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Abstract: Citizen safety in modern urban environments is an important aspect of life quality.
Implementation of a smart city approach to video surveillance depends heavily on the capability of
gathering and processing huge amounts of live urban data. Analyzing data from high bandwidth
surveillance video streams provided by large size distributed sensor networks is particularly
challenging. We propose here an efficient method for automatic violent behavior detection designed
for video sensor networks. Known solutions to real-time violence detection are not suitable for
implementation in a resource-constrained environment due to the high processing power requirements.
Our algorithm achieves real-time processing on a Raspberry Pl-embedded architecture. To ensure
separation of temporal and spatial information processing we employ a computationally effective
cascaded approach. It consists of a deep neural network followed by a time domain classifier. In
contrast with current approaches, the deep neural network input is fed exclusively with motion vector
features extracted directly from the MPEG encoded video stream. As proven by results, we achieve
state-of-the-art performance, while running on a low computational resources embedded architecture.

Keywords: sensor networks; deep learning; action classification; violence detection; smart cities

1. Introduction

The Smart City approach is considered as a promising solution to the problems related to enhanced
urbanization [1]. Its implementation depends on the capability of gathering and analyzing huge
amounts of various live urban data. They are collected mainly from public and private sensors networks
run by various agencies or private bodies. Among other data types, video streams especially provide
valuable information collected directly from the street. Smart city surveillance covers a large spectrum
of applications, which include, among others, urban traffic monitoring systems [2], building structural
damage detection [3], violence detection [4], and disasters management [5]. Human operators might
be easily overwhelmed with the number of video streams. Therefore, an important research effort
was directed to developing methods to process automatically such information in order to monitor
abnormal behavior, and to discard safely irrelevant information.

Violence detection represents an important issue in smart city surveillance. A cost-effective
solution uses a wireless sensor network-based infrastructure. However, such a solution implies nodes
with low computational power and limited communication bandwidth. Various approaches were
proposed to overcome these problems. The authors of [6] reduce the processing demands by using
only the audio data. Other methods, as the one proposed in [7], implies high bandwidth for video
streams transfer to a powerful base station.

In contrast with existing approaches, the work reported here proposes an algorithm running at the
sensor node level able to detect the violence from camera input, and to reduce the communication load by
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transferring only alerts. State of the art algorithms for violence detection are based on computationally
intensive computer vision techniques like segmentation, tracking, and action recognition [8]. Violence
detection is considered a particular case of human action recognition [9]. Complex background, scale,
and occlusion make activity recognition very difficult. Moreover, violence detection poses also specific
issues that start with a proper definition of violence. Discrimination between violent and non-violent
scenes is sometimes difficult even for humans. Some activities like running, dancing or person to
person interactions are very similar in appearance to violent behavior.

Due to the size of video data collected from a large cameras network, the required computational
power is significant. Therefore, the algorithms based on handcrafted features using image and video
processing do not represent the best solution. Deep Neural Networks (DNNs) and Deep Learning (DL)
approaches [10] are more reliable for handling such large-scale data. A convolutional DNN combines
in various ways convolutional layers, pooling layers and fully connected layers to automatically extract
features from images and to use these features for predictions. Such a network can be trained by
using a backpropagation algorithm based on a loss function. Convolutional DNNs were inspired by
biological processes (organization of the animal visual cortex) and were mainly created for image
processing and analysis. Encoding certain properties into the architecture results into fewer parameters
and easier training.

Due the recent investments in specialized highly parallel hardware as Graphical Processing Units
(GPUs) and Tensor Processing Units (TPUs) [11], the deep learning is expected to have more and
more impact in almost all industries. DNNs can be used to implement real-time algorithms for object
detection, object tracking, face recognition, image classification, and action recognition. However,
an important challenge for deep learning solutions is the deployment on smaller and widespread
processing systems.

Sensor network video surveillance in urban area involves large amounts of small nodes capable
of video sensing. A possible approach is based on a powerful central node able to implement DL
solutions by processing video streams gathered from the network nodes. This centralized approach
has a major drawback related with the bandwidth requirement considering high resolution video
streaming. A better solution involves distributed processing at the level of each node. The main issue
in this case is the low computational power available for implementing DL algorithm.

To address the problem of implementing a DL algorithm on a low resource node we consider
a Raspberry PI architecture equipped with a USB camera. On this architecture we implement a six
layers deep neural network able to classify video sequences as violent or non-violent. In contrast
with previous work, we use as DNN input exclusively motion feature vectors extracted from the
Motion Picture Expert Group (MPEG) encoded video stream. Since the vectors encode motion for
16x16 image blocks, we obtain 256-fold network size reduction. We train the DNN to recognize
frames corresponding to violent behavior. To cope with temporal characteristics of fight scenes, we
feed the output of the DNN to a temporal domain filter. The cascaded architecture of the system is
computationally effective and, as we prove, obtains state of the art performance.

