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Abstract: The most important structural element of prestressed concrete (PSC) bridges is the
prestressed tendon, and in order to ensure safety of such bridges, it is very important to determine
whether the tendon is damaged. However, it is not easy to detect tendon damage in real time.
This study proposes a novelty detection approach for damage to the tendons of PSC bridges based
on a convolutional autoencoder (CAE). The proposed method employs simulation data from nine
accelerometers. The accuracies of CAEs for multi-vehicle are 79.5%-85.8% for 100% and 75% damage
severities with all error levels and 50% damage severity without error. However, the accuracies for
50% damage severity with 5% and 10% error levels drop to 69.4%-73.3%. The accuracies of CAEs for
single-vehicle ranges from 90.1%-95.1% for all damage severities and error levels that are satisfactory.
The findings indicate that the CAE approach for multi-vehicle can be effective when the damages are
severe, but not when moderate. Meanwhile, if acceleration data can be obtained for single-vehicle,
then the CAE approach can provide a highly accurate and robust method of tendon damage detection
in PSC bridges in use, even if the measurement errors are significant.

Keywords: novelty detection; convolutional autoencoder; bridge damage; prestress tendons;
PSC bridge

1. Introduction

Prestressed concrete (PSC) bridges have an advantage compared with reinforced concrete bridges
in that their structures can withstand large loads even with a small amount of rebar and concrete. PSC
bridges are also economical and durable, as they can be used for 75 to 100 years if corrosion of the
steel-wire tendon is prevented. Owing to these advantages, PSC bridges are widely used [1].

As the number of aging PSC bridges increases across the world, there have been many reports
on damage to tendons owing to corrosion in PSC bridges. Some of these cases were severe and PSC
bridges such as the Melle Bridge in Belgium and Shinsuga Bridge in Japan even collapsed owing to
tendon corrosion. These cases indicate the importance of detecting tendon damage in PSC bridges
to prevent their collapse and ensure safety. In practice, however, it is very difficult to detect early
symptoms through bridge inspections before failures of tendons in PSC bridges occur [2].

Recently, structural health monitoring (SHM) has been widely used to monitor the behavior of a
bridge and detect its damages through various sensors. However, as the structural behavior of PSC
bridges does not change significantly according to damages, difficulties in detecting tendon damages
still exist even with the use of SHM. To address this limitation, studies on novelty detection for bridges
have been actively conducted to detect damages even with small behavior changes in bridges.
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Novelty detection using SHM is based on identifying changes in the response to the undamaged
and damaged states to evaluate the state of a bridge. Damage-sensitive features, such as the modal
properties, wavelet coefficients, and principal component analysis (PCA), which are calculated from
the response of a bridge, are mainly used for the state evaluation. However, even if the bridge damage
is considerable, it is usually difficult to detect the damage using damage-sensitive features because of
the slight difference. Analytical tools, such as the Mahalanobis squared distance (MSD) and artificial
neural network (ANN), have also been used to more clearly distinguish damage-sensitive features
based on the state of a bridge.

The MSD is widely used in various industries to identify outliers that significantly deviate from
normal data. However, the MSD has a limitation. It considers the importance of all variables to be
the same. As a result, this characteristic can lower the accuracy of novelty detection if numerous
unimportant and redundant variables are included in the data.

In contrast, the ANN considers the importance of variables and thus is widely used for novelty
detection. Most ANN approaches to analyze damage-sensitive features are based on supervised
learning, which requires label data as correct answers for an output layer. During novelty detection
for a bridge in service, the label data are the actual damages of the bridge and are generally obtained
through model updates. However, the process of obtaining data requires time and effort; it is limited
in that it is difficult to accurately determine the state of the bridge because it is impractical to conduct
a destructive experiment on a bridge in service.

This limitation can be solved by using a convolution autoencoder (CAE), which is an ANN based
on unsupervised learning. The CAE uses an encoder network for the extraction of features and a
decoder network that restores the input data of the ANN based on the features. Thus, the CAE uses
the advantages of an ANN in that it extracts features while not requiring label data from the state
measurements of a bridge. In addition, the CAE extracts convolution features from raw response data
using the convolutional neural network (CNN), which has the advantage of preventing information
loss that may occur in the damage sensitive features. Thus, novelty detection of the tendons of PSC
bridges can be more efficiently performed using the CAE.

