As can be seen
from the calculation time, the training and testing time of Experiment 1 is the shortest, indicating
that the Relu function is faster. The sigmoid function converges slowly compared with the other two
activation functions. Therefore, this paper uses the Relu function as the activation function of CNN in
the CNN-SVM model and uses the Tanh function as the activation function of the fully connected layer
in the subsequent experiments.

(2) Selection of optimization algorithm
For different deep learning models and classification tasks, choosing the appropriate optimization

algorithm plays an important role in improving the training speed and classification accuracy of
the model. In this experiment, the five most commonly used optimization algorithm including
Steepest Gradient Descent (SGD), Adagrad, Adadelta, RMSProp, and Adam optimization algorithm
are tested and compared. In this optimization algorithm selection experiment, the reference CNN
model parameter settings in Table 5 are used. The Relu activation function is used for the convolutional
layer, and the Tanh activation function is used for the full connection layer. The experimental results
are listed in Table 7. Figure 16 shows the training accuracy curves of the five optimization algorithms
in the first 100 iterations. It can be clearly seen from Table 7 and Figure 16 that the performance of
the Adam adaptive optimizer is significantly better than other four optimizers. Especially in the first
30 epochs of iterative calculations, the training accuracy of the Adam optimization algorithm rises
quickly and the convergence in the later stage is more stable. In terms of the training accuracy, the
Adam optimizer has the best performance and the SGD effect is the worst in this experiment. In the
Adam algorithm, the learning rate can be automatically adjusted according to the local error surface of
the mini-batch sample. In terms of training time, the five optimization algorithms have no obvious
difference. The RMSProp optimization algorithm has the least training time. However, Adam has the
best performance in terms of test time. In summary, this paper uses the Adam adaptive algorithm as
the training optimizer of the subsequent CNN-SVM method.
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Table 7. The experiment result of different optimization algorithms.

Optimization Algorithm Number of Iterations Accuracy Training Time (s) Test Time (s)

SGD 100 0.9276 123.172 0.18936
Adagrad 100 0.9882 117.912 0.17145
AdaDelta 100 0.9871 124.252 0.18351
RMSProp 100 0.9872 114.092 0.16842

Adam 100 0.9899 114.876 0.16739
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(3) Selection of the mini-batch samples number
Deep learning usually uses mini-batch methods to train samples. The different number of samples

per mini-batch has a significant impact on the performance of the model. In order to study the effect
of the sample number per mini-batch on the performance of the model, the experiment is conducted
by setting different values of mini-batch. Usually, the value of mini-batch uses a power of 2 to get
less runtime, which ranges from 32 to 256 [23]. In this experiment, the reference model parameter
settings in Table 5 are used. The Adam optimizer is applied. The Relu activation function is used
for the convolutional layer. The Tanh activation function is used for the full connection layer. The
experimental results are listed in Table 8.

Table 8. The experiment results of the different mini-batch numbers.

Mini-Batch Number Accuracy Average Training Time (s)

1 0.9585 4286.88
8 0.9799 601.056
16 0.9872 324.976
32 0.9883 185.288
64 0.9899 114.876

128 0.9828 87.6292
256 0.9640 69.3592
512 0.8729 57.9404

It can be seen from Table 8 that the best training accuracy can be obtained when mini-batch is
set to 64. When mini-batch is 64, the accuracy is relatively higher than others and the training time is
not too long. When mini-batch is 512, the total training time is the shortest but the accuracy is only
0.8729. When mini-batch is 1, it means there is only one sample per batch and it is easy to fall into a
local optimum. Although the speed of processing a single batch is the highest, the model needs more
batches to complete the calculation of all samples. Therefore, the final training time of the model is the
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longest, up to 4286.88 s, and the accuracy is merely 0.9585. Therefore, in the subsequent training of
CNN-SVM models, the mini-batch is set to 64.

