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Abstract: In this paper, a MIMO (Multi-Input Multi-Output) fuzzy sliding mode control method is
proposed for a three-axis inertially stabilized platform. This method is based on the MIMO coupling
model of the three-axis inertially stabilized platform in which the dynamic coupling among the three
frames, namely the azimuth frame, the pitch frame and the roll frame, is fully considered. Firstly,
the dynamic equation of the three-axis inertially stabilized platform is analyzed and its linearized
model is obtained. After this, the controller is designed based on the model, during which fuzzy
logic is introduced to deal with the frame coupling and the adaptive fuzzy coupling compensation
factor is designed to be part of the algorithm. A complete proof of the stability and convergence is
also provided in this paper. Finally, the performance of the platform with a MIMO fuzzy sliding
mode controller and PI controller is analyzed. The simulation results show that the proposed scheme
can guarantee tracking accuracy and effectively suppress the coupling interference between the
three frames.
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1. Introduction

As a very important UAV mission load, the inertially stabilized platform is widely used in
the fields of aerial reconnaissance, target indication and positioning, strike calibration, battlefield
damage assessment, aerial surveying and mapping [1]. An inertially stabilized platform with good
performance can effectively isolate the disturbances occurring in the aircraft in addition to establishing
a stable spatial orientation for the optical load’s line of sight and the stable tracking of the designated
target. However, due to internal and external disturbances, such as carrier disturbance, friction,
mass imbalance, airflow disturbance, output torque fluctuation, engine vibration and the complex
frame structure and coupling relationship, it is not easy to achieve high performance control of the
system [2–5].

In engineering applications, the most widely used controllers are still traditional linear controllers,
such as PID and lead-lag [6–8]. This type of controller has several advantages, being relatively
convenient and easy to use. Additionally, they are relatively mature due to years of development and
improvement of the applications on the inertially stabilized platform and can achieve good results.
However, when it is necessary to further improve the system performance, such controllers have
limitations. Firstly, the traditional linear controllers have limited ability to control the various internal
and external disturbances and non-linear effects on the inertially stabilized platform and the controller.
This depends on whether the accuracy models fully consider the effects of unmodeled dynamics and
system parameter changes or not. Secondly, in traditional applications, the control effect of the single
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control of each frame is not ideal for MIMO systems that have coupling across multiple degrees of
freedom [9–11].

In theory, the sliding mode can be designed according to the current requirements and it has
nothing to do with the disturbance in the system and the change or perturbation of the system
parameters. That is to say, the design of this sliding mode is invariant to the disturbance [12,13].
Therefore, sliding mode variable structure control is very suitable for an inertially stabilized platform
with complex working conditions and it has been a hot topic in academic research. However,
the problem of chattering exists in sliding mode control, which should be focused on in practical
applications [14–16]. A previous study [17] used a saturated function instead of a switching function
to form the basic boundary layer, which effectively weakens the chattering effect. In reference [18], an
adaptive adjustment is made to the boundary layer thickness, which is further combined with fuzzy
rules to achieve a better buffeting weakening effect. In order to solve the problem of the high switching
gain in sliding mode control law being able to easily cause the chattering effect of the system, a sliding
mode control based on a disturbance observer is designed for the servo system with strong disturbance
in reference [19]. By the feedforward compensation of the disturbance observer, the switching gain of
sliding mode control law is effectively reduced and the chattering effect of the system is weakened.

In addition to deal with a complex and large disturbance working environment, this paper
designs a MIMO fuzzy sliding mode control method for the three-axis inertially stabilized platform
with consideration of the incomplete decoupling and unmodeled coupling between the multiple
degrees of freedom that is caused by the separate control of each frame in traditional applications.
The algorithm fully considers the dynamic coupling among the three frames of the research object.
The main feature of the method is that the chattering effect of sliding mode control can be reduced
while the coupling compensation is carried out using fuzzy logic [20–22].

This paper is organized as follows: in Section 2, we establish the dynamic model of the three-axis
inertially stabilized platform and obtain its linear form. In Section 3, the MIMO fuzzy sliding mode
control method is designed based on the model and a complete analysis is provided. A series of
simulations validate the effectiveness of the controller in Section 4. Finally, our conclusions are
presented in Section 5.

