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Abstract: The physical therapeutic application needs personalized rehabilitation recognition (PRR) 
for ubiquitous healthcare measurements (UHMs). This study employed the adaptive neuro-fuzzy 
inference system (ANFIS) to generate a PRR model for a self-development system of UHM. The 
subjects wore a sensor-enabled wristband during physiotherapy exercises to measure the 
scheduled motions of their limbs. In the model, the sampling data collected from the scheduled 
motions are labeled by an arbitrary number within a defined range. The sample datasets are 
referred as the design of an initial fuzzy inference system (FIS) with data preprocessing, feature 
visualizing, fuzzification, and fuzzy logic rules. The ANFIS then processes data training to adjust 
the FIS for optimization. The trained FIS then can infer the motion labels via defuzzification to 
recognize the features in the test data. The average recognition rate was higher than 90% for the 
testing motions if the subject followed the sampling schedule. With model implementation, the 
middle section of motion datasets in each second is recommended for recognition in the UHM 
system which also includes a mobile App to retrieve the personalized FIS in order to trace the 
exercise. This approach contributes a PRR model with trackable diagrams for the physicians to 
explore the rehabilitation motions in details. 

Keywords: adaptive neuro-fuzzy inference system; physiotherapy exercise; rehabilitation 
recognition; sensor-enabled wristband; ubiquitous healthcare measurement. 

 

1. Introduction 

Rehabilitation is an important scope of physiotherapy for patients healing from severe injuries 
such as paralysis, hemiplegia, handicaps, surgery, etc. Physical therapists design specific exercises to 
extend the range of motion (ROM) of joints to moderately improve the flexibility of limbs [1,2]. A 
rehabilitation exercise usually assembles diverse joint kinematics, including flexion, extension, 
abduction, adduction, pronation, supination, rotation, and deviation regarding the disabled part [3–
5]. Many studies and clinical prescriptions have thus suggested routine exercises for rehabilitation in 
healthcare services [6,7]. Modern hospitals offer the necessary functional exercise therapy facilities to 
serve the patients with scheduled programs [8,9]. In addition, physiatrists will have concerns about 
the performance of exercises and relevant joint motions, which need to be practiced daily practice at 
home to manage a health promotion program [10,11]. 

Present healthcare services promote ubiquitous healthcare measurements (UHMs) for the 
self-management of those patients who need regular rehabilitation at home. Non-imaging detection 
is an important ethical issue regarding monitoring handicapped patients in rehabilitation healthcare 
[12,13]. Physiatrists can assign a program of specific motions for those patients needing routine 
exercises during their recovery period; then, they are able to track the daily records of patients via 
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the UHM system for the purpose of prescribing advanced therapies [14]. Rehabilitation UHMs are 
obtained via body sensor networks (BSNs), which provide a wireless sensor network (WSN) of 
wearable computing devices within a certain area, to continuously log in the motion data of patients 
[15–17]. With the BSN, the UHM requires data quality, management interface, sensor validation, 
cost, data consistency, constrained devices, interoperability, etc. [18] Thus, wristbands embedded 
with an accelerometer and gyroscope have been widely used to detect the body movements of 
people while sleeping, falling, walking, exercising, cleaning, etc. [19]. In recent years, these 
sensor-embedded wearable devices have become popular among people during their daily activities 
[20,21]. A sensor-enabled wristband and a smart phone can be implemented in the BSN to transmit 
the measurement data for UHM requirements through the Bluetooth low energy (BLE) protocol, 
which provides reduced-power consumption and cost within a similar communication range as 
classic Bluetooth [22]. Thus, the rehabilitation exercise data can be measured by a wristband 
embedded with a BLE-based sensor for UHM [23,24]. With the proper algorithms, a personalized 
rehabilitation recognition (PRR) pattern of a patient is trackable for management [25]. 

Many computing algorithms have been employed in the study of activity recognition. In 
general, the artificial neural network (ANN), backward propagation neural network (BPNN), fuzzy 
logic theory, etc. are well-known algorithms for classifying and recognizing motion features [26]. For 
instance, the ANN retains training ability to learn complicated movements [27]; the BPNN holds 
three layers in machine learning to categorize activities [28]; and the rule-based fuzzy inference 
system (FIS) supports stationary patterns for measuring a regular motion tendency [29–31]. In FIS, a 
fuzzy set of possible features is assembled by the membership function (MF) for fuzzification from 
input to output, and then a list of if-then rules is utilized for controlling the defuzzification process [32]. 
In terms of defuzzification, the Mamdani and Sugeno models are two major types that present the 
MFs and linear-expression crisps (or constant), respectively, for the output features in the FIS [33,34]. 
For inferring the output levels, the Mamdani model computes the centroid of the union area of the 
MFs, whereas the Sugeno model entails computing the weight average of the crisps [35]. In addition, 
the adaptive neuro-fuzzy inference system (ANFIS) that repetitively tunes the FIS in a 
training-based algorithm has been suggested to optimize the inference ability of the adopted 
features [36,37]. Therefore, the FIS can be one of the appropriate methods to recognize the human 
activity for healthcare measurement since the activity subject performs the characteristics of 
behavior with the inferable features [38,39]. 

This study proposes a PRR model based upon upper-limb kinematics by integrating the ANFIS 
with rule-based fuzzy logic and a data training process to meet UHM requirements. The model 
extends our previous work on WSN measurement of general human activities (e.g., sitting, standing, 
lying, walking, running etc.) [39] to recognize motions of rehabilitation exercises using a 
BLE-compliant wearable sensor “MetaWearC” by MbientLab, Inc. [40]. The commercial sensor 
including accelerometer and gyroscope chips was installed in an assembled wristband for 
convenient data collection, whereas the released developer kits were employed to create adaptable 
mobile Apps in a smart phone. The ANFIS toolboxes by MATLABTM were used in modeling a FIS 
engine, and then a self-developed FIS App was compiled using the open-source FuzzyLite library [41] to 
drive the engine in a UHM system for calibrating the PRR datasets. In this paper, we have organized 
the sections as follows: the Methods and Modeling section describes the design of the PRR exercise, 
introduces the ANFIS algorithm, and constructs the UHM framework. The Results and Evaluation 
section reveals the outcome and evaluates the recognition accuracy. Consequently, the 
Implementation and Discussion section proves the adaptability of the model and discusses its 
feasibility. Finally, the Conclusions section summarizes the findings. 

