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Abstract: In this paper, we propose an averaging pixel current adjustment technique for reducing
fixed pattern noise (FPN) in the bolometer-type uncooled infrared image sensor. The averaging pixel
current adjustment technique is composed of active pixel, reference pixel, and calibration circuit.
Polysilicon resistors were used in each active pixel and reference pixel. Resistance deviation among
active pixels integrated with the same resistance value cause FPN. The principle of the averaging
pixel current adjustment technique for removing FPN is based on the subtraction of dark current of
the active pixel from the dark current of the reference pixel. The subtracted current is converted into
the voltage, which contains pixel calibration information. The calibration circuit is used to adjust
the calibration current. After calibration, the nano-ampere current is output with small deviation.
The proposed averaging pixel current adjustment technique is implemented by a chip composed of
a pixel array, a calibration circuit, average current generators, and readout circuits. The chip was
fabricated using a standard 0.35 µm CMOS process and its performance was evaluated.

Keywords: uncooled infrared image sensor; fixed pattern noise; current calibration

1. Introduction

The bolometer-type uncooled infrared image sensor has recently been researched in various fields
such as defense, medical care, and non-destructive testing [1–3]. Uncooled infrared image sensors
have many advantages in terms of low power consumption, easy integration, and low cost [4–11].
Among the various uncooled infrared image sensors, the bolometer sensor based on micromachining
technology has a higher temperature coefficient of resistance than other sensors. The response of
a bolometer sensor, which is one type of thermal detector, is slow but it does not depend on the
wavelength of infrared light and it can be used at room temperature. Therefore, there is no need for
a thermoelectric cooler that consumes additional power and volume. In addition, various readout
integrated circuits (ROICs) for bolometer-type uncooled infrared image sensors using a standard
CMOS process have been developed [12–14]. Among the various ROICs, the capacitive transimpedance
amplifier (CTIA) is widely used to detect the signal output current of pixels [15]. The bolometer sensor
based on micromachining technology is compatible with the standard CMOS process, but low linearity
and high noise are disadvantages.

Resistance deviation among the resistors integrated in the active pixel and reference pixel causes
serious fixed pattern noise (FPN). In a readout circuit and a signal processing circuit integrated using
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a standard CMOS process, a method for compensating for these deviations is necessary in order to
obtain an efficient infrared image. Various methods have been researched to solve the problem of the
deviation between resistors integrated in the active pixel and reference pixel [16–18].

In this research, in order to compensate the resistance deviation occurring among the pixels of
the bolometer-type uncooled infrared image sensor, the averaging pixel current adjustment technique
was used, which reduces the dark current by averaging the currents generated in the bolometers
of reference pixels in column readout circuits. For verifying the proposed averaging pixel current
adjustment technique, the output nodes of each reference pixel are all tied. As a result, the output
current of the reference pixel in which the light receiving portion is blocked to avoid being affected by
the incident light is averaged. The bolometer resistor in the active pixels and reference pixels has a
dark current component. When the current from each active pixel array is subtracted from the current
from the reference pixel, the dark current of the active pixel can be removed. The averaging pixel
current adjustment technique consists of a reference pixel, active pixel, calibration circuit, and readout
circuit. The entire chip based on the averaging pixel current adjustment technique was fabricated
using a 0.35 µm standard CMOS process and its characteristics were analyzed.

