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Abstract: The demand for mobile data communication has been increasing owing to the diversification
of its purposes and the increase in the number of mobile devices accessing mobile networks. Users are
experiencing a degradation in communication quality due to mobile network congestion. Therefore,
improving the bandwidth utilization efficiency of cellular infrastructure is crucial. We previously
proposed a mobile data offloading protocol (MDOP) for improving the bandwidth utilization efficiency.
Although this method balances a load of evolved node B by taking into consideration the content delay
tolerance, accurately balancing the load is challenging. In this paper, we apply deep reinforcement
learning to MDOP to solve the temporal locality of a traffic. Moreover, we examine and evaluate the
concrete processing while considering a delay tolerance. A comparison of the proposed method and
bandwidth utilization efficiency of MDOP showed that the proposed method reduced the network
traffic in excess of the control target value by 35% as compared with the MDOP. Furthermore, the
proposed method improved the data transmission ratio by the delay tolerance range. Consequently,
the proposed method improved the bandwidth utilization efficiency by learning how to provide the
bandwidth to the user equipment when MDOP cannot be used to appropriately balance a load.

Keywords: mobile data offloading; reinforcement learning; delay tolerant

1. Introduction

In recent years, the types of mobile data have diversified due to improvements in mobile device
performance [1]. Furthermore, Internet-of-things (IoT) devices have been widely used. IoT devices
upload data, such as images and sensor data and movies, which are frequently aggregated [2].
The upload data is increasing owing to the increase in the number of IoT devices. Not only is IoT device
traffic expected to increase sharply, but machine-to-machine (M2M) traffic is also expected to increase.
In M2M communication, devices that operate individually without human operation are autonomously
controlled. The communication demand of mobile data traffic may increase further. Furthermore,
mobile data traffic has a characteristic that it is biased towards specific times and in certain areas, such
as commuting time and at stations, respectively [3]. This characteristic of mobile data traffic decreases
the bandwidth utilization efficiency of cellular infrastructure. In order to increase the bandwidth
utilization efficiency, it is desirable to accommodate the traffic while maintaining the load of the cellular
infrastructure, such as evolved node B (eNB), within a certain allowable range. However, if the cellular
infrastructure is provided while considering the characteristics of the demand naively, a problem occurs:
the utilization rate of the cellular infrastructure and the traffic accommodation efficiency decreases in
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areas where the demand for communication is low or in that particular time zone. In order to distribute
the demand, mobile communication carriers have worked on establishing Wi-Fi spots, although it is
challenging to install Wi-Fi spots based on the demand.

To balance the load, a method is used that automatically sets an optimum network according to a
dynamic change in mobile data traffic [4]. In another method, a load of eNB is distributed by controlling
the transmission rate of the user equipment (UE) [5,6]. This load balancing method comprising mobile
data offloading is expected to reduce cellular network congestion in a cost-effective manner [7]. As a
load distribution method that takes into consideration the locality of the communication demand, we
previously proposed the use of a mobile data offloading protocol (MDOP) [5,6], which is a method that is
focused on the content delay tolerance [8,9]. In this method, the transmission rate of the UE is controlled
in three ways: time, place, and link. It has been confirmed that time-wise offloading of MDOP can
reduce the time-wise locality; however, there is scope for improving the load-balancing performance in
various situations. Although the load is properly balanced in this method by controlling the transmission
rate of the UE under different conditions of the topology structure, the traffic model of the UE, and eNB
loads, it is difficult to always maximize the performance depending on the circumstances.

In addition to the aforementioned method, there exists a transmission-rate control model focused
on content [10]. In [10], the bandwidth is equalized for UE with real-time content that allows short
delays, such as video data. Moreover, in [11], the load is distributed by focusing on the UE’s content
type, load status, and contract information in order to suppress the overload condition. However,
the network environment is complicated because of the expansion of eNB for load balancing and the
diversification of content owing to the improvement in the performance of mobile devices. Hence,
it is difficult for the transmission-rate control model formulated as in [10,11] to always provide the
appropriate control. Therefore, it is necessary to construct a transmission rate control model dynamically
according to the network environment for providing proper transmission rate control in a complicated
network environment. Furthermore, [12] proposes a transmission rate control that focuses on devices
that generate content. In [12], the bandwidth of M2M communication is allocated by taking into
consideration the degradation of the quality of service (QoS) between the UE. The transmission rate
control with emphasis on M2M devices is crucial as the demand for M2M communication is expected to
increase rapidly. In contrast, the real-time characteristics are necessary for autonomous driving content,
which is a type of M2M communication. Thus, focusing on content delay tolerance can improve the
performance and quality of user experience.