2. Methods and Modeling 

The proposed PRR model applies the ANFIS based on fuzzy inference theory for machine 
learning. The scheduled exercises were designed for the wearable sensor to achieve the ubiquitous 
healthcare measurement by recognition computing; in which, the chip of the BLE-compliant BMI160 
with a 6-axis accelerometer and gyroscope [42] is embedded in the sensor to detect accelerations and 
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angular velocities of motions about three axes. Thus, the components of tilt angle vector can be 
calculated by the acceleration vector. The sensor can send signals at frequencies from 20 to 100 Hz; 
i.e., the sensing frequency is adjustable to collect 20 ~ 100 data per second. For instance, if the 
exercise is scheduled by 1 min and the frequency is controlled at 100 Hz, then 6000 raw datapoints 
can be collected. Each raw datapoint will contain six components of the angular velocity and 
acceleration in the x, y, and z axes, which can be further derived into the datasets of candidate 
features such as relative angles, angular velocities, accelerations with respect to the origin position of 
the sensor, etc. 

2.1 Rehabilitation Motion Design 

The subject wears a sensor-embedded wristband on their wrist for the measurements. We 
define the neutral position of the human-body as the global coordinate (i.e., X, Y, Z axes orthogonal 
to the frontal, sagittal, and transverse planes of the human body, respectively), whereas the center of 
the sensor presents local coordinates (i.e., x, y, and z axes toward to the side, band, and top of the 
wristband) as shown in Figure 1. For measuring the exercise, the motion is designed in the global 
coordinates, but the sensor returns signals in local coordinates. Thus, we can calibrate the measured 
data with respect to the origin, which is the initial position of the sensor, upon starting the exercise. 

 

 Exercise A Exercise B Exercise C Exercise D Exercise E 

Figure 1. Wristband with BLE-compliant sensor corresponding to local and global coordinates, and 
the designed simple exercises: A. flexion-extension, B. abduction-adduction, C. external-internal 
rotation, D. pronation-supination, E. ulnar-radial deviation. 

In the essential rehabilitation of the upper limbs, the exercises usually include motions of 
extension, flexion, abduction, adduction, rotation, and deviation to improve the ROM of the joints at 
the shoulder, elbow, and wrist. In this study, we took some typical ROM exercises using the 
guidelines below as examples to design the sampling schedule of motions for the proposed model: 

Exercise A. Flexion and extension (flex-ext) of shoulder: wear the wristband on the wrist, 
straighten the arm downward and place the palm facing backward for the initial state; (1) keep the 
initial state for 2 s, (2) slowly raise the arm up (flexion) to the head in 4 s, (3) hold the limb above for 2 
s, (4) slowly drop the arm down (extension) to the initial state in 4 s, then a cycle has been completed; 
repeat this cycle five times. 

Exercise B. Horizontal abduction and adduction (abd-add) of shoulder: wear the wristband on 
the wrist, straighten the arm downward and place the palm facing inward for the initial state; (1) 
keep the initial state for 2 s, (2) laterally raise the arm up to shoulder level (abduction) in 4 s, (3) hold 
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the limb at shoulder level for 2 s, (4) slowly drop the arm down (adduction) to the initial state in 4 s, 
then a cycle has been completed; repeat this cycle five times. 

Exercise C. External and internal rotation (ext-int rot) of elbow: wear the wristband on the wrist, 
bend the elbow 90o with upper arm always close to the body, and place the palm inward facing the 
abdomen for the initial state; (1) keep the initial state for 2 s, (2) slowly rotate the arm away from facing 
inward toward the abdomen to facing outward in 4 s (external rotation), (3) hold the limb there for 2 s, 
(4) slowly rotate the arm toward the abdomen in 4 s (internal rotation), then a cycle has been 
completed; repeat this cycle five times. 

Exercise D. Pronation and supination (pron-supin) of elbow and wrist: wear the wristband on 
three fingers, bend the elbow 90o with the upper arm always close to the body, and with the palm 
facing upward for initial state; (1) keep the initial state for 2 s, (2) slowly rotate the forearm into a 
palm-downward position in 4 s (pronation), (3) hold the limb there for 2 s, (4) slowly rotate the forearm 
into a palm upward position (supination) in 4 s, then a cycle has been completed; repeat this cycle five 
times. 

Exercise E. Ulnar and radial and deviation (ulnar-rad dev) of wrist: wear the wristband on three 
fingers and put the palm on a desk or table for the initial state; (1) keep the initial state for 2 s, (2) 
slowly bending the wrist to the little finger side (ulnar deviation) in 4 s, (3) hold the limb there for 2 s, 
(4) slowly bend the wrist to the thumb side (radial deviation) in 4 s, then a cycle has been completed; 
repeat this cycle five times. 

Table 1. The ROM exercises and applicable joints of the upper limbs for rehabilitation.*. 

