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Abstract: One of the main objectives of Active and Assisted Living (AAL) environments is to
ensure that elderly and/or disabled people perform/live well in their immediate environments;
this can be monitored by among others the recognition of emotions based on non-highly intrusive
sensors such as Electrodermal Activity (EDA) sensors. However, designing a learning system or
building a machine-learning model to recognize human emotions while training the system on
a specific group of persons and testing the system on a totally a new group of persons is still a
serious challenge in the field, as it is possible that the second testing group of persons may have
different emotion patterns. Accordingly, the purpose of this paper is to contribute to the field of
human emotion recognition by proposing a Convolutional Neural Network (CNN) architecture which
ensures promising robustness-related results for both subject-dependent and subject-independent
human emotion recognition. The CNN model has been trained using a grid search technique which
is a model hyperparameter optimization technique to fine-tune the parameters of the proposed CNN
architecture. The overall concept’s performance is validated and stress-tested by using MAHNOB
and DEAP datasets. The results demonstrate a promising robustness improvement regarding various
evaluation metrics. We could increase the accuracy for subject-independent classification to 78% and
82% for MAHNOB and DEAP respectively and to 81% and 85% subject-dependent classification for
MAHNOB and DEAP respectively (4 classes/labels). The work shows clearly that while using solely
the non-intrusive EDA sensors a robust classification of human emotion is possible even without
involving additional/other physiological signals.

Keywords: subject-dependent emotion recognition; subject-independent emotion recognition;
electrodermal activity (EDA); deep learning; convolutional neural networks

1. Introduction

Emotion recognition plays an important role in various areas of life, especially in the field of
Active and Assisted Living (AAL) [1] and Driver Assistance Systems (DAS) [2]. Recognizing emotions
automatically is one of technical enablers of AAL, as it is considered to be a significant help for
monitoring and observing the mental state of either old people or disabled persons.
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Furthermore, it can be observed that according to the most recent related publications,
the classification performance of emotion recognition approaches has been significantly improving
and the opportunities for automatic emotion recognition systems are also getting higher.

Emotions can be recognized in various ways. The most well-known models for emotion
recognition are the “discrete emotion model” proposed by Ekman [3] and the “emotion dimensional
model” proposed by Lang [4]. The discrete emotion model categorizes emotions into six basic
emotion states: surprise, anger, disgust, happiness sadness and fear [3]. These emotions are universal,
biologically experienced by all humans and widely accepted as such in the research community.
In contrast to the discrete emotional model, the dimensional model assumes that the emotions are a
combination of several psychological dimensions. The most well-known dimensional model is the
“valance-arousal dimensional model”. The valance represents a form of pleasure level and ranges from
negative to positive. However, the arousal indicates the physiological and/or psychological level of
being awake and ranges from low to high [5].

Overall, researchers in the field have used two major approaches to recognize emotions. The first
one consists of features engineering-based approaches [6] and the second one involves Deep Learning
(DL) [7]. In the features engineering approach, human emotion recognition involves several steps
ranging from collecting raw sensor data up to the final conclusion about the current emotional
status. The steps thereby involved are the following ones [8]: (1) preprocessing of the raw data from
sensor streams for handling incompleteness, eliminating noise and redundancy, and performing data
aggregation and normalization; (2) feature extraction which means extracting the main characteristics
of/from the raw signals (e.g., temporal and spatial information); (3) dimensionality reduction to
decrease the number of features to increase their quality and reduce the computational effort needed
for the classification task; and (4) classification based on machine-learning and reasoning techniques to
recognize the effective emotion class.

On the other hand, DL does not require necessarily the feature engineering/extraction step, due to
the fact that DL models do extract features internally and/or implicitly (within the training phase) [9].
Therefore, they have shown promising results while involving a combination of different physiological
signals for human emotion recognition [10,11].

Additionally, DL showed promising results in other research fields for different applications,
e.g., identification of gas mixture [12], classification of tea specimens [13] and cardiac arrhythmia
detection [14,15].

Generally, subject-independent emotion recognition is a challenging field due to the facts that
(a) physiological expressions of emotion depend on age, gender, culture and other social factors [16],
and (b) it also depends on the environment in which a subject lives, (c) the subject-independent nature
of human emotion recognition which means that the system has been trained on a group of subjects and
tested on another different group, and (d) the lab-setting independent nature of emotion recognition is
related to the fact that the classifier can/will be trained locally once using sensors of a given lab-setting
and after that tested considering different datasets that are collected based on different lab settings.
The motivation for developing a generalized model is that collecting training data each time for each
subject is not a realistic task and is far from the practical reality.