(4) Selection of the CNN model structure
To investigate the impact of a different CNN model structure on accuracy performance, in this

experiment, three CNN models structure are designed including a one-layer CNN, a two-layer CNN,
and a three-layer CNN structure. Each CNN model structure is divided into two cases: without using
deep learning training skills and using deep learning training skills. The training skills include data
augmentation and Dropout. The super-parameters of different CNN models are listed in Table 9.
The Adam optimization algorithm is applied. The learning rate is automatically adjusted. The Relu
activation function is used for the convolutional layer. The Tanh activation function is used for the full
connection layer. The mini-batch is set to 64. The iterations epoch is 100. The diagnosis results are
listed in Table 10. The accuracy curves of different CNN model are shown in Figure 17.

Table 9. The hyper-parameters of the CNN methods.

CNN CNN Model Hyper-Parameters

L = 1
Conv2d (3 × 3, 64) + Pooling (2 × 2) + Full Connect (128/10) + Softmax

Conv2d (3 × 3, 64) + Pooling (2 × 2) + Dropout (0.5) + Full Connect (128/10) + Softmax

L = 2

Conv2d (3 × 3, 64) + Pooling (2 × 2) + Conv2d (3 × 3, 32) + Pooling (2 × 2) + Full Connect
(128/10) + Softmax

Data augmentation + Conv2d (3 × 3, 64) + Pooling (2 × 2) + Dropout (0.3) + Conv2d (3 × 3, 32)
+ Pooling (2 × 2) + Dropout (0.2) + Full Connect (128/10) + Softmax

L = 3

Data augmentation + Conv2d (3 × 3, 64) + Pooling (2 × 2) + Conv2d (3 × 3, 32) + Pooling (2 × 2)
+ Conv2d (3 × 3, 32) + Pooling (2 × 2) + Full Connect (128/10) + Softmax

Data augmentation + Conv2d (3 × 3, 64) + Pooling (2 × 2) + Dropout (0.3) + Conv2d (3 × 3, 32)
+ Pooling (2 × 2) + Dropout (0.2) + Conv2d (3 × 3, 32) + Pooling (2 × 2) + Dropout (0.2) + Full

Connect (128/10) + Softmax

Table 10. The accuracy of different CNN models for fault identification.

Model Structure
L1 L2 L3

Test Accuracy

No training skills 96.04% 98.31% 98.76%
Data augmentation + Dropout 97.92% 98.99% 98.93%
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It can be obviously seen from Table 10 and Figure 17 that the two-layer CNN model using the
deep learning training skills has the best performance and that the test accuracy is up to 98.99%. The
performance of the one-layer CNN model is the worst, and the feature extraction ability is insufficient
due to the simple structure. In this experiment, as the sample quantity of the training dataset is less,
the model using the three-layer CNN is worse than the two-layer CNN model and easily causes a
gradient disappearance and over-fitting of the deep convolution network structure. In addition, the
training time and test time of the multilayer model structure is longer than the simple model because
the model parameters increase as the number of CNN layers increase. In Figure 17, the dark blue
curve represents the accuracy of the training dataset and the orange curve represents the accuracy of
the validation dataset. It can be seen from the Figure 17a–c that the validation dataset accuracy curve
is lower than the training dataset accuracy curve, which shows that the CNN model has generated
over-fitting. Comparing Figure 17a–c with Figure 17d–f, it can be seen that the data augmentation and
dropout training skills can effectively reduce the over-fitting of the model and can also improve the
accuracy of the model in a small range.

4.4. Fault Diagnosis Results and Evaluate of Proposed CNN-SVM Model

(1) Fault diagnosis results of CNN-SVM algorithm
According to the results and conclusions of the above research, the CNN-SVM intelligent fault

diagnosis model is finally established. The detailed hyper-parameters are listed in Table 11. This model
is improved on the basis of the two-layer CNN model shown in Table 5. Firstly, the global average
pooling layer is used instead of the fully connected layer structure. Secondly, the dropout technology,
data augmentation, and batch normalization skills are applied in the training stage of CNN to prevent
the over-fitting problem. The proposed method sets a Dropout layer after each convolutional network.
Thirdly, a 1 × 1 transitional convolution layer is set between the 2-layer convolution network and the
global average pooling layer. Here, the role of the 1 × 1 transitional convolutional layer is to change
only the output dimension of the feature map without changing the feature map shape. For a detailed
description of the improved CNN model, refer to Section 3.1 and Figure 5. In this experiment, the fault
type of rolling bearing is 10, so the dimension of the transitional convolutional layer is set to 10. The
total framework of the proposed CNN-SVM adaptive intelligent fault diagnosis method is shown in
Figure 8.