Motion Definition Joints Exercise 

Flexion 
move the limb along +Z axis on 

sagittal plane shoulder, 
elbow, wrist 

flexion-extension1 

Extension 
move the limb along –Z axis on 

sagittal plane 
Abduction 

(ABD) 
move the limb along +Z axis on 

frontal plane 
shoulder 

horizontal 
abduction-adduction2 Adduction 

(ADD) 
move the limb along –Z axis on 

frontal plane 

Rotation 
rotate the limb or palm around Z axis 

on transverse plane 
elbow, wrist 

ext-int rotation3, 
pronation-supination4 

Deviation 
swing the wrist between radial and 

ulnar sides orthogonal to frontal 
plane 

wrist ulnar-radial deviation5 

* Motion abbreviation (ex: italic word) and motion-label range (ex: the range [a,b) means a≤ label <b); 1 Put arm 
down for extension: rest-down, [0,1); Extension: ext, [1,2); Hold arm on top for flexion: rest-up, [2,3); Flexion: flex 
[3,4); 2 Put arm down for adduction: rest-low, [4,5); Abduction: ABD, [5,6); Hold arm on shoulder level: rest-half, 
[6,7); ADD, [7,8); 3 Put arm inside: rest-inside, [8,9); External rotation: ER, [9,10); Hold arm outside: rest-outside, 
[10,11); Internal roation: IR, [11,12); 4 Put palm up: rest-on, [12,13); Pronation: pron, [13,14); Put palm down: 
rest-under, [15,16); Supination: supin, [16,17); 5 Bend the wrist on little finger side: rest-right, [17,18); Ulnar 
deviation: ulnar-dev, [18,19); Bend the wrist on thumb size: rest-left, [19,20); Radial deviation: rad-dev, [20,21) 

In this study, we took Exercise A as an example to describe the proposed recognition process. 
The five simple exercises with joint motions mentioned above were combined in the union and 
complex exercises for practice, and this is further discussed in the Implementation section. The 
motions are labeled by numbers and their definitions are shown in Table 1, which exhibits the 
abbreviation of each motion and the numerical range of the motion label. 

2.2. Modeling 

The modeling process follows five major steps: (1) data preprocessing and sampling, (2) feature 
visualizing, (3) fuzzification, (4) fuzzy logic rule and data training, and (5) defuzzification, prior to 
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generate a proper FIS for personalized rehabilitation recognition. Figure 2 illustrates the computing 
flowchart of the modeling process above. 

2.2.1. Data Preprocessing and Sampling 

According to the designed exercise, the subject wore the wristband and repeated the scheduled 
motions to produce a sample dataset. Using the example of Exercise A, the motions were labeled by 
the arbitrary numbers ranging in [0, 1), [1, 2), [2, 3), and [3, 4), respectively, for the steps (1), (2), (3), 
and (4) of the flexion-extension exercise as shown in Table 1. In the physiotherapy, the subject 
should finish a therapeutic exercise with the correct motions based on the schedule. The 
unsupervised data of the personalized motions were labeled by a standard schedule as the sample 
dataset for supervised machine learning. Additionally, the subject followed the same schedule in 
order to produce a test dataset for evaluation. 

 

Figure 2. ANFIS computing flowchart for the PRR model. 

Table 2. The candidate features for the ROM exercises in the study.* 

Exercise rANGVx rANGVy rANGVz rANGx rANGz 
A. flex-ext Ex. V   V  
B. abd-add Ex. V   V  

C. ext-int rot. Ex. V   V  

D. pron-supin Ex.  V  V  

E. ulnar-rad dev. Ex.   V  V 

* Description of the features: rACCx, rACCy, rACCz: relative acceleration along three axes  
start moving; rANGVx, rANGVy, rANGVz: relative angular velocity about three axes  in 
movement; rANGx, rANGy, rANGz: relative angle on three axes  limb position 

We can preprocess the measured data using a fuzzy algorithm from our previous study, which 
suggested the transformation process to select the possible features [39]. The features include the 
relative acceleration, angular velocity, and angle of the motion with respect to the original position 
of the wristband. Table 2 shows the candidate features and their abbreviations in computing. With 
the exercise schedule, the labeled sample data are available for featuring in the initial FIS and 
supervised machine learning in the ANFIS procedure. 

2.2.2. Feature Visualizing 
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The available features can be adopted for fuzzy computing through the visualized diagrams. 
The data distribution, which was scheduled in time domain, can be transformed to frequency 
domain (or a spectrum) as shown in Figure 3. With visualization, the spectra are in relation to the 
available features that can help with computing the corresponding motions. For an example of the 
relative angle on the x axis (rANGx), the amount of moving angles measured in the flex-ext exercise 
is plotted as a spectrum. The angles for holding the arm on the top and bottom positions are around 
0o and –180o, respectively; while the angles of the raising-up and putting-down motions in this range 
vary with the relative angular velocities about the x axis (rANGVx). We can observe these spectra 
and refer them to create the membership function (MF) of the fuzzy set in the model. 

For this example, we selected rANGVx and rANGx as the features. Their diagrams as shown in 
Figure 3 perform the still and moving motions for the flex-ext exercise. In addition, other variables 
can also become the feature set depending on the characteristics of personal behaviors. Table 2 
presents the chosen features for the exercises modeled in this study; while the transforms regarding 
Exercises B, C, D, and E are presented in Appendix A (Figures A1, A2, A3, and A4, respectively). 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 3. Measured sampling data transform between time-domain distribution and 
frequency-domain spectrum, as exemplified by the input features of the flex-ext exercise: (a) 
Time-domain distribution and (b) Frequency-domain spectrum of sampling relative angular 
velocities about x axis; (c) Time-domain distribution and (d) Frequency-domain spectrum of 
sampling relative angles about x axis. 

2.2.3. Fuzzification and Featuring 

Several types of the MF can be chosen to create the fuzzy set for a FIS, which is a process 
required prior to data training. We explored the typical MFs including the triangle, trapezoid, 
Gaussian, sigmoid, bell-shape, s-shape, z-shape, -shape functions, etc. to generate an initial FIS 
model for training the ANFIS. With reference to the spectra of rANGVx and rANGx variables in the 
example, we adopted the triangle and trapezoid MFs for the input features, and the triangle MFs for 
the output features as shown in Figures 4. In this case, the flex-ext exercise consists of four-step 
motions in a cycle and each motion is labeled by a random value in the range of [0, 1), [1, 2), [2, 3), 
and [3, 4) corresponding to the MFs of the output feature. The neighbor MFs of the output feature 
are capable of a state of motion changing; e.g., the motion labelled by 0.9 or 1.1 can be inferred to 
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either step (2) “raising arm up” or (3) “holding on top”. Additionally, combination of the various 
input features with the proper MFs can yield a different fuzzy set for the same output motions. 