2. Dynamic Model of a Three-Axis Inertially Stabilized Platform

The research object of this paper is a three-axis inertially stabilized platform. As shown in Figure 1,
from the outside to the inside, they are respectively the azimuth frame, roll frame and pitch frame.
This platform is essentially created by inserting a roll frame into the two-frame platform of azimuth
and pitch.
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Figure 1. Three-axis airborne inertially stabilized platform. 
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The three-axis inertially stabilized platform is a system with strong coupling [23–25]. Before the
establishment of the mathematical model, we need to make the following assumptions:

(1) Ignoring the elastic deformation of frame structures, each frame structure is analyzed according
to the rigid body.

(2) The rotation axes of each frame intersect in space and the two adjacent frame shafts are
strictly orthogonal.

Four coordinate systems need to be established:

(1) The base coordinate system OxByBzB (also known as the UAV coordinate system), which is
fixedly connected with the base;

(2) The azimuth frame coordinate system OxAyAzA, which is fixedly connected with the
azimuth frame.

(3) The rolling frame coordinate system OxRyRzR, which is fixedly connected with the rolling frame.
(4) The pitching frame coordinate system OxEyEzE, which is fixedly connected to the pitching frame.

The rotation angle of the azimuth frame relative to the base is defined as the azimuth angle θA;
the rotation angle of the rolling frame relative to the azimuth frame is the rolling angle θR; and the
rotation angle of the pitching frame relative to the rolling frame is the pitching angle θE. The coordinate
transformation relationship is shown in Figure 2.
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Figure 2. Three-axis coordinate transformation relationship.

The positive direction of the specified angle follows the right-hand rule. The transformation
matrices can be expressed as follows:

RBA =

 cos θA sin θA 0
− sin θA cos θA 0

0 0 1

, RAR =

 1 0 0
0 cos θR sin θR

0 − sin θR cos θR

, RRE =

 cos θE 0 − sin θE

0 1 0
sin θE 0 cos θE

 (1)

where RBA is the transformation matrix from the base to azimuth frame; RAR is the transformation
matrix from the azimuth frame to the roll frame; and RRE is the transformation matrix from the roll
frame to the pitch frame.

The angular velocities of the base, azimuth frame, roll frame and pitch frame in a relative inertia
space are defined respectively as ωB, ωA, ωR and ωE. They can be written in the vector form as follows:

ωB =

 ωBx
ωBy
ωBz

, ωA =

 ωAx
ωAy
ωAz

, ωR =

 ωRx
ωRy
ωRz

, ωE =

 ωEx
ωEy
ωEz

 (2)
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According to the rotation relation, the following relations can be obtained between ωB, ωA, ωR
and ωE:

ωA = RBAωB +

 0
0
.
θA

, ωR = RARωA +


.
θR
0
0

, ωE = RREωR +

 0
.
θE
0

 (3)

The rotational inertia of the three frames of the inertially stabilized platform, namely the azimuth
frame, the roll frame and the pitch frame, are respectively defined as JA = diag

{
JAxx JAyy JAzz

}
,

JR = diag
{

JRxx JRyy JRzz

}
and JE = diag

{
JExx JEyy JEzz

}
while all the torques acting

on three shafts (i.e., the azimuth, pitch and roll shafts) are defined as TA =
[

TAx TAy TAz

]T
,

TR =
[

TRx TRy TRz

]T
, TE =

[
TEx TEy TEz

]T
, respectively.

According to the rigid body dynamics equation, the elevation frame equation of the three-axis
inertially stabilized platform can be obtained as follows:

JE
.

ωE + ωE × JEωE = TE (4)

where TE can be expanded as:

TE =

 TEx
TEy
TEz

 =

 TEx
TEdrive − TE f ric

TEz

 (5)

where TEx and TEz are the reaction torques acting on the pitch frame; TEdrive is the driving torque of
the pitching frame motor; and TE f ric is the friction torque. Considering the control accuracy, cost and
miniaturization, the Permanent Magnet Synchronous Motor (PMSM) is used to drive and control the
three frame axes of the three-axis inertially stabilized platform. The current loop is used in the inner
loop of the control loop and the bandwidth of the current loop is high enough that the output torque
of the motor can be modeled as a proportional function of the control current.

The effect of friction on a system is very complex. Thus, in order to simplify the analysis, the
friction torque TE f ric is divided into linear and nonlinear parts. These parts are expressed as follows:

TE f ric = TE f 0 + KE f
.
θE (6)

By expanding the second line of Equation (4) and introducing Equations (5) and (6), the dynamic
equation of the pitching frame can be obtained.