A comparison of the trainable parameter quantity between the traditional CNN model and
proposed CNN-SVM model is listed in Table 12. As can be seen from Table 12, the total parameter
amount of the traditional CNN model structure using the fully connected layer is up to 143,978. The
total training parameter of the improved CNN-SVM model using the global average pooling layer is
only 20,120. Therefore, the improved CNN-SVM model can greatly reduce the amount of training
parameters. For the calculation method of the parameter quantity, refer to Equation (19).

In this experiment, the Adam adaptive learning rate optimization algorithm is used for the training
stage of CNN-SVM model. The ReLU activation function is used for the 3 activation layers of the
CNN-SVM. The number of mini-batch is set to 64. The epoch of iteration calculation is 100. The main
parameter of SVM classifier is set with the penalty coefficient C = 10, kernel function is Gaussian radial
basis function (RBF), and slack variable ξ = 0.1. Finally, the highest accuracy rate of CNN-SVM on the
test set is 99.94%. The diagnostic results are shown in Table 13.
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Table 11. The details of the proposed CNN-SVM model hyper-parameters in the experiments.

CNN-Softmax Training Stage Model Structure

Layer Type Parameter Settings Output Shape Learnable
Parameters

Input layer (batch, 25 × 20, 2) (batch, 25 × 20, 2) 0

Convolution layer 1 Filter = (3 × 3, 2, 64), strides = (1, 1),
padding = “Same” (batch, 25 × 20, 64) 1216

Activation layer 1 ReLU activation function (batch, 25 × 20, 64) 0

Max-Pooling layer 1 ksize = (1, 2 × 2, 1), strides = (2, 2),
padding = “Same” (batch, 12 × 10, 64) 0

Dropout layer 1 Dropout (0.3) (batch, 12 × 10, 64) 0

Convolution layer 2 filter = (3 × 3, 64, 32), strides = (1, 1),
padding = “Same” (batch, 12 × 10, 32) 18,464

Activation layer 2 ReLU activation function (batch, 12 × 10, 32) 0

Max-Pooling layer 2 ksize = (1, 2 × 2, 1), strides = (2, 2),
padding = “Same” (batch, 6 × 5, 32) 0

Dropout layer 2 Dropout (0.2) (batch, 6 × 5, 32) 0

Convolution layer 3 filter = (1 × 1, 32, 10), strides = (1, 1),
padding = “Same” (batch, 6 × 5, 10) 330

Global average pooling layer ksize = (1, 5 × 4, 1), strides = (5, 4),
padding = “Same” (batch, 10) 0

CNN feature output layer Save CNN model parameters (batch, 10) 0
Softmax output layer Softmax activation function (batch, 10) 0

CNN-SVM test stage model structure

Input layer (batch, 25 × 20, 2) (batch, 25 × 20, 2) 0

CNN feature output layer raw data input into trained CNN
extraction features (batch, 10) 0

SVM classification layer Nonlinear SVM classifier (batch, 10) 110
Final output layer Fault diagnosis result (batch, 10) 0

Table 12. A comparison of the trainable parameter quantities between the traditional CNN model and
the proposed CNN-SVM model.

Layer Type Traditional Fully Connected CNN Model Improved CNN-SVM

Convolution layer 1 1216 1216
Convolution layer 2 18,464 18,464
Convolution layer 3 None 330

FC-Dense layer 1 123,008 None
FC-Dense layer 2 1290 None

SVM classification layer None 110
Total parameter amount 143,978 20,120

Table 13. The fault diagnosis results of the proposed CNN-SVM model.