The purpose of this study is to develop a novelty detection approach for damage to the tendons of
PSC bridges using the CAE. Measured response data from bridges with damage to tendons are necessary
to verify the performance of the CAE. However, it is practically impossible to obtain actual data by
intentionally breaking a bridge tendon because it poses a safety risk to the bridge users. Therefore,
simulation data were used for training and testing the CAE instead of actual data. The simulation model
was applied to “Hannam 2 Overpass”, which is a PSC-I bridge used in Seoul, Korea. The simulation
was performed using the MIDAS/CIVIL program.

2. Related Studies

Novelty detection for SHM has attracted attention owing to its ability to identify outliers in signal
data of the structural responses of a bridge. Novelty detection approaches mainly have used damage
sensitive features from responses to evaluate the structure state.

Most studies on damage-sensitive features have used modal properties such as mode shapes
and modal frequencies. Kirmser [3] reported that the cracking of an iron beam affects its natural
frequency. Casas and Aparicio [4] proposed approaches to detect the damage of a bridge based on
changes of the modal properties; many related studies have been conducted since then. For example,
Blachowski et al. [5] recently showed that a high-level modal frequency in 13th mode or above
could reflect the damage in a steel frame structure. Soman et al. [6] proposed a damage detection
approach using three indexes that are calculated using the natural frequency and mode shapes as
damage-sensitive features from displacement, strain, and acceleration and each index was used to
identify the damages of four parts of a long-span suspension bridge.

Many studies have been carried out on novelty detection with wavelet coefficients. For example,
Hou et al. [7] proposed a novelty detection approach using wavelet analysis that is often used in
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signal processing. Khatam et al. [8] used wavelet analysis for the novelty detection for beams within
harmonic loading. Noh et al. [9] suggested three wavelet-based damage-sensitive features obtained
through wavelet analysis. Recently, Pnevmatikos et al. [10] and Pnevmatikos and Hatzigeorgiou [11]
proposed novelty detection approaches for steel frame structures using wavelets coefficients as
damage-sensitive features.

The features of PCA are also useful for pattern recognition of high-dimensional data using
dimension reduction and there are many studies that use PCA for SHM (e.g., [12-16]). Manson [12]
developed a feature-based damage detection technique using PCA components that can detect
damage while filtering out temperature effects, which have a significant impact on the structure.
Gharibnezhad et al. [13] used the robust PCA [17] to solve the problem of sensitive covariance in
conventional PCA owing to the anomalies present in the data. The robust PCA showed better
performance and faster testing than the conventional PCA for the problem of detecting an outlier in
dynamic signal data obtained from seven piezoelectric sensors. Reynders et al. [14] presented a novelty
detection approach for three-span concrete bridges using kernel PCA for nonlinear systems affected
by changing environmental conditions. Mujica et al. [15] used PCA to determine hidden patterns in
the dynamic responses of aero structures. The correlation between PCA components and structural
damage was clarified, and PCA obtained from the signal data of the structure showed that anomalies
can be used for damage detection. Wah et al. [16] developed a damage detection technique that uses a
Gaussian mixture model in PCA and applied it to truss bridges to verify the technique.

Many studies are based on the application of analytical methods such as MSD (e.g., [18-22]) or
ANN (e.g., [23-31]) to achieve a higher accuracy of novelty detection using damage-sensitive features.
The MSD-based method describes the detection of novelty data by setting up a category for normal
data and detecting outliers. For example, Worden et al. [18] proposed an MSD method to detect outliers
of a normal data category for univariate and multivariate data. Sohn et al. [19] estimated the outliers
using the MSD between real strain data and fitted values of an autoregressive model formed using
the strain data of a bridge. Mosavi et al. [20] showed that damage localization of a steel beam using
MSD is possible when using vector autoregressive model coefficients to generate acceleration data of a
simple steel beam structure. Zhou and Wahab [21] developed a faster novelty detection approach using
MSD, where the transmissibility of the structures is affected by unknown excitation. Zhou et al. [22]
extracted PCA features based on a frequency response function calculated using response data and
used it to detect the damage (anomalies) of the structure with MSD. However, the MSD does not
consider the importance of each variable and the accuracy may not be ensured.

