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Abstract: To improve the processing quality and efficiency of robotic belt grinding, an adaptive
sliding-mode iterative constant-force control method for a 6-DOF robotic belt grinding platform is
proposed based on a one-dimension force sensor. In the investigation, first, the relationship between
the normal and the tangential forces of the grinding contact force is revealed, and a simplified grinding
force mapping relationship is presented for the application to one-dimension force sensors. Next, the
relationship between the deformation and the grinding depth during the grinding is discussed, and a
deformation-based dynamic model describing robotic belt grinding is established. Then, aiming at an
application scene of robot belt grinding, an adaptive iterative learning method is put forward, which
is combined with sliding mode control to overcome the uncertainty of the grinding force and improve
the stability of the control system. Finally, some experiments were carried out and the results show
that, after ten times iterations, the grinding force fluctuation becomes less than 2N, the mean value,
standard deviation and variance of the grinding force error’s absolute value all significantly decrease,
and that the surface quality of the machined parts significantly improves. All these demonstrate that
the proposed force control method is effective and that the proposed algorithm is fast in convergence
and strong in adaptability.

Keywords: robot; abrasive belt grinding; constant-force control; adaptive sliding-mode control;
iterative learning

1. Introduction

As a finishing process, abrasive belt grinding not only achieves high material removal rates, but
also can be used to improve the surface roughness of components [1]. By integrating a multi-degree
industrial robot as a manipulator, a flexible manufacturing cell can be formed, which is especially
suitable for processing surfaces with complicated geometries, such as turbine blades or faucets [2].
It can avoids a series of problems caused by manual grinding and CNC grinding, such as the
health problems caused by the harsh processing environment, low processing efficiency, increasing
labor costs [3], poor stability, and insufficient consistency [4]. Therefore, there have been many
studies on robotic belt grinding, and some of them have addressed the problems of robotic offline
programming [5,6] and robotic trajectory planning [7–9]. These methods can improve the machining
quality of workpieces to some extent. Some related studies have shown that by controlling the required
grinding force, the material removal rate can be indirectly controlled to improve the processing quality
of the workpieces, and the phenomenon of over- and under-cutting of the workpieces caused by an
improper contact force can thereby be avoided [10]. These findings indicate that controlling the normal
contact force is also the key to improving the grinding quality of abrasive belt. Thus, an increasing
number of researchers are attempting to achieve the desired force control.
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To achieve robotic grinding force control, some researchers have adopted passive force control
methods. Li et al. [11] developed an auxiliary pneumatic flexible flange that is mounted at the end of
the industrial robots for the robotic grinding process. Qi et al. [12] proposed the concept of the working
accuracy for an industrial robot application system. On this basis, the working accuracy model of the
grinding process was derived, and a robot operation error measurement and compensation system was
designed to improve the overall performance of an industrial robot belt grinding system. In addition,
Wang et al. [13] analyzed and optimized the dexterity of the robotic belt grinding system. The grinding
quality has been effectively improved through these great studies on the working accuracy of robotic
belt grinding and the force compensation during the grinding, but the dynamic range of the force
response and the accuracy of the robotic end position in the grinding process have been reduced.

To overcome these shortcomings of passive force control, active force control [14] came into being
and has become a major direction in the field of robot research. Currently, the research on robotic
active force control can be essentially divided into two categories: the force control based on traditional
strategies and the force control based on intelligent strategies. The traditional control methods can
be further generally divided into force/position hybrid control [15] and impedance control [16].
Zhang et al. [17] applied force/position hybrid control to a speed servo-based grinding robot, and
controlled the grinding force by adjusting the rotational speed of the robot’s joints. Lahr et al. [18] also
studied the force/position hybrid control of robot grinding force and discussed its feasibility in ceramic
cutting. As for impedance control, Zhang et al. [19] proposed a hybrid passive/active force control
scheme for a grinding tap with an industrial robot for a series of outstanding problems in the grinding
industry. He designed an abrasive belt grinder with a dynamic position adjustment as the passive
force control device and then used impedance control for the active force control to achieve the control
effect. On the other hand, Lu et al. [20] proposed a sliding-mode-based impedance controller with a
continuous PI control near the surface of the sliding mode to avoid chatter and reduce steady-state
errors. Although these traditional force control strategies can achieve certain control effects, due to
the non-linearity and a large amount of uncertainty in robotic belt grinding, it is difficult to achieve
satisfactory results using these control methods.

Taking these problems into account, some scholars have proposed some intelligent control
methods that can effectively identify nonlinear systems. For example, Song et al. [21] proposed an
intelligent control method that can calculate the optimal control parameters in real time, but the
experiment also requires a certain amount of training to achieve the control effect. Seraji et al. [22]
proposed adaptive impedance control, which has a better force tracking effect under the condition
of unknown environmental parameters through direct and indirect methods, but too many of the
adaptive gain parameters cannot be practically adjusted. To overcome this problem, Jung et al. [23]
designed an adaptive control law based on the error obtained by the force feedback, so that only a
simple adaptive gain is needed to achieve a good control effect. However, it is difficult to obtain
this appropriate gain. Chan et al. [24] presented a data-efficient learning variable impedance control
method which improves the flexibility and adaptability of the system.

The grinding effect of the robot belt is finally reflected in the force control effect and the surface
roughness. In terms of force control effect, when Zhang et al. [19] used a hybrid passive/active force
control scheme to grind a tap, the normal grinding force accuracy is under±5 N. The surface roughness
of the machined workpiece in [25] which only employed the robot grinding trajectory planning is 1.189
µm. Zhu et al. [10] combined force control algorithm to grind workpiece, and the values of surface
roughness are 0.352 µm and 0.374 µm.

