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Abstract: Within Internet of Things (IoT) sensors, the challenge is how to dig out the potentially
valuable information from the collected data to support decision making. This paper proposes
a method based on machine learning to predict long cycle maintenance time of wind turbines for
efficient management in the power company. Long cycle maintenance time prediction makes the
power company operate wind turbines as cost-effectively as possible to maximize the profit. Sensor
data including operation data, maintenance time data, and event codes are collected from 31 wind
turbines in two wind farms. Data aggregation is performed to filter out some errors and get significant
information from the data. Then, the hybrid network is built to train the predictive model based
on the convolutional neural network (CNN) and support vector machine (SVM). The experimental
results show that the prediction of the proposed method reaches high accuracy, which helps drive up
the efficiency of wind turbine maintenance.

Keywords: Internet of Things (IoT); sensors; deep learning; data mining; long cycle maintenance;
convolutional neural network; wind turbine; conditional monitoring

1. Introduction

Internet of Things (IoT) sensors can communicate and interact over the Internet, and be monitored
and controlled remotely [1,2]. Data collected from sensors are to be processed to generate valuable
information for management. Predictive maintenance techniques are designed to help evaluate the
equipment condition to determine the maintenance schedule [3,4]. We aim to predict when the wind
turbines would fail and how long they would last before their failure.

Wind power, different from burning fossil fuels, is plentiful, clean, and renewable. People
have made use of wind power for hundreds of years. Wind turbines are usually operated in tough
environments and need to endure high wind speed and extreme temperatures. The maintenance
cost of wind turbine components is usually higher than the procurement cost. A wind farm would
encounter many difficulties such as drivetrain failures, spalled bearings, and fractured gears, so its
operation and maintenance have become an important research field.

The research fields regarding maintenance cost reduction include periodic inspections, corrective
maintenance, and condition monitoring. [5]. Condition monitoring is normally used on rotating
machinery, so it is very suitable for monitoring wind turbines [6]. Since condition monitoring is
often used to maintain the wind turbines in the wind power industry, data collected from sensors are
analyzed to predict the equipment condition. When an unusual event is detected, sensors record the
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event using event codes, which helps the operator to quickly understand the wind turbines’ status
at that time. Because there are erroneous and irrelevant data in the large amount of data collected,
efficient data pre-processing and analyses techniques are used to extract valuable information for
maintenance. However, most of the methods are rule-based, and it is difficult for these methods to
reach high accuracy of maintenance cycle prediction. This paper tries to analyze the collected data
to improve the efficiency of wind turbine maintenance. Among all maintenance categories, the most
time-consuming task is the long cycle maintenance, which requires a great deal of human and material
resources. Therefore, the efficient and effective prediction of the occurrence of long cycle maintenance
is very important in the management of wind turbines.

In Changhua Coastal Industrial Park, there are two wind farms where all 31 wind turbines are
installed with the V80 module [7]. The sensors include an anemometer, electricity meter, gearbox
thermometer, and high-speed bearings. A large amount of data is collected by the sensors when
monitoring the wind turbines, and data mining techniques [8] are then employed to process the massive
amount of data and dig out useful information for maintenance. In our method, all maintenance
periods are firstly divided into four categories and the relations of the maintenance periods of these
categories are analyzed. The Apriori algorithm [9] is used to find the key event codes, which occur
before the maintenance periods. Also, linear regression is applied to filter some errors from the
operation data. Six features: wind speed, the power output of wind turbines, the oil temperature of
the wind turbine gearbox, the temperature of the high-speed bearings, the number of consecutive
short under-maintenance periods, and the frequency of the event codes, are extracted from the results
above. Then a hybrid network consisting of a convolutional neural network (CNN) and support vector
machine (SVM) is constructed to predict the long cycle maintenance time. Experimental results show
that the proposed method achieves high accuracy in predicting the period of long cycle maintenance.

The rest of this paper is organized as follows. In Section 2, we review the background knowledge.
Section 3 focuses on the proposed method of long cycle maintenance. In Section 4, the experimental
results demonstrate the efficiency of the proposed method. Concluding remarks and future work are
given in Section 5.