 
Figure 4. Fuzzy set example for the flex-ext exercise of shoulder: (a) Input1 – membership functions 
of input feature “rANGVx”, (b) Input2 – membership functions of input feature “rANGx”, (c) 
Output – Membership functions of output feature “Motion Label”. 

Table 3. The primary parameters of the trained-FIS for the flex-ext exercise. 

Input Features and Mamdani-Type MF (Vertex of Geometric Shape)1 

rANGVx 
Vertex Set 

Shape 

MF1: i_rest 
[–120,–50,10] 

Triangle 

MF2: i_flexion 
[–10,15,25] 
Triangle 

MF3: i_extension 
[20,60,110] 
Triangle 

rANGx 
Vertex Set 

Shape 

MF1: i_rest_down 
[–180,–175,–140] 

Triangle 

MF2: i_move 
[-150,-140.5,-19.9994,-9.98] 

Trapezoid 

MF3: i_rest_up 
[-14.999,0.00043,15] 

Triangle 
Output Feature and Sugeno-Type MF (Coefficients of Linear Equation)2 

Motion 
Coefficient 

MF1: o_rest_down 
[0.0077,0.1022,0.913] 

MF2: o_flexion 
[0.0008,0.0002,1.5907] 

Motion 
Coefficient 

MF3: o_rest_up 
[-0.1899,0.1779,33.5760] 

MF4: o_extension 
[-0.0019,-0.0011,3.5074] 

Virtual Motion3 

null_1: [0.0181,-1.0772,-0.5743], null_2: [-0.0009,-0.0012,3.3421], 
null_3: [-0.0266,0.0076,4.2697], null_4: [-0.0118,0.0475,1.1785], 

null_5: [0.0011,-0.0427,-4.9702] 
1 For instance, [–120,–50,10] means the x coordinates of the left, middle, and right vertexes of the 
Triangle shape. 2 For instance, [0.0077,0.1022,0.913] presents a linear equation by 
z=0.0077x+0.1022y+0.913, where x and y are the input features (i.e., rANGVx and rANGx). 3 All MFs 
in virtual motions are dummy in use but necessary for the complete logic rules. 

The function-based MFs of output feature (i.e., Mamdani type) must be converted to the crisp 
set (i.e., Sugeno type) before the training process in the ANFIS. The module “mam2sug” in the fuzzy 
logic toolbox of MATLABTM is employed to adapt the functional MFs to the crisp value. As shown in 
Table 3, the MFs of input and output features for the flex-ext exercise include coefficients of the 
Mamdani-type functions and Sugeno-type equations. The triangle MF can be illustrated by a set of 
vertex coefficients, e.g., [–120,–50,10]; while the linear MF can be formulated by a set of equation 
coefficients, e.g., [0.0077, 0.1022, 0.913]. 
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In addition, the amount of MFs in the output feature must be a multiplication of those in the input 
features for training in the ANFIS. The Sugeno-type fuzzy set in this example needs nine MFs (3 × 3 = 9) 
of the output feature in relation to the input features. We thus can create five more triangle MFs by a 
virtual label (e.g., [-0.5, 0) as shown in Figure 4c) for virtual motions in addition to four real motions. 
The fuzzy sets regarding Exercises B, C, D and E are provided in Appendix B (Figures B1, B2, B3, and 
B4, respectively) 

2.2.4. Fuzzy Logic Rule and Data Training 

In this cyclic step, a fuzzy logic rule is defined to control the relationship between the input and 
output features. The MFs of input features are assigned to the corresponding MFs of output based 
upon the rules. For instance, if the feature “rANGx” is around –180 degrees and “rANGVx” is 
around zero, then the motion label should be in [2, 3) (i.e., motion (3) “hold the arm on top”) due to 
Rule 3 as shown in Table 4. Thus, the fuzzy logic rule can be formatted as [if rANGVx is i_rest and 
rANGx is i_rest_up, then motion is o_rest_up]. For converting this type of Mamdani to Sugeno in 
this case, we created nine rules including five dummy rules corresponding to the virtual motions, 
which are never matched but required for the FIS structure. 

Table 4. Fuzzy logic rules and corresponding MFs of features for the flex-ext exercise.1 

Feature rANGVx rANGx Motion 
Rule 1 i_rest i_rest_down o_rest_down 
Rule 2 i_flexion i_move o_flexion 
Rule 3 i_rest i_rest_up o_rest_up 
Rule 4 i_extension i_move o_extension 
Rule 5 i_rest i_move null_1 
Rule 6 i_flexion i_rest_down null_2 
Rule 7 i_flexion i_rest_up null_3 
Rule 8 i_extension i_rest_down null_4 
Rule 9 i_extension i_rest_up null _5 

1 Note: Rule 5~9 are the dummy rules corresponding to the virtual motions null_1~null_5; the names 
of MFs are referred to Table 3. For example, the fuzzy logic of Rule 1: “If rANGVx is i_rest and 
rANGx is i_rest_down, Then the motion is o_rest_down”. 

In this cyclic step, an initial FIS is tuned by the ANFIS via a data training process, which adjusts 
the parameters of MFs by minimizing the root mean square errors (RMSEs) of the FIS repetitively for 
each epoch till an optimal status is reached (i.e., the error variation approaches stability). The output 
FIS after data training can be evaluated by the test datasets which are acquired from the subject 
following the same schedule. Table 3 shows the trained FIS of the Sugeno model, which optimizes 
the output level by a linear equation for recognition in the next step. 

2.2.5. Defuzzification and Recognition 

The trained FIS includes the capable MFs and fuzzy rules to drive the defuzzification process 
and infer the motion labels in the test data. The process computes the union area of the MF curves 
due to their degrees of participation in the logic of the rules. The toolbox uses the centroid and 
weighted-average methods for the Mamdani- and Sugeno-type FIS, respectively. The inferred labels 
can be compared with the motion schedule for evaluation; i.e., they should be in the same label 
range if the sampling schedule is followed. We proposed the adaptable scheme and quartile 
schemes as shown in Figure 5, which analyze the adaptable and quartile motion labels for data 
extraction in practical measurement, respectively, to evaluate the recognition rate of the FIS. 