In this paper, a self-adaptive sliding-mode iterative learning method for robotic belt grinding
constant-force control is proposed. It not only can effectively compensate for the error caused by
the uncertainty of robotic belt grinding, but also has flexible parameter settings and is suitable
for actual grinding. Additionally, a simplified force-mapping relationship is proposed. Only a
one-dimensional force sensor is required instead of a multi-dimensional force sensor to achieve the
control requirements, thereby reducing the complexity of the control system and the cost of the
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experiment. Firstly, by analysing the contact force between the workpiece and the abrasive belt wheel,
the mapping relationship between the grinding force and the force received by sensor is established.
Then, the relationship between the grinding normal and tangential force is analyzed and proven by
preliminary experiments, and the above mapping relationship is simplified by treating the ratio of the
two forces as a constant. The relationship between the grinding deformation and the grinding depth
is discussed, and a dynamic model of the robotic belt grinding is established. Then, a force control
model based on an adaptive sliding-mode with iterative learning is proposed, and an adaptive control
law is designed based on the force feedback error. Finally, the control algorithm proposed in this paper
is used to grind angle steel to verify the feasibility of algorithm. The effectiveness of this approach
and the feasibility of the simplified force-mapping relationship are further proven by a curved-surface
workpiece grinding experiment.

2. Abrasive Belt Grinding Force Analysis

During the grinding process, a robot terminal fixture holds a workpiece and grinds it on a belt
sander. When the workpiece contacts with the abrasive belt wheel, a certain pressure will be produced
on the abrasive belt, and the abrasive grains on the belt will be pressed, which is accompanied by a
small plastic deformation, thereby causing the grinding contact force. Figure 1 shows the contact force
generated during grinding, and the position-pose relationship between the sensor coordinate system
{T} and the belt wheel coordinate system {U}. The contact force can be divided into the normal force Fn

perpendicular to the contact surface between the belt wheel and the workpiece, the tangential force
Ft parallel to the velocity direction of the workpiece and the axial contact force Fa, which are parallel
to the X axis, Y axis and Z axis of the belt wheel coordinate system {U}, respectively. Under normal
circumstances, the axial contact force Fa is relatively small, so it is ignored.
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Since the initial grinding trajectory is planned by offline programming [26], it can be ensured
that the Z axis of the sensor coordinate system is substantially parallel to the Z axis of the belt wheel
coordinate system, so the force analysis can be carried out in the XY plane of the sensor coordinate
system {T} or the belt wheel coordinate system {U}. Figure 2 (a top view of Figure 1), shows a force
analysis diagram of the abrasive belt grinding process.

The force mapping relation from Figure 2 is:
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where Ft and Fn are the tangential and normal forces on the belt coordinate system, respectively; F′t and
F′n are the forces that transfer Ft and Fn to the sensor coordinate system, respectively; Fx and Fy are the
forces in the X-axis and Y-axis directions of the sensor, respectively; θ is the angle between the Y-axis
direction of the sensor coordinate system {T} and the Y-axis direction of the belt wheel coordinate
system {U}. From the above equations, the following equations can be obtained:{

Ft = −Fxsinθ + Fycosθ

Fn = Fxcosθ + Fysinθ
(2)

Equation (2) shows that when calculating the grinding contact force in the actual grinding process,
it is not only necessary to know the force on the sensor, but also need to obtain the angle θ. However,
since the position and pose information of the robot and the force information on the sensor cannot be
collected synchronously, the position and pose information of the robot cannot be used to obtain the
angle θ in the grinding control process, so it is necessary to estimate the angle in advance. The angle θ

is estimated by using a method similar to that in reference [27]. The method is to install a columnar
probe at the end of the robot and fix the workpiece on the worktable. The installation position of the
workpiece is shown in Figure 3 and the force analysis diagram for tracking is shown in Figure 4.Sensors 2019, 19, x FOR PEER REVIEW 4 of 28 
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Equation (2) shows that when calculating the grinding contact force in the actual grinding 
process, it is not only necessary to know the force on the sensor, but also need to obtain the angle θ . 
However, since the position and pose information of the robot and the force information on the 
sensor cannot be collected synchronously, the position and pose information of the robot cannot be 
used to obtain the angle θ  in the grinding control process, so it is necessary to estimate the angle in 
advance. The angle θ  is estimated by using a method similar to that in reference [27]. The method 
is to install a columnar probe at the end of the robot and fix the workpiece on the worktable. The 
installation position of the workpiece is shown in Figure 3 and the force analysis diagram for 
tracking is shown in Figure 4.  
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Where Ft and Fn are the tangential and normal forces between the probe and the surface; {S} is the
coordinate system of sensor; {C} is the coordinate system of surface; Vy and Vx are the velocities of the
robot in the X and Y directions, respectively.

Then the robot probe is made to track the force along the surface of the workpiece, and the
angle estimation θ̂ between each position of the workpiece is calculated according to the following
equation [27]:

θ̂ = atan(
Vx∆t
∆y

) (3)

where ∆t is the motion time of the robot in each cycle along the X direction; ∆y the offset of the robot
in the Y direction.

Finally, we replace the actual angle θ with the estimated value θ̂ and the results show that
the average error of the angle is less than 5◦ in the experiment, which meets the needs of
practical application.

The robot belt grinding schemes in the references are all based on six-dimensional force sensors.
Although this method can accurately calculate the normal force in the grinding process, it requires an
expensive force sensor and increases the complexity of the control. Therefore, this paper simplifies
the force situation by regarding the ratio of the normal force to the tangential force as a constant
which acquired through experiments in the case of a particular force range and specific material.
The relationship between the tangential force and normal force is as shown in Equation (4):

Fn = ηFt (4)

Combining Equation (4) with Equation (2), the mapping relation between the force on a
one-dimensional sensor and the grinding normal force can be derived as:

Fx =
cosθ − sinθ

η
Fn (5)

For proving the above conclusion, we design an angle steel grinding experiment with a
six-dimensional force sensor, in which the angle steel material is Q235 (S352JR-1.0038, DIN EN 10025-2)
and the force Fn is controlled at about 20 ± 5 N. Because the angle θ is always kept at zero during the
plane grinding process, the tangential and normal forces can be directly expressed by the force received
on the six-dimensional sensor. Then, the proportional value η in Equation (4) can be expressed as
Fx/Fy. The feasibility of the above Equation (4) can be verified by a plane grinding experiment based
on a six-dimensional sensor. Through the experiments, the corresponding normal force and tangential
force are shown in Figure 5 and the variation of the proportional value η is shown in Figure 6.
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During the grinding process, the value of η essentially fluctuates within 2.5 ± 0.05, with an error
of approximately 2%. Therefore, by taking η as 2.5 and substituting it into Equation (5), the relationship
between the grinding normal force and the force on the one-dimensional sensor can be obtained as:

Fn =
Fx

cosθ − 0.4sinθ
(6)

This result shows that it is feasible to use a one-dimensional force sensor instead of a
six-dimensional force sensor to calculate the grinding normal force for the control.