JEyy
.

ωEy + ωExωEz(JExx − JEzz) = TEdrive − TE f 0 − KE f
.
θE (7)

In addition, according to Equations (1) and (3), we can obtain the following:

.
θE = ωEy + ωBx sin θA cos θR −ωBy cos θA cos θR −ωBz sin θR −

.
θA sin θR (8)

From Equations (7) and (8), we can obtain the following:

JEyy
.

ωEy + KE f ωEy + ωExωEz(JExx − JEzz) = TEdrive − TE f 0

−KE f (ωBx sin θA cos θR −ωBy cos θA cos θR −ωBz sin θR −
.
θA sin θR)

(9)

According to the analysis of the system, we know that the controlled targets of the three-axis
inertially stabilized platform are the angular velocities

.
ωEx,

.
ωEy and

.
ωEz of the pitching frame

(the innermost frame). The driving torques are the driving torques of the motor on the pitching axis,
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the roll axis and the azimuth axis. The disturbance comes from the angular velocities ωBx, ωBy and
ωBz of the carrier and the disturbance of friction on the system shafting. Similar to the pitch frame,
the dynamic equation of the rolling frame and the azimuth frame can be expressed as:

JR
.

ωR + ωR × JRωR = TR + TRD (10)

JA
.

ωA + ωA × JAωA = TA + TAD (11)

Similarly, TR and TA can be expanded as follows:

TR =

 TRx
TRy
TRz

 =

 TRdrive − TR f ric
TRy
TRz

, TA =

 TAx
TAy
TAz

 =

 TAx
TAy

TAdrive − TA f ric

 (12)

It is important to note the disturbances TRD =
[

TRDx TRDy TRDz

]T
and TAD =[

TADx TADy TADz

]T
The former represents the projection of the torque acting on the pitch frame

on the rolling frame, while the latter represents the projection of the torque acting on the pitch frame
and the rolling frame on the azimuth frame.

After this, the first and third lines of Equations (10) and (11) are expanded, respectively.
By derivation, the dynamic equations of the rolling frame and azimuth frame can also be obtained:

(JRxx cos θE)
.

ωEx + [
.
θE sin θE

(
JRzz − JRyy − 1

)
+ KR f cos θE]ωEx

+(JRxx sin θE)
.

ωEz + [JRxx
.
θE cos θE −

.
θE cos θE(JRzz − JRyy) + KR f sin θE]ωEz

− sin θE(JRzz − JRyy)ωExωEy + cos θE(JRzz − JRyy)ωEyωEz

= TRDx + TRdrive − TR f 0 + KR f (ωBx cos θA + ωBy sin θA)

(13)

(−JAzz sin θE cos θR)
.

ωEx + (−JAzz
.
θE cos θE cos θR + JAzz

.
θR sin θE sin θR

+
.
θE cos θE cos θR −

.
θR sin θE sin θR − KA f sin θE cos θR)ωEx + (JAzz sin θR)

.
ωEy

+(JAzz
.
θR cos θR −

.
θR cos θR + KA f sin θR)ωEy + (JAzz cos θE cos θR)

.
ωEz

+(−JAzz
.
θE sin θE cos θR − JAzz

.
θR cos θE sin θR −

.
θE sin θE cos θR

+
.
θR cos θE sin θR + KA f cos θE cos θR)ωEz + sin θE cos θE sin θRω2

Ex

+ sin θE cos θE sin θRω2
Ez + (cos θE cos θR)ωExωEy + (− cos2 θE sin θR

+ sin2 θE sin θR)ωExωEz + (sin θE cos θR)ωEyωEz − JAzz
..
θE sin θR

−JAzz
.
θE

.
θR cos θR +

.
θE

.
θR cos θR = TADz + TAdrive − TA f 0 + KA f (

.
θE sin θR + ωBz)

(14)

Equations (9), (13) and (14) are the dynamic equations of the three-axis inertially stabilized
platform. The input of the model is the motor driving torque of the azimuth frame, the pitch frame
and the roll frame. The controlled variable of the system is the angular velocity of the pitching frame
relative to the inertia space, while the disturbance comes from the angular velocity of the aircraft,
the coupling and friction between the frames, etc.