The rest of the paper is organized as follows: Section 2 presents some related work used as the
starting point for our research. Section 3 presents in details the proposed method while the next
Section discusses some optimization work. The method validation is presented in Section 5, and the
last Section concludes the work.

2. Related Works

Violence detection in video is primarily needed to enhance citizen security, to prevent children
from watching movies containing violent behavior, or to enable content-based video search. Violent
activities can be recognized by analyzing human actions. We are interested in actions leading to
suspicion about violence in sensitive urban areas. Work in violence detection draw inspiration from
the larger field of activity recognition. Approaches to both violence detection and action recognition
fall into two categories: traditional, also called handcrafted approaches, and deep learning approaches.
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A comprehensive view on action recognition, including violence detection, using both handcrafted
approaches and deep learning is presented in [12].

Among the oldest attempts to detect violence in video is the work of Nam [13]. The authors used
a combination of flame and blood detection in conjunction with sound and motion features. Blood
and motion were also used for violence detection in [14] along with skin detection features. More
recently Chen [15] combined motion features with face and blood detection. Audio and motion feature
statistics have been fed to a k-Nearest Neighbor classifier in [16] in a data fusion framework. While
blood, explosions and specific fight-related sounds may be useful for violence detection in movies,
they can be rarely found in urban violence scenarios.

The most powerful information needed to recognize and characterize human physical actions
and interactions is motion. Such activities usually involve specific motion patterns, and they take
place in relatively low time intervals. Early work on activity analysis in video concentrates on holistic
representations of motion, like motion history or motion energy images [17]. A more recent trend is to
use localized representations. Interest points like the Space-time Interest Points (STIP) or Space Time
Cuboids [18] can help to characterize image motion. The information provided by these features is
further refined by generating higher level features like motion trajectories. Related to STIP is the Motion
Scale Invariant Feature Transform (MoSIFT) introduced by Chen [19], which encodes local appearance
and motion. Both are generalizations of Loeve’s Scale Invariant Feature Transform (SIFT) [20]. Their
features have been used with similar performance for violence detection by Neivas [4]. Interest points
are typically used with the popular Bag of Words framework [21,22], followed by a Support Vector
Machine (SVM) classifier [23]. Motivated by Weber’s low of perception, Zang [9] proposed the Motion
Weber Local Descriptor (MoWLD). Like MoSIFT, the descriptor captures both local motion as histogram
of optic flow and appearance as histogram of Webber local descriptor.

Motion trajectories synthetize well the motion information over a set of frames. A representative
work using motion trajectories for analyzing activities in a parking lot is reported in [24]. Trajectories
are generated by a combination of methods involving foreground/background segmentation [25] and a
multi-hypothesis tracker [26]. Inference is obtained via random forest and support vector machine
classifiers. Dense trajectories described in [27,28] are used in [29] to capture both shape and motion
features to detect urban fight.

One of the most powerful features in motion analysis is the optical flow. Optical flow research
has a long history [30]. A popular method used in this work as a reference method is the Farneback
optical flow algorithm [31]. Although computationally expensive, optical flow is widely used in
violence detection. For example, multiscale optical flow features are incorporated in the MoSIFT and
MoWLD feature vectors discussed earlier. Hassner [32] proposed the violent flows descriptor (ViF) for
crowd violence detection. While the ViF can be computed efficiently and works well in the crowd
scenario, it is less effective on non-crowd video data. To alleviate the problem, Gao [33] proposed the
Oriented Violent Flows (OViF) which is a new version of the ViF. Unfortunately, it performs poorly
in crowd violence detection. Recent approaches to optical flow computing are based on DNN and
prove significant performance improvement [34,35]. These solutions also involve lot of computational
resources. For example, the Liteflownet model proposed in [35] requires over 160M parameters.

Currently DNNs also challenge state of the art in activity recognition. Frequently used architectures
in activity recognition are spatio-temporal convolutional networks [36], and recurrent networks [37,38].
An extensive survey on activity recognition mainly focused on DNN solutions can be found in [39].