3. Grinding Dynamics Model

The robot grinding dynamics model is the basis for the robot grinding force control. The traditional
grinding dynamics model is written as [28]:

fp(t) = m
..
x(t) + c

.
x(t) + kx(t) (7)

where fp(t) is the grinding force; m is the mass coefficient of system; c is the system damping coefficient;
k is the process stiffness and these three coefficients are only for later proof, so it is not necessary to
know their specific values; x(t) is the position of the machining tool and

.
x(t),

..
x(t) are its first-order

and second-order derivatives, respectively.
However, during the grinding process, in addition to the grinding force fp(t), the robot is also

affected by the deformation force fs(t) and the oscillating force fq(t) caused by the uncertainties of the
interaction surface [29]. Therefore, the end force f (t) of the robot can be regarded as the sum of these
three forces:

f (t) = fp(t) + fs(t) + fq(t) (8)
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Since the oscillating force fq(t) in Equation (8) is much smaller than the other two forces, it is
instantaneous, unsustainable, unpredictable, and can considered as a disturbance and will not be
discussed in this paper. This item is ignored, so Equation (8) can be written as:

f (t) = fp(t) + fs(t) (9)

Substituting Equation (9) into Equation (7), the robot belt grinding model can be obtained as:

f (t) = m
..
x(t) + c

.
x(t) + kx(t) + fs(t) (10)

where f (t) is the force at the end of the robot and fs(t) is the deformation force of the robot.
To study the relationship between the grinding normal force and grinding depth, the grinding

depth ap(t) can be taken as the research object, and Equation (10) can then be written as:

fx(t) = m
..
ap(t) + c

.
ap(t) + kap(t) + fsx(t) (11)

where fx(t) is the grinding force perpendicular to the workpiece, which is shown as the abrasive belt
grinding normal force Fn in Figure 2; ap(t) is the grinding depth, which can be equal to x(t); x(t) is the
tool position perpendicular to the workpiece surface; and fsx(t) is the deformation force perpendicular
to the workpiece surface.

During the grinding process, when the robot touches the belt with a feed speed Vw, the grinding
tool extrudes the workpiece and grinds it. At this time, due to the poor rigidity, the robot will
be deflected by the reaction force of the grinding, so that it cannot reach the planned depth a∗p,
resulting in part of the workpiece area δx not being completely processed. Eventually, there will be an
offset between the actual trajectory and the planned trajectory. In the process of the curve trajectory
interpolation, the situation shown in Figure 7 will be produced.Sensors 2019, 19, x FOR PEER REVIEW 8 of 28 
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According to the above analysis, the deformation δx(t) and deformation force fsx(t) can be
expressed as:

δx(t) = a∗p(t)− ap(t) (12)

fsx(t) = ksδx(t) (13)

where a∗p(t) is the planned grinding depth and ks is the mechanical arm stiffness of the robot.
Substituting Equation (13) into Equation (11), the deformation-based robot belt sanding dynamics

model can be obtained as:

fx(t) = m
..
ap(t) + c

.
ap(t) + kap(t) + ksδx(t) (14)

4. Adaptive Sliding-mode Iterative Force Control

This paper chooses the adaptive iterative learning control method because it is simple and
accurate and can approximate the target state with arbitrary precision. However, its stability needs to
be improved. Therefore, the sliding-mode variable-structure control method is introduced to improve
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the stability and robustness of the control system and suppress the influence of external disturbances on
the robotic belt grinding system. Ultimately, effective control of abrasive belt grinding force is achieved.

4.1. Design of Control Law

Before designing the force controller, the appropriate control inputs and outputs should be
selected according to the relationship between the parameters in the above-mentioned robotic belt
grinding dynamics model. The offset perpendicular to the tangential direction of the workpiece and
the surface of the belt is taken as the control object, and the normal force is controlled by adjusting
this offset. Since the control target is the desired grinding force, it is necessary to adjust the normal
offset according to the error between the desired grinding force and the actual grinding force and the
variation speed of this error. Therefore, the relationship can be expressed as:

∆ap(t) = Q
(
ex(t),

.
ex(t)

)
(15)

ex(t) = fx(t)− fxd(t) (16)
.
ex(t) =

.
f x(t)−

.
f xd(t) (17)

where ∆ap(t) is the normal offset obtained by the control system according to the grinding force error;
ex(t) and

.
ex(t) are the grinding force error and its first-order derivative at time t, respectively; fx(t)

and
.
f x(t) are the actual grinding force and its first-order derivative, respectively; fxd(t) and

.
f xd(t) are

the desired grinding force and its first-order derivative, respectively; and Q( ) is determined by the
controller and represents the mapping relationship between the grinding force error, its first derivative
and the normal offset.