The adaptable motion-label scheme recognizes an exercise excluding motion changes. For 
instance, the motion is probably at the state of “pause at the bottom” or “raise-up” when the subject 
begins to raise the arm. At that moment, the motion label defuzzified in either [3, 4) or [0, 1) is 
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acceptable—i.e., the motion is correct if inferred as “pause” or “raise”. We adapted 10% of estimated 
dataset for the acceptable range as changing the motion. 

The quartile motion-label scheme splits the data distribution of a motion into four sets (i.e., cut 
at 25%, 50%, 75%), and it evaluates the rate for each quartile set. The sets of 25% and 75% are usually 
counted as changing the motion, thus the middle portion (i.e., the data set around 50%) would be the 
confidence interval of the reliable motion labels. We can adopt the inferred motion labels within the 
reliable set to evaluate the recognition rate. The validated FIS can be further implemented in the 
UHM system to track the assigned physiotherapy exercises. 

 

 
(a) 

 
(b) 

Figure 5. Recognition schemes: (a) the adaptable motion-label scheme allows the identical labels in 
changing motion, (b) the quartile motion-label scheme computes the confidence interval in a motion 
schedule. 

2.3. Ubiquitous Healthcare Measurement System 

We established a prototype of the UHM system to implement the proposed PRR model. The 
system architecture with its data flowchart is shown in Figure 6, which according to the Internet of 
Things (IoT) involves three layers: the sensor, the gateway, and the server. In measurement, the 
smart phone can be the gateway to receive and transmit signals of the BLE sensor. The measured 
data in the gateway are transformed into the possible features such as relative angles, accelerations, 
angular velocities, etc., by mobile Apps; then, they are sent to the backend server via the Internet for 
data training in the server [43]. With the ANFIS, the UHM system serves the tuned FIS parameters 
for the self-developed App to recognize the physiotherapy exercises. The major components of the 
system architecture are addressed below. 

We designed two multi-sensor filtering (MSF) and FIS recognition (FISR) modules in the mobile 
App with an user-friendly interface. The MSF module enhances the Android application program 
interface (API) of MbientLab for the MetaWearC sensor to acquire the signals from multiple sensors 
and filter out the relevant features. The FISR module involves the open-source API of FuzzyLite to 
drive the trained FIS for recognizing motions. 

(A) MSF module. The MSF provides the objects of “SensorConnect,” “MotionAnalysis,” and 
“DataTransfer”. The “SensorConnect” implements the MbientLab APIs to connect with the sensors 
and retrieve the detected data. The “MotionAnalysis” processes the functions of featuring and 
transferring data to derive the candidate features due to the raw data of acceleration and angular 
velocity. The “DataTransfer” accesses the data between mobile and server databases as well as labels 
the sample data according to the motion guide and exercise schedule. 
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(B) FISR module. The FISR includes the objects of the “FISEngine” and “FISMotion” for Fuzzy 
computing. The “FISEngine” utilizes the FuzzyLite APIs to parse the FIS model and select the proper 
features to defuzzify the motion data. The “FISMotion” drives the “FISEngine” to compute the 
motion labels for recognition. In addition, the FISR module can also evaluate the accuracy of the test 
dataset in the server layer prior to feedback of the trained FIS. 

 

Figure 6. Architecture of the three-layer UHM system based upon the Internet of Things. 

In the training phase, the MSF module can receive the sample data (e.g., 100 data per second) 
from the wristband, extract the necessary features, and then upload to a measurement database in 
the UHM server for data training. Once the training procedure is completed, the trained FIS files are 
stored in a library of personalized criteria for recognition. In the recognition phase, the FISR module 
can download the FIS file via Web services to recognize the motions for tracking the exercise. The 
tracked data (e.g., one data per second) will be saved in SQLite storage (e.g., a memory card) and 
uploaded to health-promotion database for remote tracking. In practice, the subject can get an 
identical number of the personal exercise for the training step, and the App can offer an associated 
FIS for selection before recognition. With ANFIS computing, the PRR model can be practiced in a 
self-developed UHM system to manage the rehabilitation program. 

3. Results and Evaluation 

The test datasets of five ROM exercises were applied to evaluate the trained FIS. One hundred 
datasets were received in a second (i.e., the sensor frequency is 100 Hz), and five-cycles of an exercise 
was scheduled to produce thousands of sample datasets for training. Then, the subject followed the 
exercise schedule to the best of their ability to provide the test data, in which at least one cycle of 
motions satisfying the sampling procedure can be chosen for evaluation. Both schemes of the 
adaptable and quartile motion labels are employed to calculate the recognition rate. 

3.1. Inference Result 

The test datasets involve the same input features as the sample, and the output motion labels 
are inferred by the trained FIS. The sample motion labels were produced due to the exercise 
schedules for comparison. The inference diagrams of the five exercises are shown in Figure 7 to 
compare the inferred motion labels with the sample labels. Most of the joint motions could be 
recognized if the motion cycles satisfied the sampling schedules, and the inferred motion labels were 

Modeling

Personalized 
FIS

Tr
ac

in
g

Adaptive Neuro-
Fuzzy Inference 
System (ANFIS)

Scheduled Motion 
Guide

&
Motion Label Criteria

Data Training
&

Tuning FIS

Training

Design FIS

Web Services
Mobile APP
(Gateway)

FIS 
Recognition 

Module

Collecting

Motion 
Recognition Recognizing

Recording
Recognition

Data

Tesing

UHM System
(Server)

Multi-Sensor 
Filtering 
Module

Motion 
Data

Upload Sampling and Testing Data

SQLite
Transient 

Data Storage

BLE-compliant
Wristband

(Sensor)

Detecting

Rehabilitation
Healthcare

Services

Traceable
Data

Evaluating 
Recognition 

Results

Upload Tracing Records

Test Dataset

Available

Not 
Available

Sample 
Dataset

Real-time Process Backend Computing



Sensors 2019, 19, 1679 11 of 23 

 

plotted in the defined range. We observed that the exercises for the shoulder and wrist (e.g., Figure 
7a,b,d,e) perform a better recognition effect than those for the elbow (e.g., Figure 7c), the latter being 
where the subject did not control the ext-int rotation of elbow in the expected ROM while changing 
motions. In comparison with the other four exercises, the elbow was not supported by a stable pivot 
to perfectly hold on the transverse plane while moving in the exercise. 