Model Name Test Accuracy Training Time (s) Testing Time (s)

Improved CNN+Softmax 99.12% 73.8293 0.08967
Improved CNN+SVM 99.94% 74.3205 0.08318

As can be seen from Table 13, there are two calculation results. This is because the proposed
CNN-SVM algorithm consists of two stages: one is the training stage of the model, and the other is the
testing stage of the model, as shown in Figure 9. The above one is a combination of CNN and Softmax,
using the Softmax function for an error backward propagation to train the CNN model parameters.
The below one is to extract the feature of the new fault data by using the trained CNN model as
a feature extractor and, then, to input the extracted representative features into the SVM for fault
classification. As can be seen from Table 13, in terms of accuracy, the accuracy of CNN+Softmax is
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99.12%; the accuracy of CNN+SVM has increased to 99.94%. In terms of time, the training time of the
CNN+Softmax model is 73.9293 seconds, and the training time of the SVM is 0.3912 seconds. The total
training time of the CNN-SVM model is 73.9293 + 0.4912 = 74.3205 seconds. Therefore, although the
proposed CNN-SVM method adds an SVM part based on CNN, the training time does not increase too
much. In terms of the test time, as the full connection structure is removed, the proposed method only
needs 0.08318 seconds. The test time of the improved CNN-Softmax is 0.08967 seconds, which is also
obviously better than the traditional CNN-Softmax shown in Table 6 (Experiment 4). The reduction of
the test time is of great significance for the proposed method using to rapid fault diagnosis and online
real-time monitoring of faults in the future.

(2) The evaluate of fault diagnosis results
In order to further analyze and evaluate the classification performance of the proposed CNN-SVM

algorithm, in this paper, the Precision ratio, Recall ratio, and F1-measure are calculated [3]. The
mathematical expressions of the three indicators are as follows:

P = TP/(TP + FP) × 100
R = TP/(TP + FN) × 100
F1 = 2TP/(2TP + FP + FN) × 100

(20)

where P is precision rate, R is recall rate, F1 is a harmonic average value of the precision rate and the
recall rate, TP represents the number of true positive instances, FP represents the number of false
positive instances, TP represents the number of true positive instances, and FN represents the number
of false negative instances. Table 14 lists the precision rates, recall rates, and F1-measure values of
finally experimental results (as shown in Table 13) of the proposed CNN-SVM method. As can be
seen from Table 14, except for the precision rate of condition 8 being 99.45%, the precision rates of the
other conditions are 100%. Therefore, it can be illustrated that the proposed CNN-SVM method has an
excellent fault diagnosis performance.

Table 14. The evaluation results of the proposed CNN-SVM model.

Health Condition Precision Rate Recall Rate F1-Measure Sample Amount

Condition 0 100% 100% 100% 180
Condition 1 100% 100% 100% 180
Condition 2 100% 99.44% 99.72% 180
Condition 3 100% 100% 100% 180
Condition 4 100% 100% 100% 180
Condition 5 100% 100% 100% 180
Condition 6 100% 100% 100% 180
Condition 7 100% 100% 100% 180
Condition 8 99.45% 100% 99.72% 180
Condition 9 100% 100% 100% 180

Average/total 99.94% 99.94% 99.94% 1800

In order to further assess the performance of the CNN-SVM algorithm to identify incipient
micro-faults and the details of fault misjudgment and location, the multi-class confusion matrix [3] is
introduced for a detailed quantitative analysis on the fault diagnosis results of the CNN-SVM algorithm.
The multi-class confusion matrix comprehensively records the diagnosis classification results and the
number of misclassifications of the rolling bearing with different fault types, fault severities, and fault
orientations. The multi-class confusion matrix corresponding to the results of Table 14 is shown in
Figure 18.
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bearing health condition. In Figure 18, each column quantifies the precision rate information. Each 
row quantifies the recall rate information. It can be obviously seen from Figure 18 that the lowest 
diagnosis result happens in condition 2. Only one of the 1800 test samples on the test set is 
misclassified by CNN-SVM prediction. The actual label of the misclassified sample is condition 2: 
Ball (Diameter: 0.014, Depth: 0.011), the predicted category by CNN-SVM model is fault condition 8: 
Outer Raceway (Diameter: 0.014, Depth: 0.011). Therefore, the fault severity level of both the 
predicted category and the actual category is the same; only the location where the fault occurs is 
confused. By checking the computer calculation result data, it can be known that the misclassification 
occurs in the 0-horsepower working condition. From Figure 18, the diagnosis accuracy of other types 
of fault is 100%. Especially, the diagnostic accuracy of all incipient micro-faults (condition 1, condition 
4, and condition 7) is 100%. The comprehensive fault recognition rate is up to 99.94%. The 
experimental results show that the proposed CNN-SVM algorithm has a superior recognition ability 
and a high diagnostic accuracy for incipient faults of rolling bearings.  
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Figure 18. A multi-class confusion matrix of the fault diagnosis results by using the proposed
CNN-SVM method.