It can be seen from Equations (15) to (17) that the control inputs are the grinding force error and
its first derivative, so the sliding surface can be designed as:

Sx(t) = λex(t) +
.
ex(t) (18)

where λ is the sliding surface coefficient and Sx(t) is the grinding sliding-mode state.
Substituting Equation (18) into Equation (14) and then combining Equations (16) and (17):

Sxi = m
..
Sai + c

.
Sai + kSai + ksSδi − S f (19)

where i is the number of the iteration; Sxi is the grinding sliding-mode state at iteration i;
Sai(t) = λapi(t) +

.
api(t) is the grinding depth sliding-mode state; Sδi(t) = λδxi(t) +

.
δxi(t) is the

grinding deformation sliding-mode state; and S f (t) = λ fxd(t) +
.
f xd(t) is the desired grinding force

sliding-mode state. When Sxi = 0, the grinding sliding-mode state achieves desired state and the
system state reaches the control target, and Equation (19) can then be written as:

m
..
Sai + c

.
Sai + kSai = S f − ksSδi (20)

We can assume that the parameters of the system are unknown and that the system satisfies the
following assumptions:

Assumption 1: When the workpiece is just in contact with the belt wheel, since the feed depth is set
very small, we can assume that the initial grinding depth and the initial state of the system is uniform
and repeatable, which is Sa1(0) = Sa2(0) = · · · = Sai(0);

Assumption 2: According to the actual situation, the grinding depth ap and the deformation δxi
are limited, and fxd is a constant force. Some system parameters such as ks, c, m, k are bounded as the
mass, inertia and stiffness of the whole system are limited during the continuous grinding process.
So, based on the above reasons, we can assume that the sliding-mode states Sxi and Sai, their first
derivatives

.
Sxi and

.
Sai, their second derivatives

..
Sxi and

..
Sai, and S f are bounded;
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According to the Equations (15)–(17), the above assumptions and reference [30], the sliding-mode
adaptive iterative control law is designed as:

G
(
∆ap(t)

)
= ksSδi(t) (21)

∆ap = kpei(t) + kd
.
ei(t) + σ̂i(t)sgn

( .
ei(t)

)
(22)

where:
ei(t) = Sxd(t)− Sxi(t) (23)

σ̂i(t) = σ̂i−1(t) + γ
.
ei(t)sgn

( .
ei(t)

)
(24)

G( ) is the relationship between the normal offset and the sliding surface formed by the
deformation of the robot, and is reflected in the actual grinding process; Sxd is the desired grinding
sliding mode state, whose value is always zero; σ̂−1(t) = 0; γ is the iterative learning rate and
i is not only the number of iterations but also the number of grinding. If kp, kd, γ > 0 and Z+

represents positive integer, ei(t),
.
ei(t) and ∆ap(t) are bounded for any positive integer i ∈ Z+ and

limi→∞ei(t) = limi→∞
.
ei(t) = 0, ∀t ∈ [0, T].

4.2. Analysis of Algorithm Stability

To guarantee the stability and convergence of the control system, the Lyapunov method [31] is
used to set up the energy function. By analysing the monotonicity and boundedness of the Lyapunov
function, the convergence of the error and its first derivative can be proven. According to Assumption 2,
we can get the inequality shown in Equation (25), and the Lyapunov function shown in Equation (26)
is constructed. { ∣∣∣S f − c

.
Sai

∣∣∣ ≤ β

|kSai| ≥ ε
(25)

Wi = Vi
(
ei(t),

.
ei(t)

)
+

1
2

∫ t

0
γ−1σ̃2

i (τ)dτ (26)

where β and ε are positive constants, σ is an uncertain item, defined as σ = β + Supt∈[0,T]|Sxi| − ε, and
σ̃(t) = σ− σ̂(t).

According to the previous analysis, Vi
(
ei(t),

.
ei(t)

)
can be set as:

Vi
(
ei(t),

.
ei(t)

)
=

1
2

m
ke

.
e2

i (t) +
1
2

kpe2
i (t) (27)

When the robot is in contact with the environment, the environment is often treated as a linear
spring [32], and ke in Equation (27) is the environmental stiffness, ie the material stiffness, which can
be obtained by consulting the parts material manual.

To analyze the monotonicity of the Lyapunov function, we set:

∆Wi = Wi −Wi−1 (28)

According to Equations (26) and (27), it can obtain:

∆Wi = Vi −Vi−1 +
1
2

∫ t

0
γ−1

(
σ̃2

i (τ) + σ̃2
i−1(τ)

)
dτ (29)

The σi is defined as σi = σ̂i − σ̂i−1 and substituted into Equation (29):

∆Wi = Vi −Vi−1 −
1
2

∫ t

0
γ−1

(
σ2

i (τ) + 2σ̃i(τ)σi(τ)
)

dτ (30)
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Integrating the first derivative of Vi
(
ei(t),

.
ei(t)

)
:

Vi
(
ei(t),

.
ei(t)

)
= Vi

(
ei(0),

.
ei(0)

)
+
∫ t

0

(
m
ke

ei
”
ei + kpeiei

)
dτ (31)

Since the desired grinding state Sxd is always zero and the expected grinding force fxd is a positive
constant,

..
ei(t) =

..
Sxd(t)−

..
Sxi(t) = −

..
Sxi(t) = −λ

..
f x −

...
f x is obtained. Because the environment was

previously treated as a linear spring, fx = keap,
..
ei(t) can be expressed as

..
ei(t) = −ke

..
Sai(t). Substituting

the above equation and into Equation (31),

Vi
(
ei(t),

.
ei(t)

)
= Vi

(
ei(0),

.
ei(0)

)
+
∫ t

0

(
−m

”
Sai + kpei

)
.
eidτ (32)

Substituting Equation (19) into Equation (32):

Vi
(
ei(t),

.
ei(t)

)
= Vi

(
ei(0),

.
ei(0)

)
+
∫ t

0

(
Sxi − cSai − kSai + S f − G

(
∆ap

)
+ kpei

) .
eidτ (33)

Combining inequality (25) and Equation (33), we can get the following inequality:

Vi
(
ei(t),

.
ei(t)

)
≤
{

Vi
(
ei(0),

.
ei(0)

)
+
∫ t

0

((
β + Supt∈[0,T]|Sxi| − ε

)
sgn(ei)− G

(
∆ap

)
+ kpei

) .
eidτ

}
(34)

As σ = β + Supt∈[0,T]|Sxi| − ε and when t = 0, Vi
(
ei(t),

.
ei(t)

)
= 0, we can simplify Equation (34) as:

Vi
(
ei(t),

.
ei(t)

)
≤
∫ t

0

(
σisgn(ei)− G

(
∆ap

)
+ kpei

) .
eidτ (35)

Substituting inequality (35) into Equation (30), we can get the following inequality:

∆Wi ≤
∫ t

0

(
σisgn(ei)− G

(
∆ap

)
+ kpei

) .
eidτ −Vi−1 −

1
2

∫ t

0
γ−1

(
σ2

i (τ) + 2σ̃i(τ)σi(τ)
)

dτ (36)