2. Principle of Pixel Averaging Pixel Current Adjustment Technique

Figure 1a shows the schematic of the averaging pixel current adjustment technique. Each unit
pixel is composed of an active pixel, reference pixel and calibration circuit. The bolometer resistors in
the active pixel and reference pixel were integrated using resistors. Figure 1b shows the modeling of the
averaging pixel current adjustment technique. Kirchhoff’s Current Law (KCL) is applied to Node A in
Figure 1a, and the output dark current of the active pixel (IACT) can be subtracted from the output dark
current of the reference pixel (IREF). Additionally, the output current of the calibration circuit (ICAL) can
be adjusted to account for reducing the dark current component. The current obtained by subtracting
the dark current of the active pixel from the dark current of the reference pixel (IREF − IACT) has
deviation information that is generated by the resistance of the active pixel. The principle of detection
and calibration for dark current is explained as follows:

IREF ∝
1

RREF
(1)

IACT ∝
1

RACT
(2)

IACT + ∆I′ACT ∝
1

RACT + ∆R′ACT
(3)

IREF − IACT + ∆I′ACT − ICAL , nA order (4)

where ∆R′ACT is the active bolometer resistance that is occurs by a process deviation and ∆I′ACT is
the deviation of the output dark current of the active pixel. In a unit pixel, the output dark current of
the reference pixel (IREF) is inversely proportional to the reference bolometer resistance (RREF) and
the output dark current of the active pixel (IACT) is inversely proportional to the active bolometer
resistance (RACT). The IACT changes when the RACT in all the unit pixels is changed by the process
deviation. Therefore, the ∆I′ACT that causes the FPN is generated. Additionally, by reducing the
∆I′ACT using the current of the calibration circuit (ICAL), the final output current can be reduced to
nA order.

The deviation information is converted to voltage and digital codes through a current–voltage
converter and an analog–digital converter (ADC), respectively. This deviation information causes
the FPN. The ICAL proportional to the output code of the analog digital converter reduces the IACT .
At this time, if IACT is designed to always be larger or smaller than IREF, the direction of ICAL can be
determined in one direction. When the output code of the ADC is controlled so that ICAL is almost
equal to IREF − IACT , the pixel current offset due to the deviation of each active bolometer resistance is
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eliminated. Considering the characteristics of the current voltage converter, ICAL is controlled so that
the output current offset of each active pixel is nA order.
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Figure 1. (a) Schematic of averaging pixel current adjustment technique (b) modeling of averaging
pixel current adjustment technique.

In order to obtain the deviation information based on the resistance of the active pixel using the
proposed averaging pixel current adjustment technique, the resistance of the reference pixel must be
fixed without any deviation. However, not only the resistor of the active pixel has a process deviation,
but also the resistor of the reference pixel has a process deviation. Figure 2a,b show a block diagram
and a schematic diagram of the averaging current generator using the reference pixel, respectively.
The average current generator was used to remove the offset current caused by resistance deviation
among the resistors integrated in the active pixel. The principle for removing the offset current of the
active pixel using the average current generator is as follows. First, output dark currents (IREF_0, IREF_1,
IREF_N) are generated at Node B of the reference pixels in each unit pixel. At this time, the output dark
currents do not have uniform values due to the process deviation of the reference bolometer in each
reference pixel. Second, output Node B of all the reference pixels is shared so that the output dark
currents have an averaged value. Therefore, the average current (∑N

i=0 IREF_i/N) at node C can be
obtained. Finally, the average current is used as the output dark current of the reference pixel (IREF)
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in Figure 1a. When the number of reference pixels increases, the average current converges to the
average value. In this way, when the active pixel current (IACT) is subtracted using the average current,
FPN is removed.
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Figure 2. (a) Block diagram of averaging current generator using reference pixel, (b) schematic diagram
of averaging current generator using reference pixel.

Figure 3 describes the resistance distribution of the active pixel. A bolometer with resistance
deviations included for each active pixel was implemented with 90 kΩ, 100 kΩ and 110 kΩ resistors
based on 100 kΩ resistances, taking into account 10% resistance deviation in the process. The array
is composed of 4 × 11 active pixels. The bolometer included in the reference pixel consists of only
110 kΩ resistors, and it was fabricated using the standard CMOS process.