On the other hand, reinforcement learning has been applied in various fields in recent years [13].
Reinforcement learning is a learning method in which an agent optimizes the action through repeated
trial and error [14]. It is confirmed that reinforcement learning can obtain a higher score than humans
in board games by performing appropriate actions based on acquired experience [15,16]. The method
used for handling various situations based on the acquired experience may be applied to satisfy various
communication demands [17-19]. For example, [17] comprises the use of reinforcement learning for
power control and rate adaptation in the downlink of a network. In addition, in [18], deep reinforcement
learning is applied for cost and energy aware multi flow. Although it has been assumed in previous
studies related to LAN offloading problems from mobility users that the mobility pattern of the
UE is known in advance, [18] has become unnecessary. In recent years, reinforcement learning has
been applied in cellular networks, and the obtained results are shown in [17-19]. Therefore, there is
also a possibility that reinforcement learning can be used to resolve the locality of the mobile data
traffic demand.

In this paper, we propose and evaluate a delay-tolerance-based mobile data offloading method
using deep reinforcement learning for improving the bandwidth utilization efficiency of cellular
infrastructure and solving the traffic demand locality. If an agent can learn how to balance the load
properly, considering various situations such as traffic model of the UE, topology structure, and eNB
loads, proper balancing can be achieved under conditions for which time-wise offloading of MDOP
cannot balance the load properly. Our method performs transmission rate control by determining the
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priority for allocating the bandwidth to the UE as per the quality of service level (QoS level) based on
the content delay tolerance of the UE and the conditions of the eNB such as the load.

2. Delay-Tolerance-Based Mobile Data Offloading Using Deep Reinforcement Learning

2.1. Overview

In the proposed method, we apply deep reinforcement learning to load balancing in order to
improve the bandwidth utilization efficiency by enabling appropriate transmission rate control even in
situations where appropriate load balancing control is difficult in time-wise offloading of MDOP. We
expect that improve the efficiency of accommodating mobile data to the communication infrastructure
by balancing the eNB load. The time-wise offloading of MDOP offloads the traffic by allocating
bandwidth with a focus on delay tolerance of content and improves the bandwidth utilization efficiency.
On the other hand, there is a problem that it is difficult to control appropriately with rule-based
control in the diversified network environment. To get an approximate solution of appropriate control
and improve the bandwidth utilization efficiency in the various network environments, we use deep
reinforcement learning for mobile data offloading. Our method applies to the time-wise offloading
of MDOP as a transmission rate control model that takes into consideration the delay tolerance.
The details of the MDOP are described in Section 2.2. Although the time-wise offloading of MDOP
can reduce the time-wise locality, there is scope for improving the bandwidth utilization efficiency
by focusing on the characteristics of the mobile data traffic such as delay tolerance and content size.
Because the time-wise offloading of MDOP transmission rate control is performed using a model
formulated based on the traffic model of the UE, topology structure, and eNB loads, it is not always
possible to properly control the situation of massive mobile data traffic. Our method dynamically
constructs a transmission rate control model according to the mobile data traffic characteristics using
deep reinforcement learning. Therefore, this method enhances the bandwidth utilization efficiency.

A learning flow of our method is presented in Figure 1. The reinforcement learning server (RL server)
is the agent that performs the learning. The RL server learns based on environment information, which
is collected by the MDOP server. The environment information consists of the eNB data reception
amount and UE information. The UE information includes the content delay tolerance, the remaining
amount of content, and the destination eNB identification (eNB ID).
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Figure 1. Learning flow of the proposed method.
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The RL server determines the priority of the bandwidth allocated to the UE according to the
environment information. We define this priority as the QoS level. Subsequently, the MDOP server
allocates the bandwidth to the UE based on the determined QoS level. The UE then sends the data
according to the allocated bandwidth based on the QoS level. Finally, the RL server learns the priority
for allocating the bandwidth from the eNB’s load fluctuation caused by the sending data of the UE and
constructs a transmission rate control model.