A major advantage of using DNNs consists in the ability of such networks to automatically
discover features adapted to the targeted problem. However, there are some issues in this approach
implementation. An important one is the dependency between the performance and the dimension of
the data set used for training. Knowledge transfer can be used to alleviate this overfitting problem.
It involves pretraining the network on a larger database, and more generic in content, followed by
fine tuning on the targeted data. Another issue is the significant demand of hardware resources,
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especially in case of real time applications. All of them are critical in achieving the goal of the work
presented here.

One possible approach to capture the time domain evolution of activities is to feed the DNN with
a set of consecutive frames. The simplest architecture using this idea, called early fusion is using only
one spatio-temporal volume of the video stream which is slide in the time domain [40]. An alternative
solution, known as late fusion, is to input several single frames to several CNNs, which are fused at
the final fully connected stage [40]. The authors report here some experiments with an intermediate
architecture called slow fusion. It involves several CNNs fed with overlapping chunks of input frames.
The CNNs are gradually fused in a multi-resolution manner toward the final, fully connected layer.
Slow fusion needs less parameters to be learned and outperforms the other version of 3D approach.

More complex solutions for action recognition involves DNNs composed of Long Short-term
Memory (LSTM) networks and 3D CNNs [41]. This approach uses descriptors generated by the CNN
to feed the LSTM network. Memory feature enables the LSTM to learn action sequences. However,
training such LSTMs is a very challenging task, and in our case, at runtime, overcomes the available
hardware resources.

Despite being widely used in activity recognition, in the field of violence detection, DNN
approaches are still scarce. Some attempts are presented in [42—44]. Xu [42] proposes the Appearance
and Motion DeepNet (AMDN) to learn discriminative feature representations for anomalous event
detection. However, the actual classification is performed by an SVM classifier. Dai et al. [43]
use a data fusion strategy, combining a dual stream convolutional neural network with a LSTM
network and several conventional features, like improved dense trajectories features according
to [28], trajectories-based features, including histograms of oriented gradients, histograms of optical
flow, motion boundary histograms and trajectory shape descriptors. To perform dimensionality
reduction, the authors use Fisher vector encoding. Again, the SVM classifier makes the final decision.
Sudhakaran [44] uses a convolutional LSTM instead of a fully connected LSTM. By doing so, the model
becomes capable of encoding spatio-temporal information in its memory cell and reduces overfitting.
In addition to RGB and optical flow input modalities, Zhou [45] uses the image acceleration field to
train their FightNet model. The image acceleration field is computed from two consecutive frames of
the optical flow.

3. A Solution for Action Recognition in Low Hardware Resources Environment

3.1. General Description

We propose here a distributed surveillance solution for violence detection designed for a typical
sensor network environment. The network consists in a set of low complexity processing nodes and
a powerful central station. Nodes are responsible to obtain a high recall in detecting violent events.
The aim is to avoid missing such events and to obtain high accuracy to minimize the false alarms.
Video sequences classified as violent actions are sent to the central unit for further processing and
action triggering.

One distinctive feature of the proposed approach is that we entirely rely on motion features, by
completely disregarding appearance information. The decision is based on results from previous work
on human activity recognition [46], which demonstrated that motion is far more informative than
appearance information. Furthermore, to make effective use of appearance information in classification,
given the often-subtle differences between the appearance of a person running or kicking in a fight,
one needs huge amounts of data and complex representation models. An additional advantage of
relying exclusively on motion information is a high invariance to illumination changes. This includes
safe operation in night vision scenarios, implying infrared monochromatic sensing.

The second major decision is to represent motion with MPEG flow motion vectors, instead of the
more widely used optical flow. The comparative study presented in [47] demonstrates the effectiveness
of this approach in action recognition. Results are asymptotically identical and sometimes better
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compared with optical flow-based methods. The optical flow feature extraction is known to be very
expensive from the computational point of view. On the contrary, MPEG flow vectors can be directly
extracted from the MPEG encoded video stream, with no additional processing. Since each flow vector
encodes the motion of a 16x16 image block, a significant dimensionality reduction of the input size
for the classification CNN is obtained. While using handcrafted features to represent the input, the
CNN still has to discover new features from the motion vectors. In this way it will capture relevant
information regarding the spatio-temporal distribution of the motion vectors.

The third major design decision was to put spatial and temporal information processing in a
cascaded architecture, which again brings considerable simplification of the model, processing and
optimization tasks. Indeed, considering a set of T frames of size N X N, the processing complexity
is reduced from N X N X T to (N X N + T). Furthermore, the temporal processing unit itself has a
cascaded architecture.