In Figure 18, the abscissa axis of the multi-class confusion matrix represents the predicted category
label of the bearing condition and the ordinate axis represents the actual category label of the bearing
condition. The sample number of test datasets for each type of bearing state is 180, and there are 10
types of bearing conditions, as shown in Table 4. The elements on the main diagonal of the multi-class
confusion matrix represent the sample number of the correct classification of each bearing health
condition. In Figure 18, each column quantifies the precision rate information. Each row quantifies the
recall rate information. It can be obviously seen from Figure 18 that the lowest diagnosis result happens
in condition 2. Only one of the 1800 test samples on the test set is misclassified by CNN-SVM prediction.
The actual label of the misclassified sample is condition 2: Ball (Diameter: 0.014, Depth: 0.011), the
predicted category by CNN-SVM model is fault condition 8: Outer Raceway (Diameter: 0.014, Depth:
0.011). Therefore, the fault severity level of both the predicted category and the actual category is the
same; only the location where the fault occurs is confused. By checking the computer calculation result
data, it can be known that the misclassification occurs in the 0-horsepower working condition. From
Figure 18, the diagnosis accuracy of other types of fault is 100%. Especially, the diagnostic accuracy
of all incipient micro-faults (condition 1, condition 4, and condition 7) is 100%. The comprehensive
fault recognition rate is up to 99.94%. The experimental results show that the proposed CNN-SVM
algorithm has a superior recognition ability and a high diagnostic accuracy for incipient faults of
rolling bearings.

(3) Visualizations of Networks
In general, CNN is regard as a black box and the inner operating mechanism of CNN is difficult to

understand [2]. In this paper, we try to explore the inner operating process of the proposed CNN-SVM
model by the visualization method. In order to further explain the feature extraction ability of each layer
of the CNN-SVM model, this paper introduces the most commonly t-distributed stochastic neighbor
embedding (t-SNE) [21] method of manifold learning to reduce the dimensions and visualization
of the output of each network layer under the test dataset (as shown in Table 4). By mapping the
high-dimensional feature vector to the three-dimensional space, the data feature distribution of each
layer after a dimensionality reduction by the t-SNE method is shown in Figure 19.
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Figure 19. Scatter plots of the feature visualization under test dataset by t-distributed stochastic 
neighbor embedding (t-SNE): (a) The feature distribution of raw data, (b) the feature distribution of 
convolutional layer 1, (c) the feature distribution of convolutional layer 2, (d) the feature distribution 
of convolutional layer 3, (e) the feature distribution of the global average pooling layer, and (f) the 
feature distribution of the Softmax output layer. 
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layer 1 classification visualization, the output of the convolutional layer 2 classification visualization, 
the output of the convolutional layer 3 classification visualization, the output of the global average 
pooling layer classification visualization, and the final output layer classification visualization, 
respectively. It can be obviously seen from Figure 19a–f that the feature extraction ability of each layer 
is gradually increased. The 10 health states of the rolling bearing are very confusing in the raw data. 
Finally, after the Softmax function is calculated, the 10-class bearing health status data is clearly 
classified. As can be seen from the dark blue point set in the upper right corner of Figure 19f, a few 
samples are still misclassified, which is consistent with the result of the confusion matrix of Figure 
18. The above analysis clearly shows that the trained model has a superior feature extraction ability.  
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Figure 19. Scatter plots of the feature visualization under test dataset by t-distributed stochastic
neighbor embedding (t-SNE): (a) The feature distribution of raw data, (b) the feature distribution of
convolutional layer 1, (c) the feature distribution of convolutional layer 2, (d) the feature distribution of
convolutional layer 3, (e) the feature distribution of the global average pooling layer, and (f) the feature
distribution of the Softmax output layer.