2.2. Mobile Data Offloading Protocol

Previously, we proposed an MDOP that balances the load of the eNB while taking into consideration
the locality of the demand [5,6]. Figure 2 presents an overview of MDOP. MDOP is implemented
by middleware located in the lower layer of the application layer. It realizes mobile data offloading
by controlling the transmission rate in consideration of the delay tolerance when transmitting and
receiving corresponding applications. MDOP has three methods of controlling the transmission rate
as offloading policy. First, the time-wise offloading solves the time-wise locality by delaying the
communication when the eNB has a high load. Second, place-wise offloading solves the regional locality
by delaying the communication of the UE connected to a high-load eNB until it connects to a low-load
eNB. Finally, link-wise offloading is used to reduce the traffic on a mobile data channel by delaying the
communication of the UE until a connection to a Wi-Fi access point is established. MDOP selects the
offloading policy from these three methods according to the state of the delay tolerance of the data and
the state of the UE and eNB. MDOP then executes transmission rate control using the selected policy.
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Figure 2. Overview of the mobile data offloading protocol (MDOP).

In MDOP, an MDOP server periodically collects content information from UEs, load information
from eNB, and performs band allocation. When an MDOP server notifies the UE of the allocated
band, the UE can transmit content with the allocated band. When band allocation is performed, the
maximum band is allocated to UE if the content does not have delay tolerance. Also, if the content has
delay tolerance, the bandwidth is divided equally.

MDOP controls the transmission rate to accommodate a load within the control target value. We
defined an ideal load as the control target value. The ideal load is set in order to prevent the occurrence
of situations where packet loss and the allowable amount of eNB is exceeded when burst traffic occurs.
MDOP reduces the locality of the demand by accommodating the eNB load within the ideal load to
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smooth the eNB load. When the content delay tolerance is exceeded, the content is transmitted at the
maximum transmission rate without taking into consideration the ideal load.

Similar to the problem of the previous MDOP, the delay tolerance of the content is not taken
into consideration. Therefore, the short delay tolerance content has the possibility to exceed delay
tolerance because the same control is applied to all the content regardless of the delay tolerance.
The proposed method focuses on the delay tolerance of the content and clarifying the priority to assign
the bandwidth. The proposed method can balance the time-wise concentrated load by realizing the
delay-tolerance-based bandwidth allocated method of UE. By using deep reinforcement learning, it is
possible to determine the appropriate priority of bandwidth allocation under various situations when
deciding the priority.

2.3. Transmission Control by Deep Reinforcement Learning

We determine the transmission control of the UE by using deep reinforcement learning, and the
RL server learns using a double deep Q-network (DDQN) [20]. DDQN is a reinforcement learning
method that uses deep learning with Q-learning [21]. Q-learning is focused on maximizing a function
Q(s,a). Q(s,a) represents the value of action a taken in state s. Q-learning updates Q(s¢, a;) at time ¢
as follows:

Qlst,m) = Qs ar) +ar + ymaxQ(si1, ') = Qlsv,ar)) 0

where a is the learning rate, and y is the discount factor. Each parameter is definedas 0 < a, y < 1.
Furthermore, Q-learning selects the action with the highest Q-value. If we use Q-learning to perform
learning, it is necessary to prepare a table function Q(s,4) which is a combination of all states s and
actions 4 in advance. However, it is difficult to prepare this table function because there are innumerable
situations in mobile networks. In the case of such a problem, deep Q-network (DQN) is used, which
approximates Q(s,a) with a neural network [15]. Although a method for approximating Q(s,a) with a
neural network has been previously proposed, it was known that the learning diverges as the number
of parameters increases. Because the correlation between the data is high, the policy of the selecting
action is changed significantly on updating Q(s,a). In order to prevent the divergence of the learning,
DOQN uses experience replay and neural fitted Q. Experience replay stabilizes the learning by using
randomly sampled states and actions of the past. Neural-fitted Q fixes parameters to be approximated
with a neural network for stabilizing the learning. DQN updates the Q value using the loss function
L(6) as follows:

L(O) = 5+ ymaxQlsii @) - Qo)) @

However, DQN overestimates the action because Q(s,a) selection and Q(s, a) estimation models are
the same. In contrast, the DDQN uses different models for the selection and estimation. Thus, the
overestimation of the action in the case of DDQN is reduced compared with that in the case of DON.
In addition, we apply dueling-network architecture to DDQN [22]. Dueling-network represents Q(s, a)
as follows:

Q(s,a) = V(s) +Als,a) ®)

V(s) is a state value function and A(s, a) is a state-dependent action advantage function. V(s) shows
the worth of a particular state s, and A(s,a) represents a relative measure of the importance of each
action a. On using dueling-network architecture, it is possible to directly express a value of the state
without using the value of the action. Furthermore, it is confirmed that the convergence of the state
value occurs faster as a result. Hence, we use DDQN and dueling-network architecture to construct a
transmission rate control model.