Figure 4a shows the layout of the designed readout circuit and Figure 4b shows each column
block diagram of the designed chip. The entire chip is based on column parallel structure. Each
column of the entire chip is composed of buffer memory, line memory, a digital–analog converter
(DAC), a calibration circuit, an active pixel, a reference pixel, a column readout circuit, and an ADC.
The buffer memory, line memory, and DAC are used to control the calibration current (ICAL), which is
a nano-ampere current. The column readout circuit converts current generated in a unit pixel into a
voltage using an integrator based on a two-stage amp.
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Figure 4. (a) Layout of designed readout circuit (b) each column block diagram of designed chip. DAC:
digital analog converter; ADC: analog digital converter.

Figure 5a shows the schematic of the column readout circuit with integrator for current-to-voltage
conversion, and Figure 5b shows the timing diagram of the entire chip. The column readout circuit
is composed of a current buffer for the current generated in the unit pixel, an integrator, a switch
to control the gain of the integrator, a switch to reset the integrator, and a switch for sampling and
selecting. The integrator is designed to control the output voltage gain based on a two-stage amplifier.
The entire chip is based on a column parallel structure. Therefore, after the reset pulse (INTEG_RST)
of the integrator is applied, the integrator output voltage is sequentially obtained for each row of the
pixel. The integration time (Tint) is the time from the reset of the integrator to the end of the operation
of the sampling switch.
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timing diagram of entire chip.

3. Measurement Results and Discussion

In the case of the signal processing circuit of the bolometer-type uncooled infrared image sensor,
it is important that the signal electrons generated by the infrared radiation or dark current of each
pixel obtain the same output voltage for a certain integration time by the integrator. In order to
verify the averaging pixel current adjustment technique, we compared the output current of the
un-calibrated pixel and the integrator output voltage generated by the output current of the calibrated
pixel according to the integration time.

Figure 6a shows the 90 kΩ active pixel output voltage according to the integrator reset voltage
before calibration, and Figure 6b shows the experimental results before and after applying the proposed
averaging pixel current adjustment technique to the 90 kΩ active pixel. The entire pixel array is
composed of 4 × 11 pixels. The active pixel integrated in the entire pixel array has a resistance of
90 kΩ and 110 kΩ, which has a 10% process deviation, randomly integrated based on 100 kΩ. Only a
110 kΩ resistor is integrated in the reference pixel. A 90 kΩ resistor has a 10% process deviation even
at the same resistance value. After the reset of the integrator, the output voltage decreases to VDD/2
(1.65V) according to the input current of the integrator generated by the resistor integrated in the active
pixel. It was confirmed that the output voltage of the integrator before calibration was different for
each active pixel due to the process deviation of the resistance. However, it was also confirmed that
the output voltage of the integrator was nonlinear at the initial point after the reset of the integrator.
Due to clock feedthrough by the integrator reset switch, the nonlinear output voltage is generated.
Furthermore, the integration time is decreased as the deviation of the resistance of the active pixel and
resistance of the reference pixel becomes larger. Therefore, it is assumed that the active pixel to which
the adjustment technique is applied increases the integration time compared with the case where it is
not. When the adjustment technique is applied in Figure 6b, it is confirmed that the uniform output
voltage can be obtained even if the process deviation occurs at each 90 kΩ resistor in the active pixel.
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Figure 7a shows the 100 kΩ active pixel output voltage according to the integrator reset voltage
before calibration and Figure 7b shows the experimental results before and after applying the proposed
averaging pixel current adjustment technique of the 100 kΩ active pixel. Compared with the output
voltage of the integrator when the resistance of the active pixel 90 kΩ, the integration time is relatively
increased. In addition a comparison with the output voltage of the integrator when the active pixel is
90 kΩ, confirms that the error remains after calibration. Compared with the case in which the resistance
of the active pixel is 90 kΩ and the resistance of the active pixel is 100 kΩ, the resistance of the reference
pixel is 110 kΩ, so the IREF − IACT current is relatively low. Therefore, not only the amount of current
to be calibrated but also the absolute amount of deviation is reduced. A comparison of before and
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after the calibration, confirms that the red line increases to about 2 V in a Sample 11 of Figure 7b
because an instantaneous clock feedthrough occurs when the reset switch of the integrator is opened.
The reason the difference between the voltage before and after the calibration is small in the case of
Sample 9 of Figure 7b is that the deviation of the active pixel resistance is about +10%, which is similar
to the resistance of the reference pixel. However, the deviation of the integrator output voltage due
to the resistance deviation based on 100 kΩ is shown in Figure 7a. In addition, it is confirmed that
the resistance deviation among active pixels is also reduced by applying the averaging pixel current
adjustment technique.
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A 3D graph of before and after the proposed averaging pixel current adjustment technique of the
entire array was applied is presented in Figure 8. In the 4x11 array where the resistance of the active
pixel is integrated 90 kΩ, 100 kΩ, and 110 kΩ randomly, the voltage which is on the Z-axis, is the output
voltage of the integrator. Figure 8a shows that before applying the averaging pixel current adjustment
technique, the standard deviation of the integrator output voltage due to the output current among
the active pixels is 0.385. The standard deviation is the deviation amount of each active pixel when the
output voltage of the active pixel is averaged. In addition, the standard deviation is FPN occurring
between the active pixels due to the resistor’s process deviation. Figure 8b is a 3D graph showing after
the averaging pixel current adjustment technique is applied. Compared with Figure 8a, the slope is
relatively gradual and confirmed by measurement. The standard deviation between each active pixel
after applying the averaging pixel current adjustment technique is 0.043. Therefore, it is confirmed that
the proposed averaging pixel current adjustment technique reduces the FPN by about 34%.