Figure 19a–f are the raw input data classification visualization, the output of the convolutional
layer 1 classification visualization, the output of the convolutional layer 2 classification visualization,
the output of the convolutional layer 3 classification visualization, the output of the global average
pooling layer classification visualization, and the final output layer classification visualization,
respectively. It can be obviously seen from Figure 19a–f that the feature extraction ability of each
layer is gradually increased. The 10 health states of the rolling bearing are very confusing in the raw
data. Finally, after the Softmax function is calculated, the 10-class bearing health status data is clearly
classified. As can be seen from the dark blue point set in the upper right corner of Figure 19f, a few
samples are still misclassified, which is consistent with the result of the confusion matrix of Figure 18.
The above analysis clearly shows that the trained model has a superior feature extraction ability.

4.5. Comparison with Other Intelligent Algorithms

In order to demonstrate the superiority of the proposed CNN-SVM method, four other mainstream
traditional intelligent methods are also used to diagnose the same fault dataset (as shown in Table 3) for
comparison, including BP neural network (BPNN), SVM, KNN, and deep BP neural network (DBPN).
In the traditional intelligent fault diagnosis methods, the manual feature extraction of a raw dataset
is conducted firstly. Then, the extracted features are input into the intelligent diagnosis algorithm
to complete the classification prediction [29]. Statistical features in the time domain and frequency
domain are used in References [2,4,52]. Reference [4] extracted 14 features from raw data by using
14 feature extraction operators, including 10 time-domain features and 4 frequency-domain features;
the detailed parameters are listed in Table 15 [4]. This paper is based on the 14 feature extraction
operators to calculate the 14 statistical features of each bearing fault sample. Then, the extracted 14
features are input into SVM, KNN, and BPNN for a fault diagnosis. The experimental results of the
precision rate and the recall rate of the six methods are listed in Table 16. Figure 20 shows that the six
methods correspond to the F1-measure values (Percentage form).
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Table 15. The statistical feature extractions in the time-domain and frequency-domain.
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Table 16. The precision rate and recall rate of different methods.

Methods

Bearing
Condition CNN-SVM SVM KNN BPNN DNN CNN

P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%)

Condition 0 100 100 100 100 100 97.78 91.24 98.33 99.45 100 100 100
Condition 1 100 100 89.67 91.67 98.29 95.56 90.66 91.67 76.50 99.44 95.72 99.44
Condition 2 100 99.44 90.34 88.33 87.28 83.89 72.40 77.22 69.77 100 94.74 100
Condition 3 100 100 86.75 80.01 91.47 65.56 75.01 45.01 93.33 54.44 100 90.56
Condition 4 100 100 95.24 100 82.24 69.44 99.42 95.56 100 98.89 100 100
Condition 5 100 100 98.85 95.56 84.11 100 100 100 100 89.44 100 100
Condition 6 100 100 94.15 98.33 71.43 100 91.84 100 98.08 85.00 100 100
Condition 7 100 100 99.45 100 100 100 64.98 92.78 100 93.89 100 100
Condition 8 99.45 100 95.58 96.11 100 92.22 76.00 84.44 99.45 100 99.44 99.44
Condition 9 100 100 99.45 100 96.72 98.33 77.97 51.11 100 98.33 100 100

Average
value 99.94 99.94 94.95 95.01 91.15 90.28 83.95 83.61 93.66 91.94 98.99 98.94
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Condition 6 100 100 94.15 98.33 71.43 100 91.84 100 98.08 85.00 100 100 
Condition 7 100 100 99.45 100 100 100 64.98 92.78 100 93.89 100 100 
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Condition 9 100 100 99.45 100 96.72 98.33 77.97 51.11 100 98.33 100 100 