2. Background Review

2.1. Condition Monitoring of Wind Turbines

Condition monitoring is the process of monitoring the condition of machinery to identify
a significant change which is implicative of an operational problem in order to prevent its failure and the
consequences associated with it. Condition monitoring uses sensors and signal-processing equipment
to continuously monitor wind turbine components regarding vibration analysis [10], oil analysis [11],
performance monitoring [12], strain measurement [13], acoustic emission [14], and ultrasonic testing
techniques [15]. Through data mining techniques, the data collected during the operation of major
components can be used to reduce major component failure. Maintenance schedules can be planned
more efficiently, and the costs of maintenance are reduced. Condition monitoring is commonly used in
most offshore wind farms because of their high costs of maintenance.

2.2. Convolutional Neural Network (CNN)

Deep learning is a technique required for implementing machine learning. CNNs are one of the
most popular architectures in deep learning. CNNs are hierarchical neural networks and have been
successfully used for data analyses, speech recognition, image classification, pattern recognition, and
computer vision. A typical CNN structure contains subsampling layers between each convolutional
layer and fully connected layers. In order to implement the CNN, there are several parameters to be
set, such as input size, kernel (filter) dimensions, number of neurons in each layer, and the topology
of the CNN. In this paper, CNNs are trained to learn the features that are related to wind turbine
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maintenance. A combination of the CNN and SVM (Support Vector Machine), where the output of the
CNN is replaced by an SVM, could achieve great performance for classification.

2.3. Simple Linear Regression

In statistics, simple linear regression is a method which allows us to summarize and study the
relationships between two continuous variables. Consider the model function for the slope β and
y-intercept α in the simple linear regression:

y = α+ βx + µi, (1)

where µi, named residuals, are the distance between the points of the data and the regression line.
The advantage of simple linear regression is that it is efficient and intuitive to find the nature of the
relationship between two variables. In this paper, the simple linear regression is used to model the
relationship between the operation data.

2.4. Apriori Algorithm

Data mining is the computational process of finding patterns in large data sets. Some techniques
have been proposed in previous research regarding data mining on wind turbines, including prediction
models for wind turbine states [16], fault diagnosis [17,18], and power curve monitoring [19].
The Apriori algorithm is one of the most popular algorithms in discovering association rules.
The Apriori algorithm was proposed by Srikant et al. in 1994 and is designed to work on transactional
databases. The goal of this algorithm is to extract information from a data set and transform it into
a comprehensible structure for further use. The simple description of the Apriori algorithm is as
follows. Assume that there are two itemsets X and Y in the database. If there is an association rule
between X and Y, the rule is denoted as X ⇒ Y called association rules.

Support: a representation of how frequently the itemset appears in the database, “Support” is
defined as:

Support{X ⇒ Y} = P(X ∩Y). (2)

Confidence: the transaction that contains X would also contain Y, “Con f idence” is defined as:

Con f idence{X ⇒ Y} = P(Y|X) =
P(X ∩Y)

P(X)
. (3)

Lift: the ratio of the confidence of the association rule to the probability of Y, “Li f t” is defined as:

Li f t{X ⇒ Y} = P(Y|X)

P(Y)
=

P(X ∩Y)
P(X)P(Y)

. (4)

If Li f t{X ⇒ Y} > 1, X and Y are dependent, which makes the rule potentially useful in predicting.
The Apriori algorithm generates candidate item sets of the length k from item sets of the length k− 1.
Then it reduces the candidates which have infrequent sub-patterns. After that, it scans the database
to determine frequent item sets among the candidates. Apriori utilizes a “bottom-up” approach to
extend frequent subsets of one item at a time (a step known as candidate generation), and groups of
candidates are tested against the data. The algorithm ends when no further successful extensions are
found. In this paper, we employ the Apriori algorithm to find the key event codes of wind turbines.

3. Proposed Method

In this section, maintenance time data, event codes, and operation data are introduced
first, followed by the explanations on the proposed methods: Data aggregation and prediction
model construction.
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3.1. Data Aggregation

Figure 1 illustrates the concept of the proposed method and Table 1 shows the specifications of
the V80 module wind turbines in Changhua Coastal Industrial Park. Firstly, all the data are aggregated
to filter errors and extract significant features. Data aggregation is a process in which information
is gathered and expressed in a summary form for the purpose of the follow-up statistical analysis.
The results of data aggregation will be applied to deep learning models to predict the long cycle
maintenance time.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 10 

 

aggregated to filter errors and extract significant features. Data aggregation is a process in which 
information is gathered and expressed in a summary form for the purpose of the follow-up statistical 
analysis. The results of data aggregation will be applied to deep learning models to predict the long 
cycle maintenance time. 