Based on the previous facts, a concept to improve the performance of the subject-dependent
and subject-independent human emotion recognition systems is required; in this paper we use solely
EDA (electrodermal activity) biosignals based on a deep-learning model using convolutional neural
networks (CNNs) that extracts the required features internally and performs well when this model is
applied on new subjects. Although researchers have used CNN to classify human emotions using EDA,
they did not propose the architecture that did perform better than the proposed model in this paper.

The contribution of this paper does significantly increase the performance of human emotion
recognition approaches using only EDA sensors compared to the state-of-the-art approaches involving
the same EDA signals. Furthermore, the results obtained suggest/underscore a novel fact and
interesting situation that other (mostly “highly intrusive”) physiological sensors might be replaced
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by the “only slightly intrusive” EDA-based sensors in this research field. The structure of the paper
is as follows: Section 2 presents an overview of the state-of-the-art approaches. Section 3 introduces
the datasets. Section 4 portrays the overall architecture of the proposed classification model.
Sections 5 and 6 present the overall results and the related discussions respectively. The paper ends
with a conclusion in Section 7.

2. Related Works

Regarding human emotion recognition based on EDA sensors which can be embedded in smart
wearable devices, few works have been published so far. However, in [17], they proposed a system to
recognize the driver’s emotional state after transforming the EDA signals using a short-time Fourier
transform. They considered three classes: neutral-stress, neutral-anger, and stress-anger.

Furthermore, in [18], they applied a convex optimization-based electrodermal activity (cvxEDA)
framework and clustering algorithms to automatically classify the arousal and valence levels induced
by affective sound stimuli.

In the literature, it has been proven that the stimuli nature plays an important role to increase the
EDA response which helps to make the emotion recognition process less complex [19]. Furthermore,
other works showed promising results when EDA responses are modulated by musical emotional [20,21].
Consequently, this result encouraged researchers to work on classifying arousal and valence levels
induced by auditory stimuli.

In [22], authors used the AVEC 2016 dataset [23,24], they proposed a deep-learning model
that consists of a CNN followed by a recurrent neural network and then fully connected layers.
They showed that an end-to-end deep-learning approach directly depending on raw signals can
replace feature engineering for emotion recognition purposes.

Moreover, the use of different physiological signals has been previously involved [25,26].
However, mounting different types of sensors on the human body is not preferred and nor
well-accepted. In [26], authors fused different types of sensors, ECG (Electrocardiogram), EDA and
ST (Skin Temperature) through a hybrid neural model which combines cellular neural networks and
echo state neural networks to recognize four classes of valence and arousal, mainly, high valence high
arousal, high valence low arousal, low valence high arousal, and low valence, low arousal. In [25],
authors combined facial electromyograms, electrocardiogram, respiration, and EDA dataset which
were collected during racing conditions. The emotional classes identified are high stress, low stress,
disappointment, and euphoria. Support vector machines (SVMs) and adaptive neuro-fuzzy inference
system (ANFIS) have been used for the classification.

In [27], the researchers reported results using only EDA to recognize four different states, joy,
anger, sadness, pleasure using 193 features and a music and based on genetic algorithm and the
K-neighbor methods.

Table 1 shows a summary of the state-of-the-art for human emotion recognition using
physiological signals. More details regarding state-of-the-art experiments and obtained results can be
found in Section 6.

The major limitations in the state-of-the-art can be summarized in three major points. First,
the limitation regarding proposing generalized models to recognize human emotions based on EDA
signals (i.e., published works do not comprehensively consider the lab-setting independence property
of emotion classifiers for EDA signals). Second, the limitation concerning subject-independent human
emotion recognition (i.e., published works do not comprehensively address the subject-independence
property of emotion classifiers for EDA signals). Third, most published related works do focus mostly
on classifying only 2 (active/passive) emotional states.

In this work, we focus on the second and the third limitation, due to the fact that classifying
human emotion with respect to different lab settings is a research question which may need to adjust
the raw data in a feature engineering level which is not the focus of this work where CNN does extract
the desired features internally as it is a deep-learning model.
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Table 1. Summary of the stare-of-the-art works for human emotion recognition using physiological signals.