In contrast, ANN-based methods consider the importance of variables based on features.
The ANN-based methods are also useful for pattern recognition in high-dimensional data and has been
adopted for SHM. The approaches using ANN mainly use the extracted damage sensitive features
from signal data of a structure. For example, Mehrjoo et al. [23] used an ANN for detecting the damage
of each node of a truss structure and obtained a damage detection accuracy of approximately 1% when
using the first- to fifth-order mode shapes obtained from the signal data as input data for an ANN.
Park et al. [24] proposed a damage detection approach using an time-based features and a modal-based
features with neural network. They verified the approach for simply supported beams. Shu et al. [25]
proposed a damage detection approach that identifies the damage severity and damage location of a
simplified railway bridge model based on an ANN. Goh et al. [26] employed ANN to estimate the
mode shape, which cannot be measured with a small number of sensors and used the mode shape
for novelty detection. Hakim et al. [27] proposed a damage detection approach for a beam structure
using an ensemble network consisting of five ANN networks extracted using five mode shapes (first-
to fifth-order mode shapes), which were obtained from acceleration data as input data for each ANN.
Tan et al. [28] used an ANN to detect single and multiple instances of damage in a simply supported
steel I-beam. Padil et al. [29] proposed a non-probabilistic ANN approach for damage detection using
modal properties extracted from response data including unknown noises.

During ANN-based novelty detection, more sophisticated neural networks can be used to extract
clearer features, thus providing a higher accuracy. However, because ANN is generally based on
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supervised learning, it is necessary to calculate the loss of the backpropagation algorithm. To calculate
the loss, label data are required for the output layer of the ANN. The ANN cannot be trained without
label data.

To apply an ANN in a novelty detection approach for an actual bridge, various damage states
of a bridge are required as the label data of an ANN. However, determining the damage state of
a bridge is difficult because it is impossible to intentionally cause damage to a bridge in service.
Therefore, it is necessary to create an analytical model that can provide various damage states of a real
bridge. However, as the behavior of an analytical model is generally different from that of an actual
structure, a model-updating process is required to make the analytical model similar to a real bridge.
The model-updating process requires significant time and effort to construct the analytical model and
to update the model with high accuracy.

Some studies used an unsupervised learning-based ANN for novelty detection. For example,
Yeung and Smith [30] demonstrated the possibility to detect damages of a bridge with damage-sensitive
features using an unsupervised learning-based ANN, but their methods showed that the limit is
very sensitive to measurement noises. Figueiredo et al. [31] demonstrated that an unsupervised
learning-based ANN provides a better accuracy than other unsupervised learning-based machine
learning algorithms such as factor analysis, MSD, and singular value decomposition. These approaches
have the advantage of being able to detect damages without a model updating process and label data,
although it is not possible to estimate the damage locations.

An autoencoder (AE) proposed by Hinton and Salakhutdinov [32] is considered as an unsupervised
learning-based ANN having a more robust performance due to its characteristics. As an AE uses input
data as the label data, an AE model is trained in a direction that can restore normal input data well.
If normal data are input to the AE model after training, restoration proceeds smoothly, but this is not
the case with abnormal data. This makes it possible to determine novelty. Recently, novelty detection
using AE has been attracting attention with the progress of deep learning, and many related studies
have been conducted in various fields (e.g., [33-38]). For example, Shin et al. [33] proposed a multiple
organ detection technique for patients based on 4D medical images using a stacked AE. Yan and
Yu [34] proposed a technique to detect the novelty of a gas turbine using a stacked denoising AE.
Xiong and Zuo [35] used a deep AE to detect geochemical anomalies. Jiang et al. [36] attempted to
determine anomalies in chemical sensor data using an active AE, and Oh et al. [37] estimated anomalies
in Surface-Mounted Device machine sound data using an AE.