However, because the equation is too complex and contains a large number of quadratic terms of
controlled variables, it is very difficult to design the controller. Thus, we simplify the model in a way
that is similar to linearizing the equilibrium point, ignoring the quadratic term. As a result, we can
obtain the following:

G
..
ψ + C

.
ψ = TDrive + Td (15)
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where ψ =
∫ t

0 ωE(τ)dτ =
[

ψEy ψEx ψEz

]T
represents the angle of pitch frame relative to inertia

space. The other parameters are defined as follows:

G =

 g11 0 0
0 g23 g25

g31 g33 g35

, C =

 g12 0 0
0 g24 g26

g32 g34 g36

, TDrive =

 TEdrive
TRdrive
TAdrive

, Td =

 Tdy
Tdx
Tdz

 (16)

Tdy = −KE f [(ωBx sin θA −ωBy cos θA) cos θR − (ωBz +
.
θA) sin θR]− TE f 0

Tdx = TRDx − TR f 0 + KR f (ωBx cos θA + ωBy sin θA)

Tdz = JAzz
..
θE sin θR + (JAzz − 1)

.
θE

.
θR cos θR + TADz − TA f 0 + KA f (

.
θE sin θR + ωBz)

(17)

g11 = JEyy
g12 = KE f

g23 = JRxx cos θE

g24 =
.
θE sin θE(JRzz − JRyy − 1) + KR f cos θE

g25 = JRxx sin θE

g26 = JRxx
.
θE cos θE −

.
θE cos θE(JRzz − JRyy) + KR f sin θE

g31 = JAzz sin θR

g32 =
.
θR cos θR(JAzz − 1) + KA f sin θR

g33 = −JAzz sin θE cos θR

g34 = (1− JAzz)
.
θE cos θE cos θR + (JAzz − 1)

.
θR sin θE sin θR − KA f sin θE cos θR

g35 = JAzz cos θE cos θR

g36 = (1− JAzz)
.
θR cos θE sin θR − (JAzz + 1)

.
θE sin θE cos θR + KA f cos θE cos θR

(18)

3. Design of the MIMO Fuzzy Sliding Mode Controller

Define the position error vector of the pitch frame relative to the inertia space of the three-axis
inertially stabilized platform:

e = ψ−ψd (19)

where ψd =
[

ψdy ψdx ψdz

]
∈ R3×1 is the desired position vector. Without loss of generality,

suppose that ψd is a second order continuous differentiable function.
Let the sliding mode function be:

s =
.
e + ce (20)

where c is a positive definite diagonal array:

c =

 c1 0 0
0 c2 0
0 0 c3

 (21)

where c1, c2, c3 > 0. Thus, according to Equations (19) and (20), we can obtain the following:

.
ψ =

.
ψd + s− ce (22)



Sensors 2019, 19, 1658 7 of 16

and:
..
ψ =

..
ψd +

.
s− c

.
e (23)

After substituting Equations (22) and (23) into (15), the system model becomes:

G
.
s = G(c

.
e−

..
ψd)− c(

.
ψd + s− ce) + TDrive + Td (24)

Design the three-axis inertially stabilized MIMO fuzzy sliding mode control law as follows:

TDrive = −(uo + uc) (25)

where uo = (a + σ)s is the output compensation control amount; a = diag
{

a1 a2 a3

}
is the real

coefficient matrix, a1, a2, a3 > 0; and σ = diag
{

σ1 σ2 σ3

}
is an adaptive compensation coefficient

matrix. The second item in Equation (25) uc =
[

uc1 uc2 uc3

]T
is the output of fuzzy control

introduced for the coupling between the three frameworks of the platform.
The design of the coupled fuzzy control quantity is introduced below [26,27]. The typical five-level

fuzzy segmentation, which includes NB, NM, ZE, PM and PB, is selected for the input and output of
the fuzzy inference system. The fuzzy rules are as follows:

If si is NB, then u f i is NB

If si is NM, then u f i is NM

If si is ZE, then u f i is ZE

If si is PM, then u f i is PM

If si is PB, then u f i is PB

where si, i = 1, 2, 3 is the row element of the sliding mode function s, that is s =
[

s1 s2 s3

]T
.