 
Figure 1. The architecture of the long cycle maintenance time prediction. 

Table 1. Specification of the V80 module wind turbine. 

Operating data 

Rated power 2000 kW 
Cut-in wind speed 4.0 m/s 
Rated wind speed 15 m/s 

Cut-out wind speed 25 m/s 

Rotor 
Rotor diameter 80 m 

Operational interval 9–19 rpm 
Air brake Full blade feathering with 3 pitch cylinders 

Gearbox Two planetary stages and one helical stage 

3.1.1. Maintenance Time and Event Codes 

Maintenance time data archives the records of accumulated maintenance hours and 
maintenance status. The maintenance time data are collected for 941 consecutive days, and the 
frequency is updated every ten minutes. The recorded maintenance time data is shown in Figure 2, 
where the rows represent the time of the 10-min cycles and the columns represent the wind turbine 
number. If the recorded time data equal “NAN”, it means that the wind turbine is under 
maintenance. To better describe the maintenance time data, attributes such as NAN time, time 
condition, and NAN period are defined. Figure 3 illustrates that the maintenance data contains three 
attributes: NAN time, time condition, and NAN period. “NAN time” is the maintenance time of the 
wind turbine, shown as a green double-headed arrow. “Time condition” is the interval from the end 
of the previous NAN to the start of the current NAN, shown as a blue double-headed arrow. “NAN 
period” is the interval from the end of the previous NAN to the end of the current NAN, shown as 
an orange double-headed arrow. Figure 4 shows an example of these attributes being extracted 
through data aggregation. Starting from the left are the columns of wind turbine number, the 
previous NAN end time, the current NAN start time, the current NAN end time, and the interval of 
the NAN period. In Table 2, sensors would record the fault message represented as “event code” 
when the abnormal operation of a wind turbine occurs. The Vestas supervisory control and data 
acquisition (SCADA) system would collect and record the event code that occurs first in that 10-min 
cycle time. 

Figure 1. The architecture of the long cycle maintenance time prediction.

Table 1. Specification of the V80 module wind turbine.

Operating Data

Rated power 2000 kW
Cut-in wind speed 4.0 m/s
Rated wind speed 15 m/s

Cut-out wind speed 25 m/s

Rotor
Rotor diameter 80 m

Operational interval 9–19 rpm
Air brake Full blade feathering with 3 pitch cylinders

Gearbox Two planetary stages and one helical stage

3.1.1. Maintenance Time and Event Codes

Maintenance time data archives the records of accumulated maintenance hours and maintenance
status. The maintenance time data are collected for 941 consecutive days, and the frequency is updated
every ten minutes. The recorded maintenance time data is shown in Figure 2, where the rows represent
the time of the 10-min cycles and the columns represent the wind turbine number. If the recorded
time data equal “NAN”, it means that the wind turbine is under maintenance. To better describe the
maintenance time data, attributes such as NAN time, time condition, and NAN period are defined.
Figure 3 illustrates that the maintenance data contains three attributes: NAN time, time condition,
and NAN period. “NAN time” is the maintenance time of the wind turbine, shown as a green
double-headed arrow. “Time condition” is the interval from the end of the previous NAN to the start
of the current NAN, shown as a blue double-headed arrow. “NAN period” is the interval from the
end of the previous NAN to the end of the current NAN, shown as an orange double-headed arrow.
Figure 4 shows an example of these attributes being extracted through data aggregation. Starting from
the left are the columns of wind turbine number, the previous NAN end time, the current NAN start
time, the current NAN end time, and the interval of the NAN period. In Table 2, sensors would record
the fault message represented as “event code” when the abnormal operation of a wind turbine occurs.
The Vestas supervisory control and data acquisition (SCADA) system would collect and record the
event code that occurs first in that 10-min cycle time.
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Table 2. Event codes of failure messages in common use.