Average value 99.94 99.94 94.95 95.01 91.15 90.28 83.95 83.61 93.66 91.94 98.99 98.94 
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Comparing Table 16 and Figure 20, it can be obviously seen that the accuracy of the proposed
CNN-SVM algorithm is obviously better than other intelligent algorithms. In terms of accuracy, the
precision rates of SVM, KNN, and BPNN after manual feature extraction are 94.95%, 91.15%, and
83.95%, respectively. The precision rate of DNN is 93.66% by using 4 hidden layers to train raw data.
Only one hidden layer of BPNN has the lowest training accuracy and serious over-fitting. When
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the number of DNN layers exceeds 5 layers, the accuracy of DNN is difficult to increase because
of the gradient disappearance, and the over-fitting of the model is gradually obvious. It can be
seen that the recognition accuracy of the six algorithms for the normal state (condition 0) is high,
but in terms of micro-fault identification (condition 1, condition 4, and condition 7), the CNN-SVM
algorithm is significantly better than the other five algorithms. By comparing the results of the above
six algorithms, it can be confirmed that the proposed CNN-SVM algorithm has a more superior
performance. The proposed CNN-SVM method focuses on a rolling bearing intelligence fault diagnosis
without any manual feature extraction or signal preprocessing, which is totally different from the
traditional methods.

The main parameters of the other methods are described as follows: (1) SVM: the penalty factor
C = 10, kernel function is Gaussian radial basis function (RBF), and slack variable ξ = 0.1; (2) KNN:
using the Minkowski distance, the k value is 5 and the leaf node is 30; (3) BPNN: the architecture is
500–512–10, the Adam adaptive learning rate optimization algorithm is used, the activation function is
Relu, the regularization coefficient λ = 0.001, the batch size is 64, and the iteration epoch is 300; and
(4) DNN: the architecture is 500–512–256–128–128–10, which is decided by repeated trial experiences
and guiding principles, the Adam optimization algorithm is used, the activation function is Relu, the
regularization coefficient λ = 0.001, the batch size is 64, and the iteration epoch is 500.

5. Conclusions

As an emerging machine learning algorithm, deep learning is gradually applied in the field of
intelligent fault diagnosis. In this paper, a novel method called the improved global average pooling
CNN-SVM method is proposed for the intelligent diagnosis of incipient faults in rotating machinery.
The proposed method improves the traditional CNN model structure, introduces the global average
pooling technology to replace the fully connected network structure, and uses the SVM to replace
the Softmax function in the test stage. Firstly, the multichannel raw fault data is directly input into
the improved CNN-Softmax model to complete the training of CNN model by a back-propagation
algorithm. Secondly, the improved CNN is used as feature extractors to extract representative features
of the new fault raw data. Finally, the extracted sparse representative feature vectors are input into
SVM that is used for fault classification. The proposed method can effectively reduce the CNN’s
model parameter quantity and diagnosis time and can effectively improve the accuracy of fault
diagnosis results.

The proposed method is applied to the diagnosis of rolling bearing multichannel experimental
vibration signal data and compared with traditional intelligent diagnosis methods. The results confirm
that the proposed CNN-SVM method need not any manual feature extraction and signal processing
operations on the raw data during the whole diagnosis process. It can get rid of the dependence on
manual feature extraction and can overcome the limitations of traditional methods relying on expert
experience. The category and quantity of each fault type of is quantified and visualized by using a
multi-class confusion matrix. The deep learning training skills are used to improve the algorithm
performance including data enhancement, dropout, and batch normalization. The experiment result
confirms the proposed method is more effective than other existing intelligence diagnosis methods
including SVM, KNN, BPNN, DNN, and traditional CNN. The end-to-end model structure has a better
operability and versatility. It is very interesting and innovative to use CNN-SVM and other deep
learning methods to explore online real-time intelligence diagnosis and hardware implementation for
new applications. The authors will continue to research this topic in the future.
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