These studies have shown that AEs enable novelty detection with high accuracy in various areas.
The results show that AEs can also be used to detect bridge damages. In this study, a novelty detection
approach using an AE was developed for PSC bridges. Lin et al. [39] showed that features extracted
from raw response data through a convolutional neural network (CNN) are of advantage in novelty
detection. Lee et al. [40] also showed that multiple variable data from bridges can be efficiently used
with a CNN. Therefore, in this study, a CAE was used, which efficiently utilizes an AE and CNN for
response data from bridges.

3. Multi-vehicle Traffic Loads

As described in the Introduction section, it is impractical to cause damage to a real bridge and
obtain its actual response data. Therefore, this approach was developed using simulation data from an
FE model similar to the “Hannam 2 Overpass” in Seoul, Korea. The simulation data was obtained from
the base simulations. Each base simulation was performed under the condition that only one vehicle
moves in only one lane at a constant speed, with one of two bridge states: undamaged state (without
tendon damage) and damaged state (with tendon damage). As a result of each base simulation, the
base data consisting of time-series acceleration data from multiple measurement points were obtained.

The Hannam 2 Overpass has four lanes so that several vehicles are frequently on the bridge
simultaneously. Therefore, this situation was considered a priority. The acceleration data of the
multi-vehicle traffic loads were generated by combining multiple base data based on the additivity
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of acceleration. The CAE was trained with only the acceleration data of multi-vehicle traffic loads in
the undamaged state, whereas its test to identify the state to be either undamaged or damaged was
conducted with the acceleration data in both states.

The process of developing the CAE for novelty detection for the tendons is organized as follows:
In Section 3.1, the base data are generated with 15 vehicle speeds in each of the four lanes. In Section 3.2,
the datasets for the multi-vehicle traffic loads are generated using multiplication and combination
processes with base data and divided into training and test datasets. In Section 3.3, the CAE architecture
and corresponding hyperparameter are configured. In Section 3.4, the CAE test results are discussed.

3.1. Base Data Generation

A linear elastic FE model of a single-span PSC-I girder of the Hannam 2 Overpass was built to
generate acceleration responses before and after the damage of the external tendon using the structural
software MIDAS/CIVIL (Figure 1). The bridge model is supported at the ends by hinge and roller
supports with a span of 28.35 m and width of 13.2 m. The FE model has four lanes and two-way traffic
and consists of a bridge deck modelled by plate elements, and seven PSC I-girders, six cross beams,
and four external tendons modelled by beam elements. The bridge components, girder, deck, and
cross beam were assembled by rigid link. Each PSC I-girder was modeled to have a prestress tension
of 10,000 kN. The external tendons were modeled after a Korean standard (KSCE-LSD 15) steel, which
was added to the first and seventh girders with a prestress tensile load of 80,000 kN. It was verified
that the deck of the FE model was in compression due to the prestress tension. The detailed material
and sectional properties of each component are shown in Table 1.
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Figure 1. PSC I-girder bridge model with external tendon at both ends of girder.

Table 1. Material and sectional properties of the bridge components.

Component Modulus of Poisson’s Weight Density Section (mm)
(Material) Elasticity (MPa) Ratio (N/m3)
Bridge deck 2.70 x 104 0.18 2.35 x 10* Plate Thick plate
(Concrete) element
580 |
200
——50
PSC I-girder 4 4 Beam
(Concrete) 3.09 x 10 0.18 2.35 x 10 (PSC-I) 1,800 .
180
E
1600
Cross beam Beam
2.70 x 10* 0.18 2.35 x 10% (Solid 100
(Concrete)
rectangle)

Tendon . . Beam
(Steel) 2010 03 770 %10 (Solid round) 1001@
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The damaged states of the bridge were modelled by reducing the prestress tension of four external
tendons that are attached to the first and seventh girders. Based on the intact external tendons with
80,000 kN tension, this study assumed that 100% loss of tension corresponds to 100% damage state
and 75% and 50% loss of tension are identical to 75% and 50% damage severities, respectively. The
first eight natural frequencies of the bridge with respect to the damage severities are shown in Table 2.
The corresponding mode shapes are shown in Figure 2. It is verified that the FE model had different
natural frequencies depending on the damage severity of the external tendons, and internal girder was
in compression due to the prestress tension.