Event Codes Failure Message

900 Pause pressed on the keyboard
276 Start auto-outyawing CCW
329 DC Overvolt: 880 V state 1
144 High wind speed: 25.1 m/s
315 ExEx low voltage L1: 282 V
340 OVP active UDC 0V state 1
335 ExtHighIRotorInv phase: 3
147 High gear temp
154 Max rotor RPM: 21.8 RPM
214 Low oil level
309 Pause over RCS 13

The NAN period is classified into four maintenance categories according to the length of its NAN
time, and the fourth class is defined as the long cycle maintenance time because it has the longest
maintenance hours. The NAN period classification rule is defined as follows. The length of the NAN
time in the NAN period ranging from 1–10 is classified as the first class, 11–50 as the second class,
51–100 as the third class, and those above 100 as the fourth class. Figure 5 shows the relationship
between the maintenance categories and the number of event codes. Apparently, the first class is the
most frequently observed one, so it exhibits the highest number of event codes.
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Figure 5. The number of event codes with regard to maintenance categories. (x-axis indicates four
categories of NAN periods and their corresponding length of NAN times; y-axis is the number of event
codes).

The fourth class has the longest maintenance hours among the four maintenance categories, which
means that its maintenance cost is the highest. If the long cycle maintenance time can be predicted,
the cost could be significantly reduced. We analyze the event codes of the NAN period that occurred
before the fourth class. Figure 6 is an example of the time graph of the target NAN period and the
NAN period of the fourth class.
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Figure 6. Time graph of the relationship between the target NAN period occurring before the NAN
period of the fourth class.

It is quite reasonable to assume that several event codes exist, which lead to long cycle
maintenance. We use the Apriori algorithm to find association rules of the event codes of the NAN
period occurring before the fourth class. Because the operation performance of two wind farms is
different, we analyze the maintenance data of two wind farms separately. From the analysis results, we
found that two event codes, Code 154 and Code 309, happened along with the long cycle maintenance
time. Based on knowledge in this domain and the experience of the Taiwan Power Company, another
two event codes, Code 147 and Code 214, are also considered to be related to the long cycle maintenance
time. So, the frequency of Code 154, Code 309, Code 147, and Code 214 are chosen to be the features
for predicting the long cycle maintenance time.

To find other features, we designed a rule to predict the long cycle maintenance time. If there
are more than eight consecutive short NAN periods before the fourth class, and the time between the
fourth class and the previous NAN period is shorter than the predefined threshold, a large maintenance
cycle is likely to occur. Figure 7 shows that for the wind turbine 6, a total of twenty-six consecutive
short NAN periods (15—first class, one—third class, one—second class, and nine–one class) occur
before the fourth class. In Table 3, time thresholds are set to be less than 14 days, 30 days, or 45 days,
and the prediction accuracy can reach 30%. The result is satisfying when we use the rule to predict
the long cycle maintenance time only. It means that there is a high correlation between the number
of consecutive short NAN periods and the long cycle maintenance time. Therefore, the number of
consecutive short NAN periods is chosen to be the feature to predict long cycle maintenance time.
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Table 3. The accuracy of the long cycle maintenance time prediction with the rule.

Time Condition Less than 14 Days Less than 30 Days Less than 45 Days

Rule 29.79% 31.91% 31.91%

3.1.2. Operation Data

Operation data including wind speed, the power output of wind turbines, the oil temperature
of the wind turbine gearbox, and the temperature of the high-speed bearings, are collected by the
Vestas supervisory control and data acquisition (SCADA) system. The operation data is collected for
941 consecutive days, and the updating frequency is every ten minutes, which is the same time length
as the available maintenance data. There are some errors in the wind speed and the power output
of the wind turbine’s data due to the bug in the data collection system. The relation of wind speed
and output power could be easily modeled by regression analysis. According to the characteristics
of linear regression, linear regression is a suitable model to fit this formula. To filter the errors in the
wind speed and the power output of the wind turbines data, a residual threshold is set. Then, the
data whose residual is greater than the threshold is filtered. Most of the error data could be filtered
after this step. We calculate the standard deviation from the predicted moment to the last long cycle
maintenance. The standard deviation is chosen to be the feature of the long cycle maintenance time.

3.2. Prediction Model Construction

To predict the long cycle maintenance time precisely, we proposed a hybrid network which
combines the CNN and SVM. CNNs are quite good at learning invariant features, but not always
optimal for classification (most of the trainable parameters are in the middle layers). On the other hand,
SVM with a fixed kernel function, cannot learn complicated invariances but can produce good decision
surfaces when applied to well-behaved feature vectors. It is interesting to investigate a hybrid system
in which the convolutional net is trained to extract features that are relatively invariant to irrelevant
variations of the input. Thus, an SVM with a simple Gaussian kernel can perform well at separating
the categories in the learned feature space. SVM is added to the top layer, instead of the softmax layer.