3.2. The Video Processing Unit

The capability of DNNs to automatically discover optimized features may be very tempting for
replacing the skilled work and insight in the application specificities, needed to generate handcrafted
solution, but there is a price to obtain this performance. The skilled work should be substituted by the
rather repetitive task of data labeling. Often this task can benefit from a sum of large labeled datasets
for DNN training already built and made publicly available in many domains. Unfortunately, when it
comes to develop applications in new domains this advantage is most often lost.

Labeled databases containing violence scenarios in surveillance video are scarce. We used here
two important surveillance video databases publicly available online as BEHAVE [48] and ARENA [49].
As they contain a relatively small set of violent sequences, we decide to use both in this work.

The solution presented here aims to combine the power of DNNs with the efficiency of some
well-chosen handcrafted motion features. To enable the system to learn from the relatively small
available datasets, we feed the network with a reduced set of motion features, namely MPEG flow
vectors. These vectors express the motion of 16 X 16 image blocks. The spatio-temporal distribution of
these low-level features is capable of capturing and discriminating a large variety of motion types, as
walking, running or jumping. To automatically discover higher level features from MPEG flow data,
needed to discriminate patterns of motion corresponding to violent versus non-violent behaviors, we
use a combination of a CNN and temporal domain filter. The architecture of this filter is detailed in a
further section.

To speed-up the processing, we use in our approach a reduced number of convolutional layers.
As we prove in the validation section, we can preserve the detection performance even in conditions
of using a relatively small number of training samples. Therefore, we achieved to design a real time
distributed system able to detect violence in urban areas. It is based on Raspberry PI nodes running
the algorithm depicted in Figure 1.

Temporal filter
Stage Stage2

256w 256x3 l \otion feature 16x16x3

extractor >

Figure 1. The main steps of the algorithm running on a sensor node.
3.3. Low Level Feature Extraction

We extract the MPEG flow [47] motion features and use them as the input of our DNN. These
features represent estimators of 16x16 image micro-block motions which are computed and are used by
the image encoder to compress the video data. The usefulness of these features in action recognition
has already been demonstrated in [46,47]. In [46] the MPEG flow features are used in the bag of words
approach, while in [47] the authors use spatiotemporal CNN.
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The motion of all pixels in a 16 X 16 micro-block is approximated by a unique motion vector.
This vector is computed by searching in the previous frame a best match for the currently encoded
micro-block, as illustrated in Figure 2. One currently encoded micro-block is represented in the left
image by a yellow rectangle, while its corresponding best match in the previous frame is represented
in the right image by a green rectangle. The red arrow in the right image is the motion vector of the
micro-block. The encoder represents this vector by specifying the reference positions for the currently
encoded micro-block and of its corresponding image block in the previous frame as presented in (1).

Vin

= Psource = Pdestination 1

Figure 2. The principle of block motion estimation. Left image: block in current frame marked with
yellow rectangle. Right image: best match block in previous frame, marked with green and motion
vector marked with red arrow.

To find the best match, the encoder uses a distortion measure between the matched blocks, namely
the sum of absolute differences SAD(v):

SAD(v) = Y D(p,v) ©)
P

In this equation, p represents the position vector of a current pixel in the encoded block and v is
its estimated motion vector. The distortion measure at the pixel p is defined by Equation (3).

D(p,v) = |Img(p) - Ref(p + )| ®)

The Img(p) is a pixel from the currently encoded micro-block and Ref(p + v) is a pixel from
a block of the same size from the previous frame. The distortion measured for the entire block is
expressed by the following equation:

SAD(v) = ) D(p,v) = }_ |Img(p) = Ref(p +v)| 4)
P

The computational cost of the MPEG flow features is very low. The encoder provides for each
frame a list of 16 X 16 block motions where motion is present. The list contains pairs of source
and destination position vectors. After decoding the video stream, we use the list entries to extract
the motion vectors. However, in order to capture only significant motion, we apply a threshold
minMotionTh on each extracted motion vector v;,. The resulting vector v, is set to zero if the original
vector magnitude is too small:

Q)

Vi , if [V | > minMotionTh
Vv = .
mth 0, otherwise

The following sequence describes the main steps of the algorithm used to estimate the magnitude
of the motion from the MPEG flow. To remove noise, we consider in our experiments the value 3 for
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the minMotionTh threshold. The algorithm uses also a nCorrection offset, which is necessary to translate
the interval [-128, 127] of vector axes magnitude to [0, 255]. Therefore, its value is 128.