Defining the states, actions, and reward is essential for learning using deep reinforcement learning.
Table 1 lists the learning parameters of the proposed method at t. In our method, we construct a
transmission rate control model for each eNB. Additionally, when multiple UE exists in the same eNB,
the MDOP server aggregates UE information from each UE. Besides, the RL server determines the QoS
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level for each UE and performs bandwidth allocation. We define the environment information as state s.
The RL server periodically receives environment information from the MDOP server. The environment
information includes UE information and connected eNB information. The UE information includes
the remaining amount of content (content,,), the content delay tolerance (content,;), and the destination
eNB ID. Moreover, the eNB information is that gathered by the MDOP server, such as the available
bandwidth and current load of the eNB.

Table 1. Learning parameters of the proposed method at t.

Value Attribute

Remaining amount of content (contentm) UE information

Delay tolerance time of content (content;) UE information
Maximum content,, of UEs Relative information
Median content,, of UEs Relative information
Minimum content,, of UEs Relative information
Maximum content g of UEs Relative information
Median content; of UEs Relative information
Minimum content of UEs Relative information

Available bandwidth eNB information

Current load eNB information

Ideal load eNB information

Current time eNB information

As the input parameter of the RL server, the UE information consists of the control target UE
and the UE connecting to the same eNB. Although the QoS level can be determined based only on
content,, and contenty; of the control target UE, we introduce relative information to assign the UE
priority in detail. The relative information to be introduced includes the maximum, median, and
minimum values of content,, and content . We can expect that the RL server decides the QoS level to
be assigned to control the target UE in consideration of the UE connected to the same eNB by sending
the relative information of the UE to the RL server. We also define the current time as a learning
parameter, because it is used to evaluate the action of the RL server while taking the time information
into consideration. Furthermore, we define all the parameters as one parameter in order to avoid
learning that not converging too many states although a parameter can be defined for each QoS level.

We define the priority of the bandwidth allocated to the UE as action a. There are five QoS
levels. The bandwidths are allocated in the order of QoS1 to QoS3. Furthermore, we assign QoS0 to
a non-MDOP UE and an MDOP UE that has content that exceeds the delay tolerance. In MDODP, the
content is sent at the maximum transmission rate when the delay tolerance of the content is exceeded.
Moreover, we assign QoS4 to the UE that does not need to allocate bandwidth. Although as the learning
progresses, the RL server can learn to avoid allocating a bandwidth to a specific UE, and the learning
will become efficient if this control is given to the RL server as an action. Hence, the RL server assigns
one of QoS1 to QoS4 to the UE. The role of the RL server is to determine action a using collected UE and
eNB information via the MDOP server, which is the priority of the bandwidth to be allocated to the UE.
The actual transmission rate is determined by the MDOP server based on the QoS level assigned by the
RL server. The MDOP server allocates the bandwidth in order from the UE with a high QoS level.

Finally, the reward r is derived by comparing the current load L1 and the ideal load L4, for
each eNB. Lj, is constant regardless of time. Action a is evaluated using the reward function. The RL
server then learns based on this evaluation result. A reward function of the proposed method is shown
in Algorithm 1. First, we compare L;;1 with Lz, in order to evaluate action 4 in terms of whether
the load balancing of eNB is achieved. Reward r is a positive reward when L; is lower than L;g;.
In contrast, reward r is a negative reward when L;,; exceeds Ljz,;. Thus, we set that the positive
reward as +1 and the negative reward as the value determined according to the difference of L;;
and Ljg,,. If the negative reward value is a fixed discrete value, action 4 is evaluated in the same
manner regardless of the difference of L; 1 and Ljz.,; when Ly, 1 exceeds Lig,. Therefore, we define
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a negative reward using continuous values to avoid such an evaluation. However, despite action 4,
L¢11 sometimes exceeds L;z;. In this situation, the RL server should not allocate the bandwidth to
the UE. Thus, reward r is zero value when the RL server outputs QoS4 as action 4 in this situation.
Furthermore, we weight reward r by the elapsed time. In the proposed method, it is preferable to
delay the mobile data communication and maintain the eNB load within L;.,;. However, the control
becomes increasingly difficult as the elapsed time increases in the case of delaying and controlling the
mobile data communication. Hence, in Algorithm 1, the longer the control elapsed time, the greater
the positive reward when the RL server gets a reward. Conversely, the shorter the control elapsed
time, the greater the negative reward. The episode end time is set by assuming that the RL server
periodically controls within a certain time range, such as 1 day. Accordingly, the RL server can balance
the load by considering the content delay tolerance while not exceeding L;z,;, since reinforcement
learning learns the action to maximize the reward.