  
(a) (b) 

  
  

(c) (d) 

 
(e) 

Figure 7. The inference diagrams of the test data versus the sampling schedule for the simple 
exercises: (a) flexion and extension, (b) abduction and adduction, (c) external and internal rotation, 
(d) supination and pronation, (e) ulnar and radial deviation. 

With the inference diagram, the recognition performance can be visualized to track the exercise 
measurement. If the inferred motion labels are not plotted in the range of sampling motion labels, 
then the testing is either not obeying the assigned schedule or out of the limited motion range. Once 
the input value exceeds the limit of the FIS (i.e., an outlier), the inference is not available on the 
diagram. Thus, the subject who provides the sample dataset can obtain a personalized FIS to 
evaluate the test dataset in practice. The results above imply that the subject can be guided by an 
exercise schedule to rehab the joints with a trackable diagram. The diagram can be used to assessing 
whether the subject obeys the criteria or the exercise procedure needs further adjustment. The 
testing motion cycle, which was mostly fitted to the sampling schedule, was adopted from each 
simple exercise for evaluating the recognition rates in the next section. 
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Table 5. Recognition results of the simple exercises for the test data in a cycle that can generally fit 
the sampling schedule.1. 

Exercise Joint Motion 
Adaptable 

Scheme 
Quartile Scheme 

25% 50% 75% 

A. 
flexion-extension 

rest_down 0.9 1 1 1 
ext 0.765 0.225 1 1 

rest_up 0.51 0.4 0.55 0.283 
flex 0.96 0.941 0.966 0.975 

average 0.809 0.642 0.879 0.815 

B. 
abduction-adduction 

rest_low 0.97 1 0.967 1 
ABD 0.905 1 1 0.8 

rest_half 0.995 1 1 1 
ADD 0.863 0.866 1 1 

average 0.927 0.967 0.992 0.95 

C. 
external-internal rotation 

rest_inside 1 1 1 1 
ER 0.48 1 0.408 0.025 

rest_outside 0.52 1 0.383 0.033 
IR 0.723 0.714 1 0.874 

average 0.654 0.929 0.698 0.483 

D. 
pronation-supination 

rest_on 1 1 1 1 
pronation 0.975 1 0.933 0.95 
rest_under 0.905 1 1 0.7 
supination 0.78 1 1 0.627 

average 0.915 1 0.983 0.819 

E. 
ulnar-radial deviation 

rest_right 0.965 1 1 0.917 
ulnar_dev. 0.7 0.833 0.767 0.433 

rest_left 0.95 1 1 0.85 
radial_dev. 0.405 0.475 0.339 0.441 

average 0.755 0.827 0.777 0.660 
1 Note: Rule 5~9 are the dummy rules corresponding to the virtual motions null_1~null_5. 

3.2. Recognition Evaluation 

The recognition rates of the chosen motions were evaluated by both the adaptable and quartile 
schemes as shown in Table 5. Both schemes include the outlier data that exceed the inference range 
(e.g., moving too fast and causing the angular velocity over the maximum value of sample data). The 
average recognition rates for Exercises A, B, and D, which perform steady motions according to the 
schedule, are from 0.809 to 0.927 due to the adaptable scheme; whereas that for the middle (50%) of 
the quartile scheme are from 0.879 to 0.992. For Exercises C and E, which did not involve stable 
movements, the rates ranged between 0.654 and 0.777 due to both schemes. This evaluation proves 
that the middle of the motion data are suitable for recognition. 

We further checked on the details of the schemes for each motion. The scheme can offer the 
criteria of recognition for the unstable motions in the exercise such as the ext-int rotation in this 
study. For instance, we can define a five-grade criterion based on the different rates of recognition: 
Grade level 1 means 80% of data are recognized whereas level 4 is less than 20%, and level 0 is failed. 
In practice, if the grade level is larger than 3 (i.e., rate > 40%), then the motion of the subject can be 
confirmed as the acceptable recognition. 

4. Implementation and Discussion 

The simple ROM exercises of the PRR model can be applied to a hybrid mode including the 
union and complex exercises. The union exercise joins the simple exercises that are associated with 
the consistent FIS models. The complex exercise assembles several sub-exercises to train a unique FIS 
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model, which involves all the features of the sub-exercises. Both exercise types were implemented in 
the self-development UHM system. 

 

 
(a) (Left) UHM dashboard, (Right) Apps screen 

 
(b) (Left) UHM dashboard, (Right) Apps screen 

Figure 8. The trackable diagrams on the UHM dashboard and App screen for the ROM exercise 
application: (a) union exercise, (b) complex exercise. 

4.1. UHM Implementation 

In the UHM system, the server layer can acquire full datasets of the subject for data training and 
generate the personalized FIS model; the gateway layer (i.e., mobile Apps can filter the sensor data 
and extract proper datasets for recognition according to the FIS. Then, the recognized motion labels 
can be illustrated on the trackable diagram for management. The subject can download the FIS to a 
personal smartphone and turn on the recognition mode of the App when starting a ROM exercise. 

The diagram of the exercise can be visually tracked on the web and mobile interface as shown in 
Figure 8, in which, the dashboard details each joint motion of the exercise over a set duration. Figure 
8a displays the diagram tracking each motion in the union exercise as an example. The unrecognized 
motions can be noticed as outliers that were probably caused by incorrect posture or faulty 
movement. When processing the union exercise, the subject should select a FIS model with respect 
to the acting motion. All processed exercises are then joined together as a record set for uploading to 
the database. We then take the union exercise as an example to verify the scheme of true-false 
positive-negative rates, as shown in Table 6, for evaluating the implementation results. In which, 
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the middle section of data in every second was retrieved for recognition. The scheme shows the 
estimators of true-positive, true-negative, false-positive, and false-negative for the five exercises. 
The averages of sensitivity, specificity, and accuracy are respectively about 0.81, 0.72, and 0.78 for 
this case. 