Paper Classifier Features Signals

[25] SVM Statistical Features
Facial electromyograms, electrocardiogram,

respiration, and electrodermal activity

[27] Genetic algorithm and K-NN Statistical features EDA

[25] Neuro-fuzzy inference Statistical Features
Facial electromyograms, electrocardiogram,

respiration, and electrodermal activity

[18] K-NN Statistical features EDA

[28] SVM Wrapper feature selection (WFS) EDA

[29] CNN Raw data Patient’s movements XYZ + EDA

[22] Deep learning (CNN+RNN) Raw data AVEC 2016

[26] ESN-CNN Statistical features
ECG (Electrocardiogram), EDA (Electrodermal

activity) and ST (Skin Temperature)

[30] Dynamic calibration + K-NN Statistical features EDA

SVM: Support Vector Machine, K-NN: K-Nearest Neighbor, CNN: Convolutional Neural Network, RNN:
Recurrent Neural Network, ESN-CNN: Echo State Network - Cellular Neural Network.

3. Datasets

This study uses public benchmark datasets (MAHNOB and DEAP) of physiological signals to test
our proposal for a robust emotion recognition system. However, for both solely the EDA related data
will be used in the experiments for this paper.

3.1. MAHNOB

The dataset used is called MAHNOB and was collected by Soleymani Mohammad et al. [31].
The data is related to different physiological signals.

The data was collected from 30 young healthy adults who participated in the study. 17 of the
participants were female and 13 of them were males. Their age varied between 19 to 40. The participants
were shown 20 emotional video clips which were evaluated in terms of both valence and arousal by
using the Self-Assessment Manikins (SAM) questionnaire [32]. SAM is a prominent tool that visualizes
the degree of valence and arousal by manikins. The participants distinguished a scale from 1 to 9,
see Figure 1.

Figure 1. Self-assessment manikins scales for valence (above) and arousal (below) [32].

In the experiments for MAHNOB, electroencephalogram (EEG), blood volume pressure
(BVP), respiration pattern, skin temperature, electromyogram (EMG), electrooculogram (EOG),
electrocardiogram (ECG), and EDA of 30 participants were collected.

3.2. DEAP

DEAP [33] is a multimodal dataset used to analyze human emotional states.
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The stimuli used in the experiments were chosen in different steps. First, they selected 120 initial
stimuli that were selected both semi-automatically and manually. Second, a one-minute highlight
part was specified for each stimulus. Third, through a web-based subjective assessment experiment,
40 final stimuli were chosen.

During the physiological experiment, 32 participants evaluated 40 videos via a web interface used
for subjective emotion assessment in terms of the levels of arousal, valence, like/dislike, dominance,
and familiarity. The age of participants varied between 19 to 37. Concerning the classes/labels for
DEAP, we considered the same classes as same as in Section 4.1.

In the experiment, electroencephalogram (EEG), BVP, respiration pattern, ST, electromyogram
(EMG), electrooculogram (EOG), electrocardiogram (ECG), and EDA of 32 participants were collected.

4. Classification Using a Convolution Neural Network—CNN

In this section, we present, the labelling of EDA signals, the design details of the proposed CNN
for emotion classification and then, the evaluation metrics and evaluation.

4.1. Preprocessing and Labelling

First, raw data of EDA were scaled such that the distribution is centered around 0, with a standard
deviation of 1. Additionally, after data normalization, two states [34] valence and arousal are addressed
for emotion classification. In this regard, the scales (1–9) were mapped into 2 levels for each valence
and arousal state according to the SAM ratings.

The valence scale of 1–5 was mapped to “negative” and 6–9 to “positive”, respectively. The arousal
scale of 1–5 was mapped to “passive” and 6–9 to “active”, respectively.

• High Valence/High Arousal (HVHA). This class includes positive emotions such as happy and excited.
• High Valence/Low Arousal (HVLA). This class includes emotions such as relaxed, calm and pleased.
• Low Valence/High Arousal (LVHA). This class includes emotions such as anger, fear and distressed.
• Low Valence/Low Arousal (LVLA). This class includes negative emotions such as sad and depressed.

4.2. Classifiers

To perform the emotions classification task, we propose a deep-learning approach. A CNN is a
kind of feedforward network structure that consists of multiple layers of convolutional filters followed
by subsampling filters and ends with a fully connected classification layer. The classical LeNet-5CNN
first proposed by LeCun et al. in [35] is the basic model for various CNN applications for object
detection, localization, and prediction.