Algorithm 1 Reward function of the proposed method

1 Current load of connecting eNB: L; ;4

2 Ideal load that is control target value: Ljz,y
3 Available bandwidth of connecting eNB: ABW
4 Select action at time ¢: a;

5 Episode end time: t,,4

6 Normalization variable:

7 if Lt+1 < Lideal then

8 re—1+ é

9 else

10 if ABW = Oanda; = 4 then

11 re20

12 else

13 re —(feptue .t

14 end if

15 end if

16 return r

3. Evaluation and Discussion

3.1. Evaluation Condition

We performed two evaluations to confirm the performance of the proposed method. Firstly, we
evaluated whether the state, action, and reward are appropriate as definitions for the RL server to
achieve the goal, which is to eliminate the temporal locality, in Section 3.2. We then evaluated the cellular
infrastructure utilization efficiency of the proposed method in comparison with the no-control and the
time-wise offloading of MDOP in Section 3.3. In this evaluation, it is necessary to determine the network
structure and hyper-parameter of the proposed method. Figure 3 shows the network architecture of
the proposed method. This network architecture consists of an input layer, four-hidden layers, and an
output layer. We set the input to states in Table 1 and the output to QoS level. Furthermore, the network
is divided such that we can output the state value function and state-dependent action advantage
function separately because we apply the dueling-network architecture. The output of the state value
function is 1 because the state value function represents the worth of a particular state s. Also, the
output of the state-dependent action advantage function is 4 because this function represents a relative
measure of the importance of 4 QoS levels. In addition, we use batch normalization [23] for obtaining
an accelerated learning. The state value function network has unit numbers of 12-400-200-100-1 in
order from the input layer. Similarly, the state-dependent action advantage function network has unit
numbers of 12-400-200-100-4. This network outputs action after layers the state value function and
state-dependent action advantage function are concatenated to represent Q(s, a) following Equation (3).
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The output is 4 because we defined there are 4 QoS levels for MDOP UE. The activation function is
a hyperbolic tangent (tanh). The discount factor y and learning rate @, which are the parameters of
the Q-learning, are 0.96 and 0.01, respectively. In addition, we set the normalization variable f8 as
103. The Q-learning selects actions such that Q(s,a) becomes the maximum value, which can imply
overfitting. In order to avoid overfitting, we use a linear decay e-greedy policy that selects a random
action with probability € and follows an action of the maximum value with probability 1 — €. The linear
decay e-greedy policy decreases ¢ linearly. We decreased ¢ linearly from 1 to 0.01.
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Figure 3. Network architecture of the proposed method.

In this evaluation, we used CPU i7-6700k for learning. Besides, we used Scenargie, which is a network
simulator, to accurately reproduce the long-term evolution (LTE) environment [24]. Furthermore, we
determined the cellular network parameters to make scenarios according to 3rd generation partnership
project (3GPP) and next generation mobile networks (NGMN) [25,26]. Table 2 shows the network
environment model. We later present the details of the scenario and topology used for each evaluation.

Table 2. Network environment model.

Parameters Value
Transmission power of UE 23 [dBm]
Transmission power of eNB 46 [dBm]
Cellular bandwidth 10 [MHz]
Frequency 2.0 [GHz]
Antenna Omnidirectional antenna
TCP New Reno

3.2. Basic Evaluation

First, we performed a basic evaluation to confirm that the proposed method can perform appropriate
control in the scenario where the priority to be allocated is explicit. Table 3 shows the parameters of
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the basic evaluation scenario. Moreover, Figure 4 presents the topology of the basic evaluation. In the
basic evaluation, the number of UE is 2, and the content delay tolerance held by each is 60 s and 80 s.
The content size is set such that it can be sent when allocating the bandwidth preferentially to the UE
with a short delay tolerance. Thus, it is ideal that the RL server learns the control to assign a high
priority to the UE that has the delay tolerant 60 s content. We set the episode end time t,,; as 100 in
Algorithm 1 as the simulation time is 100 s. We set the maximum send rate of the UE as 1000 Kbyte/s
and ideal load of eNB to 500 Kbyte/s. Furthermore, the mobility model of the UE is stationary, and the
initial position is fixed. We used no-control as a comparison target for the proposed method.

Table 3. Scenario for basic evaluation.