Sensors 2019, 19, x FOR PEER REVIEW  10 of 12 

 

A 3D graph of before and after the proposed averaging pixel current adjustment technique of 
the entire array was applied is presented in Figure 8. In the 4x11 array where the resistance of the 
active pixel is integrated 90 kΩ, 100 kΩ, and 110 kΩ randomly, the voltage which is on the Z-axis, is 
the output voltage of the integrator. Figure 8a shows that before applying the averaging pixel current 
adjustment technique, the standard deviation of the integrator output voltage due to the output 
current among the active pixels is 0.385. The standard deviation is the deviation amount of each active 
pixel when the output voltage of the active pixel is averaged. In addition, the standard deviation is 
FPN occurring between the active pixels due to the resistor’s process deviation. Figure 8b is a 3D 
graph showing after the averaging pixel current adjustment technique is applied. Compared with 
Figure 8a, the slope is relatively gradual and confirmed by measurement. The standard deviation 
between each active pixel after applying the averaging pixel current adjustment technique is 0.043. 
Therefore, it is confirmed that the proposed averaging pixel current adjustment technique reduces 
the FPN by about 34%. 

 
(a) 

 
(b) 

Figure 8. 3D graph of before (a) and after (b) applying proposed adjustment technique to the entire 
array. 

  

Figure 8. 3D graph of before (a) and after (b) applying proposed adjustment technique to the
entire array.



Sensors 2019, 19, 1653 11 of 12

4. Conclusions

In this paper, we proposed an averaging pixel current adjustment technique for reducing FPN in
the bolometer-type uncooled infrared image sensor. In order to reduce the resistance deviation causing
the FPN among pixels of the bolometer-type uncooled infrared image sensor, an averaging pixel
current adjustment technique was successfully implemented using a standard 0.35 µm CMOS process.
According to the experimental results, it was confirmed that the standard deviation of the output
voltage according to the resistance of the active pixel was reduced by about 34% when the active pixel
output voltages before and after the calibration were compared. Therefore, it was concluded that the
output offset current according to the deviation of the bolometer resistance of each pixel was reduced
by controlling the output code of the ADC using the proposed technique. We expect the proposed
averaging pixel current adjustment technique to be effectively applied to the bolometer-type uncooled
infrared image sensor for reducing FPN.
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