Combining Equations (21), (22), (24) and σ̃(t) = σ− σ̂(t), inequality (36) can be simplified as:

∆Wi ≤ −Vi−1 −
1
2

∫ t

0
γ−1

(
σ2

i + 2kd
”
e

2

i

)
dτ (37)

As can be seen from the definition of Vi−1 in Equation (27), the value of Vi−1 is always greater

than 0. At the same time, it is obvious that 1
2

∫ t
0 γ−1

(
σ2

i + 2kd
”
e

2

i

)
dτ is not less than 0, so we can obtain

the following inequality:

∆Wi ≤
{
−Vi−1 −

1
2

∫ t

0
γ−1

(
σ2

i + 2kd
”
e

2

i

)
dτ

}
≤ 0 (38)

It is shown in Equation (38) that Wi is a non-incremental sequence. Thus, to prove the boundedness
of the entire sequence, it is need to prove that Wi has an upper bound.

Deriving W0:
.

W0 ≤
.
e0
(
σ̃0sgn(

.
e0)− kd

.
e0
)
+

1
2

γ−1σ̃2
0 (39)

As σ̂−1(t) = 0 and σ̂i(t) = σ̂i−1(t) + γ
.
ei(t)sgn

( .
ei(t)

)
, then:

.
W0 ≤ −

.
e0kd

.
e0 +

(
σ̂0 +

1
2

σ̃0

)
γ−1σ̃0 (40)
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Since σ̂0(t) = σ(t)− σ̃0(t):

.
W0 ≤ −

.
e0kd

.
e0 −

1
2

σ̃0γ−1σ̃0 + σγ−1σ̃0 (41)

When α > 0:
σγ−1σ̃0 ≤ α

(
γ−1σ̃0

)2
+

1
4α

σ2 (42)

Then, Equation (40) can be written as:

.
W0 ≤ −

.
e0kd

.
e0 −

1
2

σ̃0γ−1σ̃0 + α
(

γ−1σ̃0

)2
+

1
4α

σ2 (43)

For the given initial value are bounded, σ̃0 is bounded. Then:

W0 ≤ α
(

γ−1σ̃0|max

)2
+

1
4α

σ2
max (44)

where σmax = Supt∈[0,T]σ, σ̃0|max = Supt∈[0,T]σ̃0.
Therefore, W0 is uniformly continuous and bounded on [0, T], and Wi is bounded. Furthermore,

for any positive integer i ∈ Z+, ei(t),
.
ei(t) and ∆ap(t) are bounded.

Then, Wi can be rewritten as:

Wi = W0 +
i

∑
j=0

∆Wj (45)

Substituting Equation (45) into Equation (37):

Wi ≤W0 −
i

∑
j=0

∆Vj−1 ≤W0 −
1
2

i

∑
j=0

(
kpe2

j−1 +
m
ke

e2
j−1

)
(46)

i

∑
j=0

(
kpe2

j−1 +
m
ke

e2
j−1

)
≤ 2(W0 −Wi) ≤ 2W0 (47)

so it can be obtained that:

limi→∞ei(t) = limi→∞
.
ei(t) = 0, ∀t ∈ [0, T] (48)

From the above analysis, as the number of iterations increases, the grinding force error will
gradually become zero, which means that the actual force will gradually tend to the required force and
reflects the Lyapunov stability of the control system.

4.3. Design of Control Process

The specific control process is shown in Figure 8.
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Where the actual grinding force fx(t) is collected by the one-dimensional force sensor and
transferred into the controller. After a comparison with the desired grinding force fxd(t), the grinding
force error ex(t) and its first-order derivative

.
ex(t) are obtained and used to calculate the actual grinding

state Sxi(t). Then, the difference between the actual grinding state Sxi(t) and the desired grinding state
Sxd(t) will be determined to obtain the grinding state error ei(t). With the knowledge of ei(t) and the
adaptive item σ̂i−1(t) from the previous iteration, the adaptive item σ̂i(t) of the current iteration can be
obtained and used to calculate the adjustment of the offset ∆ap(t). Finally, the calculated offset ∆ap(t)
is input to the robot’s control system. And when the portion in the red box in Figure 8 is removed, it is
a control structure of non-iterative sliding-mode control.

5. Robotic Belt Grinding Experiments

To verify the feasibility of this algorithm, this study separately carried out experiments on
grinding angle steel and curved-surface workpieces. Since the angle θ shown in Figure 2 is always
zero when grinding angle steel, the force on the one-dimensional sensor can be regarded as the normal
grinding force, and the error caused by the simplified force mapping relationship and the angle
estimation can also be eliminated. Then, a surface grinding experiment is designed to further verify
the effectiveness of the adaptive sliding-mode iteration algorithm and the feasibility of the simplified
force-mapping relationship.

5.1. Robotic Belt Grinding System

The robotic belt grinding experimental platform is composed of the robot grinding system and
robot control system. The main parts of the grinding system, as shown in Figure 9, are a MH24
industrial robot (Yaskawa, Changzhou, China), abrasive belt grinder, workpiece and workpiece
fixture, one-dimensional force sensor which is manufactured by Right company (Changzhou, China).
The model of the one-dimensional force sensor is a T311, the measuring range is ± 50 N, the actual
error is ±0.2 N and it is specially used for robot grinding. The sand belt is a TJ538 type (Little Sun,
Foshan, China) and the width of the sand belt is 50 mm, its perimeter is 2100 mm, and its material is
zircon corundum. During grinding, the linear velocity of the belt is 8 m/s, the robot linear movement
(MOVL) is 25 mm/s. These speed settings are based on processing requirements, including processing
materials and technologies.
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Figure 9. Robot grinding system.

The main parts of the control system, as shown in Figure 10, are the Yaskawa MH24 industrial
robot, robot control cabinet, Beckhoff module and industrial computer with TenAsys INtime RTOS
from TenAsys (Hillsboro, OR, USA). TenAsys INtime RTOS is a dynamic, deterministic hard
real-time operating system for Asymmetric Multi-Processing (AMP) on multi-core x86-compatible
processors. INtime RTOS is a full operating system, complete with system services and capabilities
that developers expect to see in modern development environments to enable fast and efficient
high-performance solutions.
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Figure 10. Robot belt grinding control system.