Table 2. Natural frequencies (Hz) of modelled bridge depending on the damage severity.

Natural Frequencies (Hz)

1st 2nd 3rd 4th 5th 6th 7th 8th
Mode Mode Mode Mode Mode Mode Mode Mode

Undamaged 9.189 9.222 16.201 23.595 23.954 27.951 29.895 38.703

Damage
Severity

50 % 9.264 9.296 16.209 23.769 24.085 28.067 29.887 38.786
75 % 9.301 9.333 16.212 23.855 24.149 28.125 29.883 38.826
100 % 9.338 9.370 16.216 23.940 24.213 28.183 29.878 38.867

(b) Second mode - Bending

(a) First mode - Torsion

(c) Third mode - Torsion (d) Fourth mode - Torsion/bending

(g) Seventh mode - Torsion (h) Eighth mode -Torsion/bending

Figure 2. Mode shapes of modeled bridge (undamaged case).

Table 2 shows that the bridge with more damage in tendons is likely to have higher natural
frequencies owing to geometric change due to the damage in the external tendon. From the previous
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study, the bridge deflected by the dead load tends to have higher natural frequencies than the bridge
without deflection. In this study, the damage in the external tendon deflects the bridge that results in
increased natural frequencies as compared to the intact bridge.

The traffic loads of a single vehicle in each lane were used to simulate a set of acceleration
responses of the bridge. Traffic loads for the base data are assumed to be point loads of the front (9 kN)
and back (6 kN) axles on each lane, with 10 cm intervals and 15 vehicle speeds (20, 25, 30, 35, 40, 45, 50,
55, 60, 65, 70, 75, 80, 85, and 90 km /h; Figure 3). Note that the mass of a sedan car in Korea is about
1,500 kg, which is equivalent to 15 kN in weight. The acceleration responses under the car loads were
measured with a sampling rate of 1,000 Hz for 10 s at nine points on the bridge deck, as shown in
Figure 4. The measurement points are located on the quad-, middle-, and third quad-span of the first,
fourth, and seventh girders. A linear time history analysis was conducted to generate the dynamic
responses of traffic loads at 1,000 Hz using the Runge-Kutta—-Fehlberg numerical analysis method.
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Figure 3. Traffic load points (Lanes 1, 2: right direction, Lanes 3, 4: left direction).
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Figure 4. Acceleration measurement points on the bridge deck.

The linear time history was analyzed to produce 60 sets of base data of acceleration responses
from each of the four damage severities (undamaged, 50%, 75 %, and 100 % damage) for the 15 vehicle
speeds in four lanes. A typical example of the acceleration is shown in Figure 5a, which was measured
from the 100% damaged structure at measurement point 3 in Figure 4 when a car passes through lane
1 at a speed of 20 km/h. All simulated acceleration signals sampled with 1,000 Hz were downsampled
to 70 Hz, which was selected considering the computational efficiency in training the CAE, as well as
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the first seven natural modes with high energy, as shown in Figure 5b. Note that the anti-aliasing filter
of an order 8 type-1 Chebyshev was used before downsampling.
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Time(s) Frequency(Hz)
(a) (b)

Figure 5. Example of an acceleration data from measurement point 3 when a car passes through lane 1
at 20 km/h (sampling rate = 1,000 Hz) and a power spectral density of acceleration. (a) Acceleration
data; (b) Power spectral density of the acceleration.

3.2. Data Sets

After downsampling, the base data were modified through a multiplication process based on the
homogeneity of acceleration, to apply various magnitudes of loads from a vehicle. The magnitude
of load of a vehicle that can ply on the bridge was set to be 0.5, 1, or 1.5 times larger than the load of
the base data, considering the weights of sedans, small city cars, and vans in Korea. A multiplication
process based on the homogeneity of the acceleration data was designed to have the same effect as
loading a vehicle with different load sizes. For example, the acceleration data of a load that is 1.5 times
as large as the load of the base data can be obtained by multiplying the acceleration data of the base
data by 1.5.