P ¢ Value
arameters UE1 UE2
Simulation time 100 [s]
Number of eNB 1
Maximum data reception amount
of eNB 625 [Kbyte/s]
Ideal load 500 [Kbyte/s]
Number of UE 2
Max send rate of UE 1000 [Kbyte/s]
Movement method Stationary
Initial position of UE Fixed
Data generation interval 100 [s]
Content size 30 [MB] 10 [MB]
Delay tolerance of the content 60 [s] 80 [s]
400m
:_1_-_____________________" N
@) UE1
| 1. 1 60ls]
i 18
! eNB 2E
e | g e
o 1 W sols)

Figure 4. Topology of basic evaluation.

Figure 5 shows the training curves tracking the total reward and average g-value in the basic
evaluation. We made the RL server learn the basic scenario until 200 epochs or approximately 40,000 data.
One epoch means that the scenario for basic evaluation was executed once in the simulation. Based
on Figure 5a, we confirmed that the total reward value increased as the number of epochs increased.
At the same time, it was confirmed that the average Q-value also tends to converge. We think that the
RL server learned the QoS allocation method for load balancing as the learning proceeds since the RL
server gets a higher reward as the time to accommodate the current load in the ideal load L4, increases.
Based on Figure 5, we confirmed that the RL server learned the basic evaluation scenario. Thus, we
evaluated the load balancing performance using the learned model.

Table 4 shows the excess amount from L;4,,; and the transmission amount sent within L;;.,;, and
Figure 6 presents the variation in the QoS level assigned to each UE from generation the content
to data transmission completed. Table 4 confirmed that the proposed method reduced the excess
data amount and increased the transmission amount sent as compared with the no-control case.
In particular, we confirmed that the proposed method reduced the excess data amount by 78% and
increased the transmission amount sent by 47% from the viewpoint of the bandwidth utilization
efficiency. Furthermore, it can be observed from Figure 6 how the proposed method performed the
QoS assignment. The QoS levels are high, middle, low, and empty in order from 0 to 4. The QoS level 5
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indicates that the content has been completely sent. The proposed method assigned a high-priority
QoS level to UE1 having content with a short delay tolerance from the generation of the content until
30 s. From this trend, we confirmed the tendency of the proposed method to determine the priority of
the bandwidth allocation while considering a delay tolerance. Consequently, we confirmed that the
proposed method can control the priority and balance the load while considering the delay tolerance
in a scenario wherein the method of assigning priorities is clear. Moreover, we showed that an agent
can learn the load balancing method while considering a delay tolerance by using the designed state,
action, and reward.

140 ° 35
©
S 120 - 2 30
2 a
‘e 100 @25
@ 9]
g 80 o 20
© =
g 60 g 15
S 40 < 10
= &
° 20 § 5
0 <o
0 50 100 150 200 0 50 100 150 200
Trainingepochs Trainingepochs
(a) (b)
Figure 5. Learning result in basic evaluation: (a) total reward; (b) average gq-value.
Table 4. Excess volume and transmission volume for basic evaluation.
Excess Amount from L;;,,; [MB] Transmission Amount Sent within L;;,,; [MB]
No-control 247 214
Proposed method 5.4 40.6
5
4
e 3
o
3
G2 S
1 = JE1(delay tolerance 60s)
UE2(delay tolerance 80s)
0
0 30 60 90

time [s]
Figure 6. QoS level assignment.
3.3. Performance Comparison

We evaluated the cellular infrastructure utilization efficiency of the proposed method. In this
evaluation, the proposed method, the timewise-offloading of MDOP, and no-control are compared. We
created a scenario different from the basic evaluation for this evaluation. Table 5 shows the scenario used
for comparing the performance, and Figure 7 presents the topology of the scenario for comparing the
performance. We opine that multiple applications have a delay tolerance, such as local synchronization
of map data on the cloud and life-logging data collected by wearable devices. We assumed that the UE
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is a smartphone or wearable device. Moreover, we assumed that there are four-types of delay tolerance
contents from content-A to content-D in the mobile network. We created these contents according
to [2,27]. The delay tolerance was provisionally set between 30 s to 120 s. In addition, we set the
maximum transmission rate as 500 Kbyte/s. The UE’s mobility is stationary, and the initial position is
determined based on a uniform distribution. The total mobile data traffic volume is 1920 Mbytes in the
evaluation environment. This mobile data traffic volume was 80% of the network topology capacity.
We set the episode end time t,,,; as 600 in Algorithm 1 as the simulation time is 600 s.

Table 5. Scenario for comparing performance.