Furthermore, u f i, i = 1, 2, 3 are the outputs of the fuzzy inference system.
The selection of the membership function is empirically determined. The triangle membership

function is selected as the input membership function and the single-value membership function is
selected as the output membership function. The function curve is shown in Figure 3.
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s

φ μ

μ

=

=
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


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The defuzzification process of the fuzzy inference system is determined to be the weighted
average method. The output of this method can be expressed as:

u f i =

5
∑

R=1
φiRµR(si)

5
∑

R=1
µR(si)

, i = 1, 2, 3 (26)

where R = 1, 2, · · · , 5 is the number of fuzzy rules; µR(si) is the input membership function
corresponding to the R-th rule; and φiR is the output membership function corresponding to the
R -th rule. For the convenience of subsequent writing and discussion, we rewrite Equation (26) as:

u f i = φi
TYi, i = 1, 2, 3 (27)

where φi =
[

φi1 φi2 φi3 φi4 φi5

]T
, Yi =

[
Yi1 Yi2 Yi3 Yi4 Yi5

]T
and Yi =

µR(si)
5
∑

R=1
µR(si)

, i = 1, 2, 3.

There is a serious coupling relationship between the frame axes of the three-axis inertially
stabilized platform. In order to obtain the control effects with high precision, the coupling must
be processed. In this paper, an adaptive fuzzy coupling compensation factor is adopted. The coupling
compensation structure is shown in Figure 4 where fij represents the coupling compensation factor of
the j-th output to the i-th coupling compensation term uci of the fuzzy inference system.
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After this, the coupling compensation term uc in Equation (25) can be expressed as:

uci =
3

∑
j=1

fiju f j =
3

∑
j=1

fiju f jφj
TYj, i = 1, 2, 3 (28)

where the adaptive laws of fij and σi are:

.
f ij = γijsiu f j (29)

.
σi = ηis2

i (30)

and γij, ηi > 0, i, j = 1, 2, 3 is the proportional coefficient [26].
The structure of the MIMO fuzzy sliding mode control system with coupled adaptive

compensation for the three-axis inertially stabilized platform is shown in Figure 5.
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The stability and convergence of the three-axis inertially stabilized platform system described
by Equation (15) under the action of control law (25), adaptive law (29) and (30) are demonstrated
below [28].

Define the Lyapunov function as:

V = sTGs +
1
2

n

∑
i=1

n

∑
j=1

1
γij

f̃ 2
ij +

1
2

n

∑
i=1

1
ηi

σ̃2
i , n = 3 (31)

where f̃ij is the coupling compensation factor estimation error and σ̃i is the output compensation factor
estimation error.

Considering the first item on the right end of Equation (31), we define the following:

V1 = sTGs (32)

After this, we obtain:
.
V1 =

.
sTGs + sT

.
Gs + sTG

.
s

= sT(w
.
sTGs +

.
Gs + G

.
s)

= sT(B + TDrvie)

= sT [B− (a + σ)s− uc]

(33)

where w =
[

1/3s1 1/3s2 1/3s3

]T
and B = w

.
sTGs +

.
Gs + G(c

.
e−

..
ψd) − c(

.
ψd + s− c

.
e) + Td.

Thus, we can obtain:

.
V =

.
V1 +

3
∑

i=1

3
∑

j=1

1
γij

f̃ij

.

f̃ ij +
1
2

3
∑

i=1

1
ηi

σ̃i
.
σ̃i

=
3
∑

i=1
si(Bi − aisi − σisi − uci) +

3
∑

i=1

3
∑

j=1

1
γij

f̃ij

.

f̃ ij +
3
∑

i=1

1
ηi

σ̃i
.
σ̃i

(34)

where Bi is the row element of B. If we define f ∗ij as the optimal estimated coupling compensation
factor for B, there must be an optimal estimation error εi > 0 that satisfies the following conditions:∣∣∣∣∣Bi −

3

∑
i=1

f ∗iju f i

∣∣∣∣∣ ≤ εi (35)

Thus, f̃ij can be expressed as:
f̃ij = fij − f ∗ij (36)
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Substituting Equation (36) into Equation (28), we can obtain the following:

uci =
3

∑
j=1

f̃iju f j+
3

∑
j=1

f̃ ∗iju f j, i = 1, 2, 3 (37)

Define σ∗i |si| as the upper bound of εi, that is:

εi ≤ σ∗i |si|, i = 1, 2, 3 (38)