During the control process, the robot grips the workpiece to take the pre-planned trajectory.
The analogue signals collected by the force sensor are then converted into digital signals by a Ethercat
interface (Beckhoff fieldbus) module and transmitted to the real-time control system in PC via the
Ethercat protocol. The controller uses the control method provided in this paper to calculate the offset
and sends it to the Yaskawa robot control cabinet to modify the output pulse and adjust the offset
of the robot end-effector. The analogue filter frequency of the force sensor is 2500 Hz, the sampling
frequency of the real-time control system is 1 ms, the output voltage of the control system is 100 ms,
and the connection between the Ethercat and the Yaskawa robot control cabinet is achieved by the
sensor function of the Yaskawa robot.

The process of the i-th iteration experiment of the two workpieces is as shown in Figure 11, and
the calculation process of the adaptive term σ̂i(t) is as shown in Figure 12. It is noteworthy that the
gains kp, kd, λ and γ in the experiment are roughly determined by previous experiments. Different
gain values will only affect the convergence speed and iteration times, and the final grinding force will
achieve the desired results.
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5.2. Angle Steel Grinding Experiment

A Q235 (S352JR-1.0038, DIN EN 10025-2) angle steel sample with a thickness of 3 mm and
dimensions of 160 mm × 40 mm is used for the plane grinding test.

Before the experiment, the initial grinding trajectory is generated by offline programming, and the
offset is then calculated by the force signal feedback from the one-dimensional force sensor in real time
and transmitted to the control cabinet to control the robot. The grinding process is shown in Figure 13.
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In the experiment, the desired grinding force fxd is set to 20 N, and the initial experimental
parameters, which are given according to experience, are kp = 0.055 and kd = 0.02. The actual grinding
force fx under the non-iterative sliding-mode control is shown in Figure 14.

As shown in Figure 14, when the non-iterative sliding-mode control is employed, although the
grinding force can be stabilized within a certain range during the grinding process, the convergence
speed is slow, and the maximum amplitude of the grinding normal force in the stable machining state
fluctuates within 5 N of 20 N.

Then, the sliding-mode adaptive iterative control method is used for this grinding experiment.
The control law shown in Equation (18) is applied. According to experience, the sliding surface
coefficient λ is taken as 0.5, and the iteration coefficient γ is taken as 0.3. The grinding normal forces of
two, four, six, eight and ten iterations are shown in Figures 15–19, respectively.
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Figure 19. Plane grinding force control process after ten iterations.

The mean, standard deviation and variance of the absolute values of the force errors during the
iteration are calculated and shown in Table 1 and Figure 20.

From the above series of figures, after ten iterations, the grinding force during the stable grinding
state fluctuates around 20 N with amplitude of 2 N. As seen from Table 1 and Figure 20, the mean,
standard deviation and variance of the absolute value of the grinding force error decrease with the
increasing number of iterations. Compared to the non-iterative sliding-mode control, they are reduced
by 46%, 38%, and 62%, respectively. Moreover, with an increase in the number of iterations, the
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convergence speed is also greatly improved. The results indicate that the adaptive sliding-mode
iteration method has better performance in reducing the deviation of the grinding force.

Table 1. Absolute value error analysis of the plane grinding force.

Iteration Number Mean Standard Deviation Variance

0 1.1297 1.4872 2.2118
1 1.0962 1.2004 1.4410
2 1.0500 1.1982 1.4359
3 0.9765 1.2270 1.5055
4 0.9052 1.1358 1.2900
5 0.8080 1.1424 1.3051
6 0.7459 1.0595 1.1225
7 0.6968 1.0610 1.1257
8 0.6399 1.0372 1.0758
9 0.6217 0.9979 0.9958

10 0.6082 0.9205 0.8473
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Meanwhile, to judge the processing effect of the robot’s constant-force grinding, it is necessary
to detect the surface roughness of the workpiece. Figure 21 shows a comparison of the workpiece
before and after grinding, and a roughometer (Figure 22) is then used to measure the roughness of
the machined workpiece. The roughometer is manufactured by Beijing TIME High Technology Ltd.,
(Beijing, China) its model is TIME3202, the range of Ra and Rq is 0.005–16 µm, the range of Rz is
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The data in Table 2 is drawn into a roughness cloud picture, as shown in Figures 24–26. It can 
be seen that the surface roughness Ra, Rq and Rz of workpiece are within 0.181–0.290 μm,  
0.206–0.394 μm and 0.761–0.171 μm. Their average values and standard deviation are also small and 
all bigger than the variability of the roughness meter itself. 
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The specific measurement method is to divide the processed workpiece into areas, as shown in
Figure 23, and measure the roughness of each area with a roughometer. The measurement results are
recorded in Table 2.
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Table 2. Roughness of angle steel after grinding (µm).

V1 V2 V3

Ra Rq Rz Ra Rq Rz Ra Rq Rz

U1 0.230 0.352 1.171 0.251 0.269 0.777 0.276 0.328 0.820
U2 0.266 0.325 1.042 0.258 0.287 0.949 0.235 0.273 0.921
U3 0.236 0.268 0.986 0.206 0.360 1.078 0.181 0.206 0.938
U4 0.205 0.273 0.824 0.221 0.270 0.996 0.198 0.215 1.112
U5 0.199 0.229 0.921 0.257 0.353 0.794 0.263 0.322 1.035
U6 0.237 0.335 1.031 0.205 0.212 0.921 0.198 0.257 0.894
U7 0.261 0.273 0.882 0.261 0.309 1.175 0.201 0.268 0.813
U8 0.183 0.215 1.007 0.241 0.289 0.844 0.221 0.289 0.951
U9 0.210 0.259 0.761 0.271 0.355 0.953 0.280 0.337 0.889
U10 0.220 0.267 0.824 0.290 0.394 0.885 0.227 0.310 1.005

Mean 0.225 0.280 0.945 0.246 0.310 0.937 0.228 0.281 0.938
Standard deviation 0.027 0.0446 0.125 0.028 0.0551 0.124 0.035 0.0456 0.093

The data in Table 2 is drawn into a roughness cloud picture, as shown in Figures 24–26. It can be
seen that the surface roughness Ra, Rq and Rz of workpiece are within 0.181–0.290 µm, 0.206–0.394 µm
and 0.761–0.171 µm. Their average values and standard deviation are also small and all bigger than the
variability of the roughness meter itself.
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This result indicates that the surface roughness distribution of the workpiece is uniform, and the
effectiveness and stability of the control method is also reflected from the side.