1: | Extract the set & of motion vectors from the MPEG stream

2: | Create an empty array ( to store the motion on X and Y axes

3: | FOR each motion vector V in &

4: | DO

5: Get the source and the destination points of the motion vector V

6: Compute motion magnitude of V

7 IF magnitude of V > minMontionTh THEN

8: Compute the x motion corresponding to the X axis and add nCorrection
9: Store x into ( on corresponding plane

10: Compute the y motion corresponding to the Y axis and add nCorrection
11: Store y into ( on corresponding plane

12:| END

Figure 3 presents an example where the motion vectors are encoded into HSV for illustration
purpose only. Here, the hue encoding the motion direction, and the value channel encoding the
magnitude. The saturation channel was set to a constant. The RGB coordinates of motion vector image
are fetched as input features to our CNN for convenience considering the expected input data format
and range. To accommodate to the original image size, we show resized and interpolated RGB motion
vector images.

Figure 3. Optical flow on a violent sequence. First line contains eight frames from a fight sequence.
The second line contains the corresponding color-coded MPEG flow feature maps (rescaled).

3.4. The CNN Architecture

The most important requirement for the CNN architecture is to be suitable for limited resources
embedded processing. We considered here several options of well-known lightweight architectures
like MobileNet [50] and SqueezeNet [51]. However, all of them are optimized for larger input size and
have a quite large number of parameters. The smallest version of MobileNet has 0.47 M parameters
and the SqueezeNet has 0.42 M after compression. Our architecture, shown in Figure 4, was inspired
by the one proposed in [52] for the CIFAR dataset classification. It is a modified version of the one
proposed by Krizhevsky [53] tailored for our problem and has only 21 K parameters. This choice
is motivated also by another particularity. A more complex CNN suitable for a larger set of action
recognition needs a larger dataset for training. The problem is approached in [46], which can recognize
various human activities in videos captured either with static or dynamic cameras. To implement such
a solution, important hardware resources and huge databases to learn the models are needed.
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CONV 1

MPEG motion vectors

Figure 4. The classifier architecture.

None of the databases used by the authors of [46,54], and [55] are suitable for our application.
Action categories as various sports, jogging or walking, are not annotated with respect to containing or
not containing violence. Most of the clips are dynamic generated using cameras’ pan, zoom, and tilt
functions. As a result, motion patterns occurring in different activities are far more complicated than
their corresponding activities captured by static cameras. Classifying activities from databases require
complex models, and consequently important processing power. This architecture has complexity of
only 20,418 variables as weights and biases to be learned from the data.

The input is represented by a 16 X 16 X 3 matrix containing MPEG flow motion vectors. For a
256 x 256 pixels image the MPEG encoder provides 16 X 16 motion vectors, each corresponding to a
16 x 16 image block coded on three planes for implementation convenience. All convolution kernels
are set to a 3 x 3 x 3 format in the space channel domain. The first stage contains 32 such filters. The
second convolution layer extends the channel depth to 64 using the same convolution kernel. Each
convolution layer is followed by a Rectified Linear Unit (ReLU) layer and a Max Pooling 2 x 2 layer.
As a result, the first fully connected layer is fed with 64 activation maps of size 4 X 4. The last fully
connected layer generates two outputs corresponding to the fight, and the nonfight class respectively.

3.5. Time Domain Filter

The output of the CNN is feed into a post processing cascade of two filters. They are used to capture
the temporal evolution of the scene activity, and to give a more continuous output corresponding to
human judgment and observer labeling.

The design of time domain filter is inspired by the fight action nature. It mimics the human
judgments about fights. Usually, a fight action is composed of short intervals of motion. Few violent
interactions, like kicking or punching, may be followed by a short pause with no motion. Wrestling is
even more irregular with respect to motion intensity. To declare the observed action as violent, one
must inspect a video for repeated motion and pause cues.

Finding a universal model able to classify actions from the point of view of the presence of violence
is a challenging task. Here we use the output of a CNN, which has been optimized to classify frames
based on MPEG flow. The output of the network in non-fight clips like running, group activity or with
many people walking may exhibit sporadic decisions for violence. Conversely, within fight clips the
output oscillates between decisions. To stabilize the output and to make it as similar as possible to
human judgment, we propose a cascade of two temporal filters. The first one needs to fill in the gaps
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of still frames within fight frame sequences, while the second one needs to account for a minimum
duration of a violent action.