Parameters Value

content-A  content-B  content-C  content-D

Simulation time 600 [s]
Number of eNB 1
Maximum data reception amount of eNB 5 [Mbyte/s]
Ideal load 4 [Mbyte/s]
Maximum send rate of UE 500 [Kbyte/s]
Number of UE 6 4 7 3
Movement method Stationary
Initial position of UE Uniform distribution
Content size 7.1 [MB] 2.1 [MB] 38.5 [MB] 1.4 [MB]
Data generation interval 30 [s] 60 [s] 60 [s] 120 [s]
Delay tolerance of content 30 [s] 60 [s] 60 [s] 120 [s]
400m
__‘________“______.________'ﬂ: y
| (( )) ﬂ 30 [s]
i A 5
: eNB |8 60I[s]
c“‘ v 120(s]

Figure 7. Topology of performance comparison.

Figure 8 shows the training curves tracking the total reward and average g-value. We made the
RL server learn the performance comparison scenario until 800 epochs or approximately 9,600,000 data.
One epoch means that the scenario for comparing performance was executed once in the simulation.
Based on Figure 8a, we confirmed that the total reward value increased as the number of epochs
increased. Similarly, we confirmed that the average Q-value also tends to converge. From Figure 8, we
confirmed that the RL server learned the performance comparison scenario. Therefore, we evaluated
the load balancing performance using the learned model as compared with the no-control case and the
timewise-offloading of MDOP.

Table 6 shows the excess amount from L;;,,; and the transmission amount sent within L;j,,;. As a
result, the amount of traffic exceeds L;j, significantly with no-control and causes the occurrence of the
temporal locality. The occurrence of the temporal locality degrades the quality of the communication
because L;z, is set to avoid situations wherein the demand of the traffic causes packet loss. In contrast
to no-control, the proposed method and the timewise-offloading of the MDOP reduce the traffic excess,
and the proposed method reduces the traffic excess amount most. Furthermore, we confirmed that the
proposed method reduced the excess data amount by 35% as compared with the time-wise offloading
of MDOP.
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Figure 8. Learning result in performance comparison: (a) total reward; (b) average g-value.

Table 6. Excess volume and transmission volume for performance comparison.

Excess Amount from L;;,,; [MB] Transmission Amount Sent within L;;,,; [MB]

No-control 33.9 1769.2
MDOP 4.2 1795.0
Proposed method 2.7 1797.0

Secondly, we analyzed how the traffic exceeds L;g,,. Table 7 shows the details of the temporal
locality. From Table 7, we can confirm that the amount of excessive data of the proposed method
is smaller than the time-wise offloading of MDOP. Furthermore, the maximum excess time from
Ligeqr is also shorter than the time-wise offloading of MDOP. In particular, from the viewpoint of the
bandwidth utilization efficiency, it is desirable that the delay tolerance excess duration is short, because
this value indicates that the temporal locality continues to occur within the excess duration. These
results show that the proposed method suppresses the exceeded delay tolerance of content, because
the MDOP sends the data at the maximum transmission rate without considering L;j,,; when the delay
tolerance is exceeded. Thus, the more the proposed method suppresses the exceeded delay tolerance,
the more the proposed method can suppress the occurrence of the temporal locality. However, the
excess frequency from L;z., of the proposed method is greater than the time-wise offloading of MDOP.
Although reducing the excess traffic and the excess time from L;z,; is the most important factor in
resolving the temporal locality, it is desirable that the excess frequency is small. In order to reduce
the excess frequency from L;z,,, it appears to be necessary to consider the learning time increase and
learning scenario diversification. By considering these, the proposed method more strictly controls the
bandwidth. In addition to analyzing the excess traffic, we confirmed whether the traffic is distributed
in terms of time. Figure 9 shows eNB usage rate based on L;j.,;. As eNB usage ratio approaches 1.0,
it indicates that the eNB’s performance is used sufficiently and temporal locality is reduced. From
Figure 9, eNB usage ratio approached 1.0 when applying the proposed method for 600 s. This result
shows that the proposed method can efficiently accommodate traffic to the eNB and fully utilizes the
performance of the eNB. Therefore, we think that the proposed method balances traffic in terms of time.
From Table 6, Table 7, and Figure 9, we confirmed that the proposed method can solve the temporal
locality as compared with the time-wise offloading of MDOP.

Table 7. Details of temporal locality.

Maximum Excess Traffic Maximum Excess Excess Frequency
Amount from L;;,,; [MB] Time from L; ., [s] from L;;,,; [times]
MDOP 0.7 4 15

Proposed method 0.4 2 16
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Figure 9. eNB usage ratio.