For the case of complex exercise, the motion features of sub-exercises must be independent of 
the associate Fuzzy rules—i.e., there is no identical feature to control the different motions in the FIS 
model. We thus chose Exercise D and E as a complex exercise (i.e., pron-supin and ulnar-rad dev for 
the wrist joints). The sample datasets of both sub-exercises were merged for data training and their 
FIS models were combined as an initial FIS for tuning in the ANFIS. Notice that the unused features 
of the sub-exercise must be assigned by the virtual values to avoid confusing the data training 
process. For example by referring Table 2, both of Exercise D and E contain four features, i.e., 
“rANGVy”, “rANGx”, “rANGVz”, and “rANGz”. In training, the features “rANGVy” and 
“rANGx” are used by Exercise D but not E; thus, the virtual values (e.g., -999) are assigned to replace 
the measured values for these two features in Exercise E, and vice versa for the features “rANGVz” 
and “rANGz” used in Exercise D. In this case, the subject can select the available sub-exercises of the 
complex exercise with a FIS model. The tracking diagram can be managed as shown in Figure 8b. 

Table 6. The verification scheme of true-false positive-negative rates for the union exercise.1 

Exercise No. TP FN FP TN TPR FPR TNR ACC 
A 15 4 0 1 0.79 0 1 0.8 
B 15 1 0 4 0.94 0 1 0.95 
C 5 0 6 9 1 0.4 0.6 0.7 
D 15 4 1 0 0.79 1 0 0.75 
E 7 6 0 7 0.54 0 1 0.7 

Average     0.81 0.28 0.72 0.78 
1 Note: TP = true-positive data; FN = false-negative data; FP = false-positive data; TN = true-negative 
data; TPR(sensitivity) = true-positive rate = TP/(TP+FN); FPR(fall-out) = false-positive rate = 
FP/(FP+TN); TNR(specificity) = true-negative rate = TN/(FP+TN); ACC = Accuracy = 
(TP+TN)/(TP+FN+FP+TN);. 

4.2. Discussion 

In general, the physiotherapist designs the program for patients to heal the injured joint with a 
simple exercise, and evaluates their practice in the rehabilitation room. We expect to transfer some 
programs from hospital to ubiquitous healthcare for a pilot study. The conventional body-motion 
measurement has difficulty in obtaining exercise identification with only a few sensors. For the 
aspect of UHM in rehabilitation, the exercise for joint movement limited in a ROM can be measured. 
If the patient can follow the therapy guidance, then a rigorous schedule can support a supervised 
machine learning scheme with labeled motions. We therefore consider the rehabilitation exercise by 
simplifying the complexity of recognition to enable the modeling in healthcare services. In the 
proposed PRR model, the subject must obey the physiotherapy exercise guide in order to create the 
sample data for a training process of ANFIS. The trained FIS approved by the test data could be 
applied to track rehabilitation records remotely in the UHM system. The advantages and limitations 
due to the implementation of the approaches are discussed below. 

4.2.1. Advantages 

The labeled motion is feasible for recognizing scheduled exercises. Machine learning usually 
applies supervised algorithms for the recognition requirement. For the study of human activity 
recognition, unsupervised methods have been used to classify the clusters of various movement data 
in a labeling process [44]. With application to rehabilitation, the patient is guided by the designed 
exercise to rehabilitate the injured joint. Thus, the motions can be scheduled for the subject to 
produce the labeled sample data required for supervised machine learning. 
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The ANFIS is capable of training a personalized model for recognition. The initial FIS can be 
created due to the personal movement features such as sensor position, range of motion, etc. The 
fuzzy logic rules can be precisely controlled to enhance efficiency and the quality of data training in 
the ANFIS. Besides, the FIS can also be initialized for a specific exercise using the feature set with the 
proper MFs; then, the ANFIS can tune the FIS for a personalized model by fitting various sample 
datasets of the subjects who practice the same exercise. 

The process of sensor data filtration can improve recognition in practical measurements. The 
proposed BLE-compliant sensor is able to stream raw data at up to 100 datapoints per second, which 
provides abundant sample datasets in the training procedure. The most popular algorithms can 
achieve a recognition rate of 85-95% for physical human activities, and this is enough for practical 
application [45]. Our approach evaluates a confidence interval of the motion to filter the proper data. 
The middle section in each scheduled motion period should be the potential data. 

The PRR model details the customized motions of health informatics. The self-developed UHM 
system provides a trackable diagram, which is similar to the electrocardiography in telemedicine, on 
a Web-based and mobile interface. This approach allows assessment of specific motions in the 
physiotherapy exercise for the clinicians who want to understand more in details. For instance, the 
technology can be applied for the care in the self-monitoring of Parkinson’s diseases [46]. The 
motion variation and health information can be remotely monitored. 

Comparing with the proposed model, the past studies had presented many machine learning 
algorithms for similar approaches [47–49]. Our previous work experienced the BPNN method to 
recognize different types of the frozen shoulder exercises [11]. We learned that the diverse machine 
learning methods can achieve good recognition models with the proper parameters. Thus the UHM 
system can be installed on a platform that offers comprehensive computing services with a variety of 
machine learning modules. 

4.2.2. Limitations 

The proposed model has a limitation that the subject must wear the sensor at the same position 
for sampling and follow the identical exercise schedule. We thus consider two recognition schemes 
to help improve the implementation weakness seen in this study. In practical application, physicians 
trace a rehabilitation tendency rather than screen the exact movement of the patient. Within the 
developed UHM system, both the mobile and server sides can provide traceable diagrams in order 
to perform the recognition results. If not enough data points are captured, the system can report the 
possible reasons and suggest necessary adjustments according to the limitations. 