First, the EDA signals are converted into matrices whereby the goal is to make the application of
CNN model possible (see Section 5).

As illustrated in Figure 2, the proposed CNN architecture has three convolutional layers (C1, C2,
and C3), three subsampling layers in between (i.e., P1, P2, and P3), and an output layer F.

Figure 2. The proposed CNN model.
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The convolutional layers generate feature maps using 72 (3 × 3) filters followed by a Scaled
Exponential Linear Units (SELU) as an activation function, 196 (3 × 3) filters followed by a Rectified
linear unit (ReLU) as an activation function and 392 (3 × 3) filters followed by a ReLU as an
activation function.

Additionally, in the subsampling layers, the generated feature maps are spatially down-sampled.
In our proposed model, the feature maps in layers C1, C2 and C3 are sub-sampled to a corresponding
feature map of size 2 × 2, 3 × 3 and 3 × 3 in the subsequent layers P1, P2, and P3 respectively.

The output layer F is a fully connected neural model that performs the classification process,
it consists of three layers. The first layer has 1176 nodes, each activated by a ReLU activation function.
The second layer has 1024 nodes, each activated by a SELU activation function. The final layer is the
SoftMax output layer C1.

The result of the mentioned layers is a 2D representation of extracted features from input feature
map(s) based on the input EDA signals.

Since the dropout is a regularization technique to avoid over-fitting in neural networks based on
preventing complex co-adaptations on training data [36], therefore, our dropout for each layer was
0.25 which is related to a fraction of the input units to drop. Table 2 shows parameters used for all the
layers of the proposed CNN model.

Table 2. Parameters used for all the layers of the proposed CNN model.

Layer Kernel, Units Other Layers Parameters

C1 (3 × 3), 2 Activation = Selu, Strides = 1
P1 (2×2) Strides = 2
C2 (3×3), 196 Activation = Selu, Strides = 1
P2 (3×3) Strides=3
C3 (3×3)3, 92 Activation = Selu, Strides = 1
P3 (3×3) Strides = 3

C is the convolution layer, P is the max-pooling layer and SELU is the Scaled Exponential Linear Unit
activation function.

A grid search technique has been used to fine-tune the CNN model hyperparameters and to find
out the optimal number of filters and layers needed to perform the emotion classification task. We have
used the GridSearchCV class in Scikit-learn [37]. We have provided a dictionary of hyperparameters
that should be checked during the performance evaluation. By default, the grid search uses one thread,
but it can be configured to use all available cores to increase the calculation time. Then, the Scikit-learn
class has been combined with Keras to find out what are the best hyperparameters values. Additionally,
cross a validation is used to evaluate each individual model and the default of 10-fold cross-validation
has been used.

All provided results have been obtained while using the following computer platform: Intel
Corei7-7820HK processor Quad-Core 2.90 GHz, 16 GB DDR4 SDRAM, NVIDIA GeForce GTX 1080
with 8 GB dedicated storage.

Additionally, we examine several classifiers to compare the performance of the existing models
with that of the here proposed one. In particular, Support Vector Machine (SVM) [38], K-Nearest
Neighbor (KNN) [39], Naive Bayes [40] and Random Forest [41] are considered for benchmarking.

Based on Figures 3 and 4, selecting the previous classifiers has different advantages for comparison
purposes. For example, the objective of random forests is that they consider a set of high-variance,
low-bias decision trees and convert them into a model that has both low variance and low bias.
On the other hand, KNNs is an algorithm which stores all the available cases and classifies new
cases based on a similarity measure (e.g., distance functions). Therefore, KNN has been applied in
statistical estimation and pattern recognition from the beginning of the 1970s on as a non-parametric
technique [39]. Support Vector Machines are well-known in handling non-linearly separable data
based on their non-linear kernel, e.g., the SVM with a polynomial kernel (SVM (poly)), and the SVM
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with a radial basis kernel (SVM (rbf)). Therefore, we classify the EDA data using three types of
SVMs, namely the following ones: SVM (linear) (i.e., standard linear SVM), SVM (poly) and SVM
(rbf). Finally, we used a simple probabilistic model which is the Naive Bayes. The purpose of using
such a probabilistic model is to show how it behaves on EDA data. Table 3 shows the values of
parameters of proposed CNN and other classifiers.

Table 3. Values of parameters of proposed CNN and other classifiers.