Finally, we analyzed whether the proposed method allocates bandwidths to the UE while
considering the delay tolerance. Table 8 shows the ratio of each data sent by the delay tolerance.
This result shows that the proposed method improves the data transmission completion rate of the
delay tolerance 60 s content as compared with the time-wise offloading of MDOP. In contrast, the
transmission completion rate of the delay tolerance 120 s content is greater than the delay tolerance 30
s content with the use of the proposed method. Therefore, we focused on one UE from each content
and confirmed the transition of the remaining data volume. Figure 10 shows the trend of the data
remaining from content-A to content-D. Figure 10 shows the transition of the data remaining for each
content from the generation of content-A with a delay tolerance of 30 s to the time at which the delay
tolerance expires. This figure shows that the shorter the elapsed time, the content is sent faster, although
shortened sent time is not the purpose of the proposed method. The purpose of the proposed method is
to achieve time-wise balance the traffic. From Figure 10, it can be confirmed that the data transmission
completion time of content-D is less than that obtained on using the MDOP when the proposed method
is applied. Content-D has an allowable delay time of 120 s, and the content size is 1.4 MB, which is
the smallest in this scenario. Furthermore, from the transition of the remaining content amount, it
can be observed that as the content size is smaller, the proposed method preferentially completes the
data transmission. Based on this trend, we can confirm that the proposed method completes the data
transmission of the content of a small size as soon as possible and concentrates on the bandwidth
allocation of the content of a large size. Among the four contents, the control of content-A was ideal
because the bandwidth allocation was performed such that the UE transmits data by using a sufficient
delay tolerance time. In this manner, we confirmed that the proposed method focuses on the content
characteristics to control the transmission rate in order to solve the temporal locality. As our goal is to
minimize the amount of excess data from L;,,; and solve the temporal locality issue by controlling the
bandwidth while taking into consideration the delay tolerance of the content and remaining content
amount, this control is also appropriate in terms of load balancing. Based on Table 8 and Figure 10, we
confirmed that the proposed method determined the priority and allocated the bandwidth based on
the remaining content amount of the UE, delay tolerance time, and load on eNB.

Table 8. Ratio of data sent by delay tolerance.

Delay Tolerance [s] MDOP Proposed Method
30 0.95 0.95
60 0.89 091

120 1.0 1.0
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Figure 10. Trend of data remaining amount by contents.

Based on the above results, we confirmed that the proposed method improves the bandwidth
utilization efficiency of cellular infrastructure by allocating bandwidth while taking into consideration
the delay tolerance. In reinforcement learning, the reward function is an important factor for evaluating
the action. In this paper, we applied only suppression of eNB load within L;z,; as the reward function.
We can expect that the performance will be further improved on examining the reward function.

4. Conclusions

We proposed a delay-tolerance-based mobile data offloading method using deep reinforcement
learning. Principally, we applied deep reinforcement learning to the time-wise offloading of the MDOP
to balance the load by taking into consideration the delay tolerance of the content. In our method, the
RL server decides the priority of the bandwidth to be allocated to the UE based on the content delay
tolerance, the remaining amount of content, and the load of eNB. The MDOP server then performs
bandwidth control and load balancing. Initially, we evaluated whether the proposed method can assign
a QoS level by considering the delay tolerance in a basic evaluation. The obtained result demonstrated
that the proposed method can learn how to allocate the QoS level for balancing the load. Moreover,
we compared the cellular infrastructure bandwidth utilization efficiency of the proposed method, the
time-wise offloading of MDOP, and no-control. As a result of the evaluation based on the assumption
that there are four types of contents with different delay tolerances, the proposed method decreased
the traffic in excess of the control target value by 35% as compared with the time-wise offloading of
MDOP. Furthermore, on the basis of the maximum excess traffic amount and the maximum excess
time, we confirmed that the proposed method further resolves the temporal locality. Moreover, the
proposed method increased the ratio of data sent by the delay tolerance as compared with the time-wise
offloading of MDOP. Therefore, we opine that the cellular bandwidth utilization efficiency has been
improved by allocating the bandwidth while taking into consideration the delay tolerance and load
balancing. Although we show the effectiveness of the proposed method about load balancing by
focusing on delay tolerance, we need to consider the installation location of MDOP server and RL
server and environment information collection method in order to apply the proposed method to a
real environment. Furthermore, the current learning model focuses on UE present in one eNB, and it is
not easy to use the current model in the situation where there are multiple eNBs to be considered in a
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real environment. In the future, we will evaluate and consider our method in multiple eNBs, reduce
learning cost, and consider the proposed method’s design to apply to a real environment. Moreover,
we intend to evaluate the mobility model of UE using vehicles and the traffic model, including various
delay tolerances to demonstrate the effects of the proposed method in a real environment.
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