5.3. Curved-surface Workpiece Grinding Experiment

Curved-surface workpieces made of 45# steel (C45+QT-1.1191, DIN EN 10083-1) and with the
contour of a spline curve are used for the grinding experiment. A pretreatment method similar to that
used in the plane grinding experiment is used to reduce the influence of uncertain disturbances on the
experimental results. The surface grinding process is shown in Figure 27.
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In the experiment, the desired grinding force fxd is set to 20 N, and the initial experimental
parameters, which are given according to experience, are kp = 0.04 and kd = 0.04. Then, the force
received on the one-dimensional sensor is converted into the normal force by the relationship shown
in Equation (6). Finally, the calculated grinding normal force is controlled, and the actual grinding
force fx under the non-iterative sliding-mode control is shown in Figure 28.
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Unlike in angle steel grinding, the maximum normal force fluctuation reaches 6 N, and there is a
steady-state error when the grinding curved surface is only under sliding-mode control.

Then the sliding-mode adaptive iterative control method is used to control the grinding normal
force. The control law shown in Equation (18) is applied, with the sliding surface coefficient λ taken as
0.5 and the iteration coefficient γ taken as 0.4 according to experience. The grinding normal forces of
two, four, six, eight and ten iterations are shown in Figures 29–33, respectively.

Sensors 2019, 19, x FOR PEER REVIEW 22 of 28 

 

Unlike in angle steel grinding, the maximum normal force fluctuation reaches 6 N, and there is 
a steady-state error when the grinding curved surface is only under sliding-mode control. 

Then the sliding-mode adaptive iterative control method is used to control the grinding normal 
force. The control law shown in Equation (18) is applied, with the sliding surface coefficient λ  
taken as 0.5 and the iteration coefficient γ  taken as 0.4 according to experience. The grinding 
normal forces of two, four, six, eight and ten iterations are shown in Figures 29–33, respectively.  

 
Figure 29. Surface grinding force control process after two iterations. 

 
Figure 30. Surface grinding force control process after four iterations. 

 
Figure 31. Surface grinding force control process after six iterations. 

Figure 29. Surface grinding force control process after two iterations.



Sensors 2019, 19, 1635 21 of 26

Sensors 2019, 19, x FOR PEER REVIEW 22 of 28 

 

Unlike in angle steel grinding, the maximum normal force fluctuation reaches 6 N, and there is 
a steady-state error when the grinding curved surface is only under sliding-mode control. 

Then the sliding-mode adaptive iterative control method is used to control the grinding normal 
force. The control law shown in Equation (18) is applied, with the sliding surface coefficient λ  
taken as 0.5 and the iteration coefficient γ  taken as 0.4 according to experience. The grinding 
normal forces of two, four, six, eight and ten iterations are shown in Figures 29–33, respectively.  

 
Figure 29. Surface grinding force control process after two iterations. 

 
Figure 30. Surface grinding force control process after four iterations. 

 
Figure 31. Surface grinding force control process after six iterations. 

Figure 30. Surface grinding force control process after four iterations.

Sensors 2019, 19, x FOR PEER REVIEW 22 of 28 

 

Unlike in angle steel grinding, the maximum normal force fluctuation reaches 6 N, and there is 
a steady-state error when the grinding curved surface is only under sliding-mode control. 

Then the sliding-mode adaptive iterative control method is used to control the grinding normal 
force. The control law shown in Equation (18) is applied, with the sliding surface coefficient λ  
taken as 0.5 and the iteration coefficient γ  taken as 0.4 according to experience. The grinding 
normal forces of two, four, six, eight and ten iterations are shown in Figures 29–33, respectively.  

 
Figure 29. Surface grinding force control process after two iterations. 

 
Figure 30. Surface grinding force control process after four iterations. 

 
Figure 31. Surface grinding force control process after six iterations. Figure 31. Surface grinding force control process after six iterations.Sensors 2019, 19, x FOR PEER REVIEW 23 of 28 

 

 
Figure 32. Surface grinding force control process after eight iterations. 

 
Figure 33. Surface grinding force control process after ten iterations. 

The mean, standard deviation and variance of the absolute values of the force errors during the 
iteration are calculated and shown in Table 3 and Figure 34. 

Table 3. Absolute value error analysis of the surface grinding force. 

Iteration Number Mean Standard Deviation Variance 
0 1.4953 1.9718 3.8880 
1 1.4192 1.9457 3.7857 
2 1.3361 1.9259 3.7091 
3 1.2646 1.9298 3.7241 
4 1.1632 1.8682 3.4902 
5 1.0971 1.5658 2.4517 
6 1.0490 1.2320 1.5178 
7 0.9918 1.3476 1.8160 
8 0.8523 1.1211 1.2569 
9 0.8031 1.1092 1.2303 
10 0.7398 1.0799 1.1662 

Figure 32. Surface grinding force control process after eight iterations.

Sensors 2019, 19, x FOR PEER REVIEW 23 of 28 

 

 
Figure 32. Surface grinding force control process after eight iterations. 

 
Figure 33. Surface grinding force control process after ten iterations. 

The mean, standard deviation and variance of the absolute values of the force errors during the 
iteration are calculated and shown in Table 3 and Figure 34. 

Table 3. Absolute value error analysis of the surface grinding force. 