Model Parameters

SVM (poly) Degree of the polynomial kernel function = 3, γ = 1
numbero f f eatures

SVM (rbf) γ = 1
numbero f f eatures

Random Forest
Number of estimators estimators = 10 trees, criterion = Gini impurity,

The minimum number of samples required to split an internal node = 2
Naive Bayes Prior = probabilities of the classes

KNN Distance metric = ’minkowski’, Power parameter for the Minkowski metric = 2, Number of neighbors = 3
Proposed (CNN) Loss = categorical_crossentropy, optimizer = Adam, batch_size = 50, epochs = 1000

Figure 3. Overall emotion distribution for one Subject, where C1: High Valence/High Arousal
(HVHA), C2: High Valence/Low Arousal (HVLA), C3: Low Valence/Low Arousal (LVLA) and
C4: Low Valence/High Arousal (LVHA) based on a subject’s data in MAHNOB.

Figure 4. Scatter plot of the first three Fisher scores based on a subject’s data in MAHNOB.



Sensors 2019, 19, 1659 8 of 14

4.3. Evaluation Metrics and Validation Concept

To evaluate the overall performance of the classifiers, we consider several performance metrics.
In particular, we use precision, recall, f-measure, and accuracy, as in [42].

The Equations (1)–(4) show mathematical expressions of the metrics precision, recall, accuracy,
and f-measure respectively, where TP, TN, FP, and FN refer respectively to “True Positives”,
“True Negatives”, “False Positives” and “False Negatives” respectively.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Accuracy =
TP + TN

TP + TN + FN + FP
(3)

F1 =
2 · precision · recall
precision + recall

(4)

Regarding the evaluation scenarios, we consider two cases. The subject-dependent and
subject-independent cases. Subject-dependent means training and testing have been performed
on the same subject. Subject-independent means the training has been performed on a group of
subjects and testing has been performed on a totally new group of subjects.

5. Results

To have a deeper understanding of the performance of the proposed CNN model, MAHNOB,
and DEAP datasets were used for testing the overall classification performance.

Moreover, the data distribution should be taken into consideration to choose a suitable classifier
for comparison purposes. In this regard, a Fisher mapping [43] was used to define the three major
scores in the samples that are investigated. Based on the output of Figures 3 and 4, it is concluded that
the data is highly overlapped, and there is a kind of class imbalance problem.

In this assessment, 10 subjects were selected from the MAHNOB and DEAP datasets. Each dataset
for each subject consists of four classes (see Sections 3.1 and 3.2). The average training time for each
subject was approximately 21 min.

The length of the considered EDA signals is 2574 that are converted to matrices of size (39 × 66).
All results are presented for ten-fold cross-validation.

Tables 4 and 5 present the average values for the precision, the recall, and the f-measure using
DEAP and MAHNOB datasets respectively. The tables show the performance metrics values when
training and testing are performed on the same subject. The tables show the average value of precision,
recall, and f-measure with respect to each subject. The performance metrics values for each subject
have been summed and divided by the total number of subjects. The major target of this experiment is
to check out the overall performance for subject-dependent EDA-based emotion classification.

Tables 6 and 7 present the precision the recall, and the f-measure using DEAP and MAHNOB
datasets respectively. The results are obtained when training and testing are performed on
different subjects. The major target of this experiment is to check out the overall performance for
subject-independent EDA-based emotion classification.

In all tables, the proposed CNN model shows the highest performance compared to K-NN
and random forest which are hereby the best next two classifiers. When K-NN and random forest
classifiers perform well, it indicates that the dataset is not easily separable, and the nonlinearity is high.
This can be observed in Figure 4. Accordingly, the decision planes generated using other classifiers
(see Tables 4–7) do not categorize some points in space to an inappropriate region as good as K-NN
and random forest classifiers.
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The performance metrics and the implementation are written in Python using Numpy
(http://www.numpy.org/), Scikit-learn (https://scikit-learn.org/) and Keras (https://keras.io/).
All performance metrics are calculated for each class and weighted taking the class imbalance into
account. Accordingly, the evaluation metrics for each label have been calculated and their average has
been weighted by the support measurement which is the number of true instances for each label.

Tables 8 and 9 show the confusion matrix for both MAHNOB and DEAP (the average performance
results for training and testing on same subjects) and the confusion matrix for both MAHNOB and
DEAP (the average performance results for training and testing on different subjects), respectively.

Table 4. Performance metrics for DEAP (the average performance results for training and testing on
same subject).