We assume that the CNN output in clips with violent actions is frequently giving the violence class.
Therefore, we propose to measure the frequency of fight labels within a time interval. A suitable tool
to this purpose is the framework of probability density estimation. Since we cannot reasonably assume
that the CNN output follows some known distribution, the use of a nonparametric density estimation
is necessary. A nonparametric probability density estimator uses a continuous kernel K to estimate
the density from a finite number of samples. The kernel was chosen to optimize the measurement of
the density of violence class samples within a time window. The width of the time window defines
the bandwidth of the estimator and acts as smoothing factor. The shape of the kernel is less critical.
Therefore, we use a simple rectangular kernel expressed by:

(1, <h

where x represents the input variable and / is the scale parameter of the kernel. To count violence class
samples within a window having the width 2T + 1 centered at time ¢y, we use the equation:

n(to;T) = ), x(OKr(t~ to) @)

t

In this equation x(t) is the output of the CNN, in our case a binary variable. It takes the value 1 for
the violence class and 0 for non-violence. Note that the class probabilities predicted by the CNN can be
used as well. The filter output is defined as:

1,ifn(T) > p(2T +1)
0, otherwise

y(t;T,p) = { ®)
where p is the percentage of violent class samples within a kernel window of length 2T + 1.

To optimize the first filter, we need to find the best combination of values for parameters p and
T. The second filter has a similar definition. However, its role is slightly different and so are its
optimization criteria, as detailed in the next section.

4. Optimization

4.1. Data Preparation

To our best knowledge the only publicly available annotated databases generated with static
surveillance cameras which are containing fight or violence activities are BEHAVE [48], ARENA [49]
and UCSD [56]. These databases are not very extensive but still good-enough to train smaller models,
as we need. The videoclips from the BEHAVE and ARENA contain a mix of violent and non-violent
scenes used as positive and negative examples in our experiments. Since the UCSD database contains
only non-violent scenes we choose not to use it in our work, and therefore not to affect the balance of
the data. Moreover, from the first two databases we use for training purpose only the BEHAVE since
the other contains only a few violent frames.

To maintain a balanced dataset with violent and non-violent activities, from the BEHAVE dataset
we extracted 22 labeled video clips containing a total of 11,872 frames with the following types of
activities:

e Attack (seven video clips)
e Group (four video clips)
e Run (six video clips)

e Walk (five video clips)
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We grouped the clips into two classes. The Violence class includes the Attack video clips, while the
Normal class contains Group, Run and Walk video clips. The ARENA database contains only two video
clips with violent behavior. Therefore, we decided to use it only for testing purposes.

To overcome the problem of the small amount of available video clips containing fights in the
BEHAVE dataset, we chose to extend the dimension of the dataset using augmentation techniques. We
prefer augmentation to alleviate the need for regularization, as this technique reduces the effective
capacity of the classification model. We used the sliding bounding box technique to generate additional
frames and clips, and to help the network learning translation invariance. A sum of Region of Interests
(ROIs) with fixed sizes of 256 x 256 and variable positions were defined. These ROIs are positioned
in the frame in such a way as to capture scene actors implied in fight. We illustrate this on Figure 5,
where only the portions of a frame covered by the two ROIs are used for training or classification.
To cover all regions of a higher resolution video, multiple 256 x 256 ROIs are needed to be used. By
pseudo-randomly varying the position of a RO, it is possible to capture the same fight with another
spatial position in the active window. Therefore, from one action it is possible to generate many fight
action samples, with the only constraint of keeping the actors in a ROI.

Position L {sequence 1)

Figure 5. Example of augmentation ROIs.

The second type of augmentation we used is horizontal image mirroring. This operation consists
of flipping the image and changing the MPEG vectors accordingly. The first augmentation technique
improves the overall accuracy by 6.78%. Using both shifting and mirroring brings an improvement of
accuracy of 7.83%.

4.2. Learning the CNN Model

In order to fully exploit the available data, we used cross validation. To this purpose, we defined
seven subsets of training and testing video clips. Each training subset contains six Attack video clips,
and ten non-violent clips. The remaining Attack video clip and five non-violent clips were used
for testing.

We trained the network using the Tensorflow GPU framework on an Intel I5, 4 GB RAM, 1 TB,
NVidia GFORCE 1070ti PC. We used stochastic gradient descent search, with 50000 mini batches of 300
frames randomly selected from both classes. The Adam optimizer [57] was used to this end, with an
initial learning rate of 0.0001 and default values for the other parameters [52] as betal = 0.9, beta2 =
0.999 and epsilon = 10~8. The Softmax cross entropy with logits was selected as the loss function. As
regularization method we used dropout with keep probability set to 0.5.

4.3. Time Domain Filter Optimization

The goal of the system is to discriminate the violent sequences in a video stream considering
a certain timeframe. The accuracy of this procedure is affected by the length of the examined time
intervals. This length depends on the parameters T and p of the time domain filter.
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The parameter T represents the length of the pre and post-frame examination intervals. It was set
to the value of 10 to cover a time window of about one second. One second is a reasonable time for
an observer to decide whether an activity is a fight. Longer time windows may be useful for lower
false alarm rates. However, in the case of short fight sequences this choice would come with a lower
detection rate.