Complex exercises cannot include identical features. The same feature can measure the various 
joint motions that are in the same ROM. For example, the features “rANGVx” and “rANGx” can be 
used for both of the flex-ext and abd-add exercises. However, they will be confused when used in 
the same FIS for a complex exercise. In addition, virtual values are necessary for the unused features 
of the sub-exercise in the data training process of ANFIS. In practice, the sub-exercise option is 
required for the mobile App to select the unused feature and replace the measured data with the 
virtual values. Therefore, we suggest wearing additional sensors on the limbs for the measurement 
when it comes to a complex exercise. 

Highly irregular motions cause measurement outliers. The irregular motions in an exercise 
usually produce the unstable noises that implicate many ambiguous features in recognition. Most of 
the robot-assisted rehabilitation regimens can design a personalized program to support the UHM 
for self-monitoring management. If the patient performs the exercise but does not follow the 
schedule, the measurement is not reliable with the outliers on the tracking report. Thus, the patients 
probably need help from their healthcare provider for measurement at home. In clinical 
rehabilitation, the simple exercise is typically designed in the physiotherapy setting. The physicians 
can design a comprehensive PRR model involving necessary simple exercises for complicated 
rehabilitation. 

In the present phase, the development is limited to the scheduled exercise for the patients who 
can follow the therapeutic design. In the next phase, we will consider the deep learning algorithms 
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to train the practical measurement data. In which, the healthcare people can be involved to label the 
possible motions that are designed in the exercise but not exactly obeying the schedule. The future 
study is expected to improve the flexibility of the UHM system. 

5. Conclusions Remarks 

In this study, ANFIS was employed to generate a model of PRR, which can be utilized in a 
self-developed UHM system for physical therapy. The wearable sensor embedded with a BLE 
accelerometer and gyroscope chip can measure the motion data of physiotherapy exercises. Five 
simple joint motion exercises including shoulder, elbow, and wrist examples were designed and 
studied to demonstrate the modeling process. The subject wore the sensor-enabled wristband and 
moved the limbs following the scheduled motions to produce the sample and test data at a 
frequency of 100 data per second. Each motion dataset can be labeled with an arbitrary number in a 
defined range. Due to the sample datasets, the initial FIS was created by the steps of data 
preprocessing, feature visualizing, fuzzification, and Fuzzy logic rules. The ANFIS processed the 
data training cycles for tuning the FIS with the sample data to yield an optimal design. The trained 
FIS can estimate the test data based on the defuzzification process to infer the motion labels for 
recognition. The schemes of adaptive and quartile motion labels were used in evaluation. The 
average recognition rate was higher than 90% if the testing motions faithfully followed the sampling 
schedule. Thus, the middle portion of the motion datasets is suggested for recognition in practice. 
With implementation in the three-layer UHM system, the mobile App can retrieve the personalized 
FIS parameters to recognize the exercise and transport the records to the server for tracking. This 
approach finally contributes a feasible interface for the physicians to observe the trackable diagram 
on the server site and explore the rehabilitation motions in details. The UHM system can be 
integrated with the Internet of Things (IoT) for comprehensive health services in the future. 
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Appendix A 

Figures A1 to A4 are the sampling data of input features for the Exercises B to E, respectively. 
 

  
(a) (b) 

  
(c) (d) 

Figure A1. Input feature data transform for the exercise of horizontal abduction-adduction 
(abd-add): (a) Time-domain distribution and (b) Frequency-domain spectrum of relative angular 
velocities about x axis (rANGVx); (c) Time-domain distribution and (d) Frequency-domain spectrum 
of relative angles about x axis (rANGx). 

  
(a) (b) 

  
(c) (d) 

 

Figure A2. Input feature data transform for the exercise of internal-external rotation (int-ext rot): (a) 
Time-domain distribution and (b) Frequency-domain spectrum of relative angular velocities about x 
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axis (rANGVx); (c) Time-domain distribution and (d) Frequency-domain spectrum of relative angles 
about x axis (rANGx). 

  
(a) (b) 

  
(c) (d) 

Figure A3. Input feature data transform for the exercise of pronation-supination (pron-supin): (a) 
Time-domain distribution and (b) Frequency-domain spectrum of relative angular velocities about y 
axis (rANGVy); (c) Time-domain distribution and (d) Frequency-domain spectrum of relative angles 
about x axis (rANGx). 

  
(a) (b) 

  
(c) (d) 

Figure A4. Input feature data transform for the exercise of radial-ulnar deviation (rad-uln dev): (a) 
Time-domain distribution and (b) Frequency-domain spectrum of sampling relative angular 
velocities about z axis (rANGVz); (c) Time-domain distribution and (d) Frequency-domain spectrum 
of relative angles about z axis (rANGz). 
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Appendix B 

Figures B1 to B4 are the fuzzy sets with membership functions of FIS design corresponding to 
Exercises B to E, respectively. 

 
Figure B1. Fuzzy set for the abd-add exercise of shoulder: (a) Input1 – membership functions of 
input feature “rANGVx”; (b) Input2 – membership functions of input feature “rANGx”; (c) Output – 
membership functions of output feature “Motion Label”. 

 
Figure B2. Fuzzy set for the ext-int rot exercise of elbow: (a) Input1 – membership functions of input 
feature “rANGVx”; (b) Input2 – membership functions of input feature “rANGx”; (c) Output – 
membership functions of output feature “Motion Label”. 
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Figure B3. Fuzzy set for the pron-supin exercise of wrist: (a) Input1 – membership functions of input 
feature “rANGVy”; (b) Input2 – membership functions of input feature “rANGx”; (c) Output – 
membership functions of output feature “Motion Label”. 

 
Figure B4. Fuzzy set for the ulnar-rad exercise of wrist: (a) Input1 – membership functions of input 
feature “rANGVz”; (b) Input2 – membership functions of input feature “rANGz”; (c) Output – 
membership functions of output feature “Motion Label”. 
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