Model Accuracy Precision Recall F-Measure

SVM (Linear) 0.46 0.41 0.46 0.42
SVM (poly) 0.41 0.53 0.43 0.33
SVM (rbf) 0.59 0.60 0.60 0.58

Random Forest 0.74 0.76 0.75 0.75
Naive Bayes 0.44 0.48 0.44 0.42

K-NN 0.80 0.80 0.80 0.80
Proposed CNN 0.85 0.85 0.85 0.85

Table 5. Performance metrics for MAHNOB (the average performance results for training and testing
on same subject).

Model Accuracy Precision Recall F-Measure

SVM (Linear) 0.49 0.48 0.50 0.43
SVM (poly) 0.47 0.49 0.48 0.36
SVM (rbf) 0.55 0.53 0.56 0.51

Random Forest 0.68 0.70 0.70 0.70
Naive Bayes 0.37 0.43 0.39 0.35

K-NN 0.74 0.76 0.75 0.75
Proposed CNN 0.81 0.81 0.81 0.81

Table 6. Performance metrics for MAHNOB (the average performance results for training and testing
on different subjects).

Model Accuracy Precision Recall F-Measure

SVM (Linear) 0.34 0.47 0.34 0.37
SVM (poly) 0.36 0.70 0.37 0.42
SVM (rbf) 0.41 0.53 0.42 0.45

Random Forest 0.64 0.65 0.65 0.65
Naive Bayes 0.27 0.43 0.27 0.33

K-NN 0.72 0.73 0.73 0.72
Proposed CNN 0.78 0.78 0.78 0.78

Table 7. Performance metrics for DEAP (the average performance results for training and testing on
different subjects).

Model Accuracy Precision Recall F-Measure

SVM (Linear) 0.40 0.41 0.40 0.31
SVM (poly) 0.39 0.41 0.39 0.28
SVM (rbf) 0.44 0.50 0.44 0.40

Random Forest 0.69 0.70 0.69 0.69
Naive Bayes 0.36 0.31 0.36 0.28

K-NN 0.75 0.76 0.75 0.76
Proposed CNN 0.82 0.83 0.82 0.83

http://www.numpy.org/
https://scikit-learn.org/
https://keras.io/
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Table 8. Confusion matrix for both MAHNOB and DEAP (the average performance results for training
and testing on same subjects).

Class C1 C2 C3 C4

C1 0.861 0.057 0.071 0.046
C2 0.062 0.808 0.059 0.034
C3 0.039 0.050 0.878 0.017
C4 0.045 0.063 0.042 0.866

C1: High Valence/High Arousal (HVHA), C2: High Valence/Low Arousal (HVLA), C3: Low Valence/Low
Arousal (LVLA) and C4: Low Valence/High Arousal (LVHA).

Table 9. Confusion matrix for both MAHNOB and DEAP (the average performance results for training
and testing on different subjects).

Class C1 C2 C3 C4

C1 0.762 0.177 0 0.146
C2 0.049 0.685 0 0.077
C3 0.004 0 0.705 0.017
C4 0.108 0.126 0.058 0.857

C1: High Valence/High Arousal (HVHA), C2: High Valence/Low Arousal (HVLA), C3: Low Valence/Low
Arousal (LVLA) and C4: Low Valence/High Arousal (LVHA).

6. Discussion

Aiming at highlighting the contribution of this work, other works should be considered and
analyzed. However, it is not easy to make such a comparison due to the fact that (a) other works may
combine other types of physiological signals and they do not use only EDA, and (b) the reaction and
the response of EDA does highly depend on the stimuli type, which showed better results when the
stimuli is an acoustic one [18].

To our knowledge, this study shows for the first time that developing a subject-independent
human emotion recognition using only EDA signals with a promising recognition rate is possible. It is
also worthwhile noting that we were able to,

• increase the f-measure for subject-independent classification to 78% and 81% for MAHNOB and
DEAP respectively (4 classes/labels).

• increase the f-measure for subject-dependent classification have been increased to 83% and 85%
for MAHNOB and DEAP respectively (4 classes/labels).

In the state-of-the-art, researchers in [22] tested a deep-learning model which consists of RNN and
CNN which showed a Concordance Correlation Coefficient (CCC) [44] of 0.10 on the arousal dimension
and 0.33 on the valence dimension based on EDA only. They used AVEC 2016 dataset [23,24].