To detect the damaged state of the bridge with multi-vehicle traffic loads, the simulation data
for the moving vehicles randomly loaded over all lanes were generated by combining the modified
base data. Data are combined depending on the additivity of acceleration, as shown in an example in
Figure 6. Figure 6a—d show the base data from measurement point 1 in the cases where a car plies at
20 km/h on lane 1, at 30 km/h on lane 2, at 40 km/h on lane 3, and at 50 km/h on lane 4, respectively,
with a starting interval of 1 s in the order of lane 1 to lane 4. Figure 6e shows the combined acceleration
of the four sets of base data in Figure 6a-d.
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0 2 4 6 8 10
Time(s)

(a) Acceleration data from measurement point 1 when a car passes through lane 1 at 20 km/h.

Figure 6. Cont.
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(b) Acceleration data from measurement point 1 when a car passes in lane 2 at 30 km/h
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(c) Acceleration data from measurement point 1 when a car passes in lane 3 at 40 km/h
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(d) Acceleration data from measurement point 1 when a car passes in lane 4 at 50 km/h

Figure 6. Cont.
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(e) Combined acceleration data from Figures 6a-d

Figure 6. Example of the combination of base data.

During CAE development, the CAE was intended to be trained with varying speeds. It may
be strange that vehicles moving at very different speeds travel on the bridge immediately one after
another. However, although such situations are rare, they can happen. If the CAE was trained without a
dataset for those situations, it could mistakenly detect a damaged status in such situations. Meanwhile,
it is unlikely that a vehicle plying at any speed is followed by another vehicle at an entirely different
speed in the same lane in practice. The loading protocol for multi-vehicle traffic was designed to
comply with this constraint.

The time lag between the appearances of vehicles in the same lane of the bridge was set such that
each succeeding vehicle randomly departed 0-3 s after the preceding vehicle left the lane. This time
lag was designed to demonstrate various vehicle appearances in the same lane while avoiding the
collision between the preceding and succeeding vehicles. The maximum speed was set to 90 km/h
and the minimum speed was 20 km/h. In addition, the speed of the succeeding vehicle could be
£10 km/h than the preceding vehicle. For example, if the speed of the preceding vehicle in a lane is
85 km/h, the speed of the succeeding vehicle could be between 75 and 90 km/h. This speed constraint
between the succeeding and preceding vehicles was applied to the same lane, and different lanes had
different speeds.

Based on the loading protocol for multi-vehicle traffic, up to four vehicles should be on the
bridge at a given time, while only up to one vehicle should be on each lane. In this manner, the
moving vehicles were randomly loaded over all lanes for approximately three weeks (500 h), and the
acceleration data was generated by combining the corresponding base data. Figure 7a shows a sample
result generated through the data combining process.

In practice, actual measurement data from bridges generally can have measurement errors such
as systemic error, instrument error, and installation error, depending on the installation environment.
Thus, in this study, random measurement errors were intentionally added to the acceleration data
used for the input and output layers of the CAE as in real circumstances.

The random measurement errors were generated using two Gaussian distributions representing
different error levels: The mean of all Gaussian distributions was set to 0, and the standard deviations
were set as 5% and 10%. The level of measurement errors (or error level) in this study represents the
standard deviation of a Gaussian distribution, from where an error for each data point is generated. The
random number generated from the Gaussian distribution is used as the percentage of measurement
error (noise) of the data point.

For example, in order to apply the error level of 5% to 1400 data points measured at 70 Hz
for 20 s, it is necessary to generate 1400 random numbers from the Gaussian distribution with a
standard deviation of 5%. Table 3 shows an example applying the error level of 5% to 1400 data points.
If the random numbers for the first and second data points are 0.0134 and —0.0155, respectively, the
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acceleration values of the first and second data points are manipulated from 0.0477 m/s? to 0.0483 m/s?
with an error of 1.34%, from 0.0482 m/s? to 0.0475 m/s?, with an error of —1.55%, respectively.