After this, σ̃i can be expressed as:
σ̃i = σi − σ∗i (39)

After substituting Equations (37) and (39) into Equation (34), we obtain the following:

.
V =

3
∑

i=1
si

[
Bi − aisi − (σ̃i + σ∗i )si −

3
∑

j=1
f̃iju f j−

3
∑

j=1
f ∗ iju f j

]

+
3
∑

i=1

3
∑

j=1

1
γij

f̃ij

.

f̃ ij +
3
∑

i=1

1
ηi

σ̃i
.
σ̃i

= −
3
∑

i=1
ais2

i +
3
∑

i=1

[
si

(
Bi −

3
∑

j=1
f ∗ iju f j

)
− siσ

∗
i si

]

+
3
∑

i=1

3
∑

j=1

(
1

γij
f̃ij f̃ ij − si f̃iju f j

)
+

3
∑

i=1

(
1
ηi

σ̃iσ̃i − σ̃is2
i

)
(40)

By combining Equations (35) and (38), we can obtain:

si

(
Bi −

3

∑
j=1

f ∗ iju f j

)
≤ |si|

∣∣∣∣∣Bi −
3

∑
j=1

f ∗ iju f j

∣∣∣∣∣ ≤ |si|wi (41)

|si|wi ≤ σ∗i s2
i (42)

According to Equations (40)–(42), we can determine the following:

.
V ≤ −

3
∑

i=1
ais2

i +
3
∑

i=1

(
|si|εi − siσ

∗
i si
)

+
3
∑

i=1

3
∑

j=1

(
1

γij
f̃ij f̃ ij − si f̃iju f j

)
+

3
∑

i=1

(
1
ηi

σ̃iσ̃i − σ̃is2
i

)
≤ −

3
∑

i=1
ais2

i +
3
∑

i=1

3
∑

j=1

(
1

γij
f̃ij f̃ ij − si f̃iju f j

)
+

3
∑

i=1

(
1
ηi

σ̃iσ̃i − σ̃is2
i

)
(43)

By combining Equations (36) and (39) as well as the adaptive laws (29) and (30), we can obtain:

.

f̃ ij =
.
f ij = γijsiu f j (44)

.
σ̃i =

.
σi = ηis2

i (45)



Sensors 2019, 19, 1658 11 of 16

Therefore, Equation (43) becomes:

.
V ≤ −

3
∑

i=1
ais2

i +
3
∑

i=1

3
∑

j=1

(
1

γij
f̃ij f̃ ij − si f̃iju f j

)
+

3
∑

i=1

(
1
ηi

σ̃iσ̃i − σ̃is2
i

)
= −

3
∑

i=1
ais2

i +
3
∑

i=1

3
∑

j=1

(
1

γij
f̃ijγijsiu f j − si f̃iju f j

)
+

3
∑

i=1

(
1
ηi

σ̃iηis2
i − σ̃is2

i

)
= −

3
∑

i=1
ais2

i

(46)

As ai > 0, i = 1, 2, 3, thus we obtain the following:

.
V ≤ −

3

∑
i=1

ais2
i < 0 (47)

According to the stability theory of Lyapunov, the stability and convergence are proved.

4. Experiments and Results

The experimental tests of the three-axis inertially stabilized platform are carried out in order to
provide a comparison of the MIMO fuzzy sliding mode controller designed in this paper with the
PI controller with each frame controlled separately. The experimental system is shown in Figure 6.
The platform being tested is installed in the innermost frame of a five-axis swing table and the
three-axis swing table inside the five-axis swing table is used to simulate the disturbance from the
carrier. A three-axis gyroscope with high precision that is integrated in the innermost pitch frame
of the three-axis inertially stabilized platform is used to measure the angular velocity of the system
relative to the inertial space. An angle sensor is also provided on each frame axis with a resolution
of 360/219. The ground test system is used for debugging and data acquisition. Both of the tested
controllers are implemented in DSP(TMS320F28335) using C language and the debugging software
is CCS6.0.