To optimize the percentile parameter p, we consider both criteria mentioned. The parameter p
was selected at the level which is optimizing the F1 score of our system:

precision x recall

F1=2 ——F——
precision + recall

©)
Precision defines the percentage of true positive detections within the set of positive predictions,

expressed as:
TP

TP +FP
where TP and FP stand for true positive and respectively false positive predictions. Recall defines the
percentage of true positive predictions from all the positive events:

precision = (10)

TP

recall = TP—}-—FZ\]

(11)
where FN stands for false negative predictions.

The temporal filter percentile parameter was optimized using precision and recall values as a
function of post processing filter threshold. To assess the usefulness of MPEG flow features we carried
out experiments with two kinds of optic flow features: the MPEG flow and the Farneback optical
flow [30] resized to our input format. Results for the first stage filter, using two different version of
optical flow feature estimation are given in Figure 6. Solid curves correspond to MPEG flow, while
dashed-dotted curves are obtained by using Farneback optical flow algorithm. Note that the prediction
scores are obtained using frame level labeling. As depicted in the Figure 6 precision is increasing with
the threshold 6, while the recall is decreasing.

0=p=x(2T+1) (12)

Precision/Recall

Precision/ Recall

Threshold

MPEG flow precision Optical flow recall MPEG flow recall

(@)

F1 score

F1score

Threshold

------- Optical flow MPEG flow

(b)

Figure 6. MPEG flow vs. Optical flow classifiers performance. (a) Precision/recall. for different
threshold values. (b) F1 score.
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The result shows that both precision and recall are higher for the MPEG flow for any threshold
value, so we kept in further experiments only results for the MPEG flow. The variation of F1 score for
MPEG flow features, as a function of threshold parameter 0 is illustrated in Figure 6b.

To maximize the F1 score for the first filter, we select the threshold 6 = 14, which corresponds to
the parameter p = 66%. However, in case of some non-violent sequences, the output of this filter is still
influenced by noise introduced by very short dynamic movements happening in the scene. This case is
depicted in Figure 7b, where the first filter fails to remove all the noise presented in the CNN output
(Figure 7a).

CNN

Prediction

0 EE] - -

13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

Frame number
CNN output mGround trouth

(a)

Filter 1

Prediction

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79
Frame number

mFilter 1 output

(b)

Filter 2

0.4

Prediction

0.2

0 cmm— — —— —— —— —— —— —— ——— ——— ——— -—
13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

Frame number

— = = — Filter 2 output

(©)
Figure 7. Output collected on different stages. (a) CNN prediction. (b) Filter 1 prediction. (c) Filter
2 prediction.

The second filter succeeds to solve the problem by considering a longer sequence, and by adding
a new threshold which depends on the time window length (Figure 7c). The parameters of it have
been designed in order to minimize the false positive rate, with the constraint of obtaining a recall
of 100%. This optimization was carried out using labeling at video clip level. After the optimization
process, the value of the parameter 6 was 7, which corresponds to p = 100%.

5. Experiments

We use as a testbed for our experiments a Raspberry PI3 node integrating a Quad Core 1.2 GHz
processor, 1 GB RAM, and a USB camera. The camera was set to 640 x 480 resolution at 25 fps with
MPEG-4 encoding. The average time measured for one frame inference is 19.783 ms. During the
inference, the solution uses less than 85 MB of RAM and about 48% CPU processing power. The
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implementation was made in C++ using the QtCreator 4.2.0 integrated development environment, the
gcc 6.2.1 compiler, and the OpenCV 3.4.0 graphical library. The MPEG video stream from the camera
was decoded using the ffmpeg 3.0 library. Decoding of a video frame takes less than 2 ms. For the
training purpose, the DNN was re-implemented in Python using the Tensorflow 1.9 framework. In this
step we used an Intel I5 PC equipped with a NVidia 1080Ti GPU as mentioned in the previous section.

Training and validation data have been obtained from two already mentioned databases [48,49]
that contain 8765 classified frames. From these, 1322 frames correspond to violent behavior, and the
rest are frames capturing normal behavior. Additionally, dataset augmentation technique has been
applied to increase the variety.