Iteration Number Mean Standard Deviation Variance 
0 1.4953 1.9718 3.8880 
1 1.4192 1.9457 3.7857 
2 1.3361 1.9259 3.7091 
3 1.2646 1.9298 3.7241 
4 1.1632 1.8682 3.4902 
5 1.0971 1.5658 2.4517 
6 1.0490 1.2320 1.5178 
7 0.9918 1.3476 1.8160 
8 0.8523 1.1211 1.2569 
9 0.8031 1.1092 1.2303 
10 0.7398 1.0799 1.1662 

Figure 33. Surface grinding force control process after ten iterations.



Sensors 2019, 19, 1635 22 of 26

The mean, standard deviation and variance of the absolute values of the force errors during the
iteration are calculated and shown in Table 3 and Figure 34.

Table 3. Absolute value error analysis of the surface grinding force.

Iteration Number Mean Standard Deviation Variance

0 1.4953 1.9718 3.8880
1 1.4192 1.9457 3.7857
2 1.3361 1.9259 3.7091
3 1.2646 1.9298 3.7241
4 1.1632 1.8682 3.4902
5 1.0971 1.5658 2.4517
6 1.0490 1.2320 1.5178
7 0.9918 1.3476 1.8160
8 0.8523 1.1211 1.2569
9 0.8031 1.1092 1.2303

10 0.7398 1.0799 1.1662
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Compared with the non-iterative sliding-mode control and each iterative process, the amplitude of
the surface grinding force decreases with an increase in the number of iterations, and finally stabilizes
at approximately 2 N. Similar to the plane grinding force effect, the mean, standard deviation and
variance of the absolute value of the surface grinding force error also showed a downward trends, and
decreased by 51%, 45% and 70%, respectively, compared to the values for the non-iterative sliding-mode
control. The convergence effect and stability of the grinding force are also significantly improved.

Similarly, the roughness of the machined surface workpiece was tested, and the curved-surface
workpiece before and after grinding is shown in Figure 35. Then, using the same measurement
process (Figure 36) and method as in the angle steel grinding experiment, the measurement area of the
processed curved-surface is divided as shown in Figure 37.
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The data in Table 4 is drawn into a roughness cloud picture, as shown in Figures 38–40. It can be
seen that the surface roughness Ra, Rq and Rz of workpiece are within 0.160–0.373 µm, 0.275–0.474 µm
and 1.289–1.901 µm. Their average values and standard deviation are also small and all bigger than the
variability of the roughness meter itself. This result indicates that the surface roughness distribution of
the workpiece is more uniform and further reflects the effectiveness and stability of the control method.

Table 4. Roughness of the curved-surface workpiece after grinding (µm).

V1 V2

Ra Rq Rz Ra Rq Rz

U1 0.309 0.327 1.703 0.333 0.429 1.812
U2 0.235 0.379 1.806 0.193 0.275 1.335
U3 0.299 0.415 1.507 0.258 0.335 1.687
U4 0.218 0.284 1.558 0.309 0.402 1.769
U5 0.160 0.321 1.289 0.257 0.312 1.519
U6 0.252 0.299 1.648 0.242 0.296 1.371
U7 0.277 0.371 1.812 0.261 0.354 1.425
U8 0.274 0.443 1.636 0.373 0.456 1.699
U9 0.317 0.474 1.558 0.240 0.315 1.901

Mean 0.271 0.368 1.613 0.274 0.353 1.613
Standard deviation 0.051 0.066 0.161 0.055 0.063 0.206

These experimental results show that the algorithm can achieve effective control effects for both
planar and curved workpieces, and the grinding force is quickly stabilized within a certain range, which
shows the feasibility and stability of the algorithm. Moreover, it can be concluded from the result of the
surface grinding experiment that the control algorithm effectively suppresses the force fluctuation that
is caused by the variation of the curvature and the simplified force-mapping relationship. In addition,
the force control effect of the proposed algorithm and the surface quality of the machined workpiece
in this paper are better than the previous literature. These results also indicate that it is feasible to
consider the ratio of the normal force and tangential force as a constant and combined it with the
control algorithm.
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6. Conclusions

In this paper, an adaptive sliding-mode iterative constant-force control method for belt grinding
based on a one-dimensional force sensor is proposed. It simplifies the force-mapping relationship,
reduces the research cost and reduces the amplitude of the force fluctuation in the process of robotic
belt grinding. To map the grinding normal force to the one-dimensional force sensor, the force of the
belt grinding is first analyzed, and the ratio of the grinding normal force to the tangential force is
regarded as a positive constant, as is proven by a preliminary experiment. For achieving the purpose of
control, the relationship between the deformation and grinding depth during grinding was analyzed
and a dynamic model was established. Considering the control accuracy, the adaptive iterative learning
method is introduced, and the combination of sliding-mode control and iterative learning is used to
improve the stability and robustness of the control system.
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The experimental results show that compared with the non-iterative sliding-mode control and
each iterative control, the proposed control scheme has the advantages of improving the force
convergence speed and reducing the force fluctuation amplitude. The fluctuation amplitude of
the grinding force decreased from 5 N or 6 N to 2 N. Meanwhile, with an increase in the number of
iterations, the mean, standard deviation and variance of the absolute error generally downward trends,
which reflects the effectiveness of the algorithm and the feasibility of the force simplification from
the side. The ultimate goal of controlling the constant force is to improve the machining quality of
workpieces. Comparing the workpieces before and after grinding, the surface quality of the workpiece
is significantly improved, the surface roughness is small and its distribution is uniform. These results
indicate that the algorithm proposed in this paper can achieve the ultimate goal. Many current studies
on robot surface grinding are based on multi-dimensional force sensors. In this paper, by simplifying
the force-mapping relationship, a better force control effect can be achieved using a one-dimensional
force sensor, which provides another method for subsequent research.

The adaptive sliding-mode iterative constant-force control method proposed in this paper can
achieve better force control effect and has certain flexibility. However, the positioning accuracy of the
robot still has some influence on the grinding force and grinding accuracy. Hence, in the future, laser
tracker and related algorithms can be proposed to compensate the positioning accuracy of the robot,
and then be used to improve the grinding effect with the adaptive sliding-mode iterative constant-force
control algorithm.
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