In addition, in [27], they reported an emotion recognition analysis using only the EDA signal for
subject-dependent with an accuracy of 56.5% for the arousal dimension and 50.5% for the valence
dimension based on four songs stimuli. In [18], authors suggested a system which can achieve a
recognition accuracy of 77.33% on the arousal dimension, and 84% on the valence dimension based on
three emotional states induced by affective sounds taken from IADS collection [45].

Furthermore, it should be mentioned that the binary classification (passive/active cases) of EDA
signals showed high results as in [28] with an accuracy of 95% using SVM and an accuracy of 80%
using CNNs in [29].

However, getting such a high performance for two classes is expected where other studies showed
clearly that EDA signals for active and passive states form clear patterns compared to the 4 classes of
arousal and valence for emotion recognition [46]. Table 10 shows a summary of the state-of-the-art
for EDA-based emotion detection regarding, experiment, number of classes, used classifiers, and the
reported accuracy.
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Table 10. A summary of the state-of-the-art results using only EDA.

Paper Experiment Number of Classes Classifier Used Arousal Valence Accuracy (Both)

[27] Subject-dependent 4 Genetic algorithm and K-NN 0.56 0.50 –
[18] Subject-independent 3 K-NN 0.77 0.84 –
[28] Subject-independent 2 SVM – – 0.95
[29] Subject-dependent 2 CNN – – 0.80
[22] Subject-independent 2 CNN 0.10 0.33 –

Proposed CNN Subject-independent (DEAP) 4 CNN – – 0.82
Proposed CNN Subject-independent (MAHNOB) 4 CNN – – 0.78
Proposed CNN Subject-dependent (DEAP) 4 CNN – – 0.85
Proposed CNN Subject-dependent (MAHNOB) 4 CNN – – 0.81

SVM: Support Vector Machine, K-NN: K-Nearest Neighbor, CNN: Convolutional Neural Network.

Additionally, analyzing the results of the state-of-art, clearly, feature engineering for
subject-independent and subject-dependent human emotion detection based on EDA does not lead
to high performance. In particular, when the number of classes is higher than two. This is because
extracting the sympathetic response patterns which are part of each emotion is difficult. Furthermore,
when trying to overcome this fact by analyzing more basic features such as level, response amplitude,
rate, rise time, and recovery time, they discard flexible elicited behavior which might improve emotion
recognition. Therefore, it has been proven in this work that DL can overcome this drawback quite well.

Regarding the point of testing the proposed model using different datasets from different labs,
it is because human emotions do not form similar patterns. Consequently, the research community
should develop generalized models to recognize human emotions, where subjects, elicitation materials,
and physiological sensors brands are different from the ones involved in the initial training. Dealing
with such research question has an important impact for human support in the frame of smart
environments in different applications.

Concerning, human emotion recognition with respect to different lab–settings, in [30], authors
showed that adjusting and manipulating the feature space to bring both datasets to a homogeneous
feature space as a pre–processing step may increase the overall performance even when datasets come
from different labs.

Moreover, in [47], they checked the ability of 504 school children aged between 8 and 11 years
old to recognize the emotions of facial expressions based on pictures. The overall performance was
approximately 86% to recognize anger, fear, sadness, happiness, disgust, and neutral facial expressions.
It is impressive to see that the proposed automated EDA-based emotion recognition system is close to
the performance of human capability to interpret the facial expressions.

7. Conclusions

This study can be considered to be a basic contribution in terms of overcoming the generalization
problem for human emotion recognition. The aim was to show the feasibility and the possibility of
building such generalized models for relevant application contexts. Furthermore, this study examined
the less intrusive sensors based on statistical analyses in real-life datasets and reviewed various
state-of-the-art approaches to human emotion recognition in smart home environments.

Additionally, emotion recognition is a cornerstone of advanced intelligent systems for monitoring
a subject’s comfort. Thus, information on a subject’s emotion and stress level is a key component for
the future of smart AAL environments.

In our future work, we will focus on human emotion recognition using EDA with respect to
different lab–settings, which means, we will try to build a generalized approach which should be
trained using lab–settings X and tested using lab–settings Y. Additionally, we plan to combine Stacked
Sparse Auto Encoders with CNN. Moreover, CNN essentially learns local (spatial) features. On the
other side, RNN does in essence rather learn temporal features. Consequently, combining both neural
network concepts will result in a neuro-processor which can learn both contextual dependencies (i.e.,
spatial and temporal) from inputted local features. As a result, such a combination does potentially
improve the overall performance.
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