The architecture of the hybrid network is shown in Figure 8, where two-layer CNNs are used
to extract features, and the features are then used as the input to train an RBF-SVM (Radial Basis
Function). Six features: wind speed, power output of the wind turbines, oil temperature for the
wind turbine gearbox, temperature of the high-speed bearings, the number of consecutive short NAN
periods, and the frequency of event codes (Code 154, Code 309, Code 147, and Code 214) from the data
aggregation are used to train the hybrid network. In the following experiments, a two-layered 1-D
CNN and the fully connected layer are used to extract features, and the features are then used as input
to train the RBF-SVM. The model is trained by the features extracted from the data aggregation.
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4. Experimental Results

Data aggregation and model construction are implemented in Python with Keras [20]. We used
two 1-D CNNs in all experiments with SVM in the output layer. The experiments conducted in the
proposed method used the dataset collected from sensors in 31 wind turbines for 941 consecutive days.
This dataset is a collection of wind turbine operation data, maintenance time data, and event code data.
There are 4,205,119 records in each of the operation data of the four categories: wind speed, the power
output of the wind turbines, the oil temperature for the wind turbine gearbox, and the temperature of
the high-speed bearings. The maintenance time data also contains 4,205,119 samples and the event
code data contain 6251 samples. We used data aggregation to extract the input data of size 6 × 135,649
from six features, including the above four categories, the number of consecutive short NAN periods,
and the frequency of event codes. The dataset is randomly split into two parts, 80% as training data
and 20% as test data. Both the first 1 × 2 CNN and the second 1 × 3 CNN consisted of a rectified linear
unit (ReLU) and a dropout rate of 0.3. The maximum pooling layer with a stride of two is placed after
each CNN, so that the features are downscaled twice to reduce the computational cost. The size of the
fully-connected layer is 1 × 128. The output layer used RBF-SVM for classification. The learning rate
ε is set at 0.001. To prevent the underestimation or overestimation, the validation loss is ensured to
be similar and slightly higher than the training loss. This step can assure that the prediction model is
robust not only for the training data. Based on the above settings, a well-trained hybrid network can
be obtained.

Classification accuracy is chosen as the machine learning metric to evaluate our supervised
learning model. Table 4 is the class corresponding to accuracy. In this experiment, we assume that the
maximum long cycle maintenance time interval is 900 days. The classes are the number of segments
that 900 days are divided into. For example, we set the prediction system output to binary classification.
The 900 days will be divided into two segments (Class 2): the first segment is 0–450 days and the second
is 451–900 days. If we get an output which is the first one, it means that the long cycle maintenance
time is predicted within 0–450 days. If the output is the second, the long cycle maintenance time
is predicted within 451–900 days. For Class 3, the 900 days are divided into three segments, 0–300,
301–600, and 601–900 days; the same method applies to Class 4–Class 9. It is clear that the more the
classes, the lower the accuracy. The accuracy of Class 9 reaches 73%, e.g., the prediction accuracy of
our method is higher than 70% for the long cycle maintenance within 100 days, which can enhance the
wind turbine management for power companies.

Table 4. The prediction accuracy of long cycle maintenance time.

Class Accuracy

2 95%
3 92%
4 87%
5 84%
6 76%
7 77%
8 76%
9 73%



Sensors 2019, 19, 1671 9 of 10

5. Conclusions

This paper proposes a machine learning framework to predict the long cycle maintenance time of
wind turbines efficiently. In addition to the sensor data, we also analyze the characteristics of event
codes to extract two useful features including the frequency of the event code and the NAN period,
which enhances the prediction performance. Different from the traditional CNN, the hybrid network,
which is based on two layers of 1-D CNN and the RBF-SVM, benefits from invariant features learned
from CNN and an accurate classification output predicted by SVM. The hybrid network achieves better
prediction results for the long cycle maintenance time of the wind turbine. Experimental results show
that the prediction accuracy of our method is higher than 70% for the long cycle maintenance within
100 days, which can really enhance the wind turbine management for power companies. In the future,
we will make use of more data from sensors to discover insightful information for event prediction
and further enhance the maintenance of wind turbines.
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