To validate the performance of the proposed violent behavior detection method, we divided the
video data into 86 clips, following the procedure adopted in [9]. All clips contain a type of activity
from the following categories as attack, walk, run and group. All frames without motion detected
were excluded since their classification is trivial. The class of violence was represented by attack clips,
while the other activities are considered non-violent. A clip is classified as containing violence if at
least one output of the second stage filter predicts this class.

In a first set of experiments we aim to optimize the recall. The results are synthesized by the
confusion matrix in Table 1 and they correspond to a threshold value of 14 for the first filter, and a
value of 7 for the second filter. We obtained 100% for the recall, 26.76% for the false positive rate, and
77.9% for the accuracy. Therefore, no violent event is missed and only 26.76% of the non-fight clips
are predicted as false alarms. The aim of the second set of experiments was to optimize the accuracy
by varying the first filter threshold. The best accuracy obtained was 86.93%, for a threshold value of
21. A comparison of the results obtained in the second set of experiments with other methods on the
BEHAVE dataset is given in the Table 2. The ARENA dataset [49] contains only two video clips with
violence. Our solution applied here recognize both, but we do not consider them in the reported results.

Table 1. Confusion matrix for the best recall (100%).

Labeled class
Violence No violence
. Violence 15 19
Predicted class No violence 0 52

Zhang et al. [9] claim slightly higher accuracy on the BEHAVE dataset, 87.17%, but they do not
directly report recall data, which is more important in our application. Another work [58], using the
same dataset, reports results in the form of true positive versus false positive rate graph. From the
graph, the false positive rate corresponding at the 100% while recall seems to be undistinguishable
close to our result.

The processing time was obtained for a 256 X 256 observation window applied on 1280 x 720
frames. In general, to deal with various video resolutions, every video frame should be split into sub
windows of 256 X 256 pixels size.

We use a focus of attention approach by selecting only one window in each step. We start with the
window which is the most active and discard windows with low activity. Activity was measured in
our experiments by the sum of motion vector magnitudes in the window. From every window, a set of
16 x 16 motion vectors are extracted representing the motion features, fed to the CNN. Alternatively, it
is possible to use arbitrarily large observation window. However, this implies a CNN reconfiguration
and leads to a less efficient implementation.

For usability validation we use our setup in an outdoor lab environment on 10 predefined
scenarios, five of them involving violence. The system operated on the 640 x 480 pixels 25 fps video
stream and achieved an accuracy of 100% detection of violent sequences.
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Table 2. Detection results on the BEHAVE dataset.

Algorithm ACC+SD AUC
HOG+BoW [32] 58.69 + 0.35% 0.6322
HOF+BoW [32] 59.91 £ 0.28% 0.5893
HNF+BoW [32] 57.97 + 0.31% 0.6089

ViF [32] 82.02 + 0.19% 0.8592

Existing algorithms MOoSIFT+BoW [4] 62.02 + 0.23% 0.6578
RVD [59] 85.29 + 0.16% 0.8878

AMDN [42] 84.22 + 0.17% 0.8562

MoWLD+BoW [9] 83.19 + 0.18% 0.8517

MoWLD+SparseCoding [9] 85.75 + 0.15% 0.8891
MoWLD+KDE+SparseCoding [9] 87.17 = 0.13% 0.8993

Proposed method 86.93 + 0.21% 0.9543

6. Conclusions

We propose in this work a DNN approach for sensor network violence detection, designed
for urban area surveillance that provides automatic violent behavior detection. The novelty of the
approach is represented by exclusively using, as input for the DNN, the motion features extracted from
MPEG stream. We proved that using the features embedded in MPEG stream we avoid optical flow
computation. Therefore, the solution is adapted to low resource distributed processing. We design a
new architecture consisting of a cascade of a deep convolutional neural network and a time domain
classifier. This allows separation of time domain and spatial processing. An advantage of relying
exclusively on motion features consists of making the solution independent on illumination changes
and on the color spectrum variations. We are confident that our system can easily accommodate also
to night surveillance conditions including infrared vision. Using this architecture, we achieve state
of the art performance, running on low computational embedded architecture with Raspberry PI
sensor nodes.

The performance tests were carried out on two standard datasets. This allows comparison with
existing works but introduce some limitation of experiments. The datasets do not include a large
variety of scales and camera angles therefore they do not allow extensive scalability tests. Retraining
may be needed for applications that include such cases.

As we targeted our algorithm to work with static cameras, it cannot handle camera motion.
Another limitation relates with detection of crowd violence. Although the data sets used in our work
include fights involving several persons, they do not contain crowd violence. We also do not detect
explosions or any types of weapons. To cope with these, we propose to extend our method in the
future with weapons recognition and therefore to cover also terrorist threats detection.
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