In addition to testing the anti-disturbance performance of the system, the coupling between the
three frameworks is emphatically tested. For example, when the azimuth frame tracks the input
signal, the difference between the actual angular velocity and the input signal is the tracking error
and the actual angular velocity of the pitch and roll frames is the coupling interference output.
The carrier disturbance signal added in the experiment is calculated as follows: ωBx = ωBy = ωBz =

2π cos(2πt)(◦/s).
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We used the following parameters for the two controllers: (1) PI controller: Azimuth frame with
KAP = 8 and KAI = 20; Roll frame with KRP = 6 and KRI = 20; Pitch frame with KEP = 6 and KEI = 6.
(2) MIMO fuzzy sliding mode controller: c1 = c2 = c3 = 10, η1 = η2 = η3 = 16, a1 = a2 = a3 = 1,

fij(0) = σi(0) = 0 and γ =

 10 1 1
1 10 1
1 1 10

.

The experimental results from the azimuth frame tracking the input signal are shown in Figure 7.
Figure 7a is the angular velocity tracking curve of the azimuth frame, Figure 7b is the azimuth frame
tracking error curve, Figure 7c is the actual angular velocity output of the pitch frame and Figure 7d is
the actual angular velocity output of the roll frame.
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Figure 7. Angular velocity output when the azimuth frame tracks orders.

The experimental results from the pitching frame tracking the input signal are shown in Figure 8.
Figure 8a is the angular velocity tracking curve of the pitching frame, Figure 8b is the tracking error
curve of the pitching frame, Figure 8c is the actual angular velocity output of the azimuth frame and
Figure 8d is the actual angular velocity output of the rolling frame.
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The experimental results from the rolling frame tracking the input signal are shown in Figure 9.
Figure 9a is the angular velocity tracking curve of the rolling frame, Figure 9b is the tracking error
curve of the rolling frame, Figure 9c is the actual angular velocity output of the azimuth frame and
Figure 9d is the actual angular velocity output of the pitching frame.
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Figure 9. Angular velocity output when the roll frame tracks orders.

It can be seen from the maximum value of the error curve and coupling output curve that the
MIMO fuzzy sliding mode control method designed in this paper has advantages in terms of both
the angular velocity tracking error of each frame and the coupling between them. In order to further
investigate and quantitatively compare the experimental results, the integral absolute error (IAE) and
the integral square error (ISE) are introduced [29]. ISE and IAE are defined as:

IAE =
∫ T

0
|e(t)|dt (48)

ISE =
∫ T

0
|e(t)|2dt (49)

where e(t) is the measured error. The units of IAE and ISE are
◦
/s and (

◦
/s)2, respectively.
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The results of the tracking error analysis are provided in Table 1, which indicates that the errors in
the MIMO fuzzy sliding mode controller reach their minimum compared to those in the PI controller.
This demonstrates the superiority of the proposed method in this paper.

Table 1. Tracking error analysis results.

Azimuth Tracking Error Pitch Tracking Error Roll Tracking Error

PI MIMO PI MIMO PI MIMO

IAE 0.04946 0.03487 0.08912 0.02613 0.02391 0.01886
ISE 0.0004632 0.00003871 0.0007954 0.00002871 0.0001934 0.0000845

The results of the coupling interference analysis are provided in Table 2. They indicate that the
MIMO fuzzy sliding mode controller has stronger coupling suppression ability.

Table 2. Coupling interference analysis results.

Azimuth Coupling Pitch Coupling Roll Coupling

PI MIMO PI MIMO PI MIMO

Azimuth
Tracking

IAE - - 0.09745 0.03165 0.04237 0.00683

ISE - - 0.0058 0.00069 0.00021 0.0000832

Pitch
Tracking

IAE 0.07382 0.02509 - - 0.02093 0.00482

ISE 0.0043 0.00072 - - 0.00013 0.0000317

Roll
Tracking

IAE 0.03845 0.00541 0.04121 0.00692 - -

ISE 0.00018 0.0000613 0.00022 0.0000854 - -

5. Conclusions

In this paper, the dynamic model of a three-axis inertially stabilized platform is established and
its simplified model is given, in which the dynamic coupling of the three frames is fully considered.
As the focus of this paper, a MIMO fuzzy sliding mode control method is designed to effectively
resist internal and external disturbances. Furthermore, fuzzy logic is introduced to compensate for
the coupling between frames. An experiment was designed to compare the PI controller with the
controller proposed in this paper. The experimental results show that the MIMO fuzzy sliding mode
control method has strong anti-disturbance ability and coupling suppression ability. The design and
analysis method can be applied to the controller design of the three-axis inertially stabilized platform
or other similar systems.
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