0.08

o
=}
=)

o
=)
&

0.00 1

—0.02 1

Acceleration(m/s?)
o
S

—0.04 1

—-0.06 T T T T T T T T T
0.0 2.5 5.0 75 100 125 150 175 20.0

Time(s)

(a) Sample of acceleration data for 20 s from measurement point 2
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(b) Sample of acceleration data applied with 10% measurements error
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(c) Sample of acceleration data scaled with min-max scaling

Figure 7. Example of the process for applying the measurements error and min-max scaling.
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Table 3. Accuracies of the CAE models corresponding to three levels of measurement errors for the multi-vehicle traffic loads

12 of 27

Damage Severity Level of Measurement Error Accuracy FNR FPR Activation Function/Epoch Final Training Loss Threshold
No error 82.1% 5.7% 12.2% ReLU/5 1.08 x 1072 1.09 x 1072
Damage 100% 5% error 81.0% 7.1% 11.9% ReLU/30 2.76 x 1073 324 x 1073
10% error 81.0% 6.9% 12.1% tanh/30 2.54 x 1073 2,99 x 1073
No error 79.5% 8.3% 12.2% tanh/10 3.96 x 1073 435 x 1073
Damage 75% 5% error 85.8% 5.3% 8.9% ReLU/10 3.76 x 1073 437 x 1073
10% error 82.3% 5.9% 11.8% tanh/30 2.55 x 1073 3.01 x 1073
No error 84.0% 5.4% 10.6% ReLU/20 2.89 x 1073 3.50 x 1073
Damage 50% 5% error 73.3% 10.2% 16.5% ReLU/20 3.16 x 1073 343 x 1073
10% error 69.4% 10.3% 20.3% tanh/20 2.73 x 1073 2.80 x 1073

Average 79.9% 7.2% 12.9%
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Three levels of measurement errors, including no error, were set and applied to the 125-hour data.
For each level of measurement errors, the training and test sets were revised such that the error for
each data point in the training or test sets is randomly generated within the corresponding Gaussian
distribution. As a result, a training set, test set, and CAE were generated for each of the three levels of
measurement errors. Figure 7b shows the sample of acceleration data with a 10% measurement error.

Neural networks, including CAE, are characterized by good learning when the variations of the
input variables are similar. Thus, for effective learning, the acceleration data of each of the nine sensors
were scaled using the maximum and minimum data points of the respective sensor for 500 h. This
scaling method was applied to the undamaged and damaged states, respectively. Figure 7c shows the
sample of scaled acceleration data based on the data in Figure 7b.

As shown in Figure 8, the patterns of the behavior in a bridge did not appear well when the time
window of the acceleration data is too short. In order to identify the patterns more clearly, the time
window for the acceleration data was determined to 20 s (1,400 frames). For this approach, data can be
obtained from nine acceleration sensors (see Figure 4) and the sampling rate is 70 Hz. The matrix of
the acceleration data for 20 s designed to be of size 9 (the number of sensors) x 1400 (=20 s x 70 Hz).

Time window =20 s

< Y
n >

1.0
Data#1 Data#2 Data#3 Data#4 Data#5 Data#6 Data#7

0.8 1

0.6 1

0.4 1

Scaled acceleration

0.2 A1

0.0 t t t t
0 20 40 60 80 100 120 140

Time(s)

Figure 8. Concept of the time window of the acceleration data (This graph shows a sample of 125-hour
acceleration data; the three dots indicate that there are many data in the applied time window).

Because the combination process to generate the data set requires a lot of time, the combination
process for the undamaged state was performed together with those for the three damaged states for
temporal efficiency. A total of 22,500 data for 20 s were obtained by dividing time-series acceleration
data over approximately five days (125 h) by the time window (see Figure 8) in the undamaged state
and each damaged state, respectively. The training set for the CAE consisted of 15,750 data in the
undamaged state, i.e., 70% of all the data in undamaged state. Considering the loading protocol
explained above, the size of the training set is considered sufficient to cover most cases of multi-vehicle
traffic loads. The other 30% of the data (6750 data) in undamaged state were used in the test set.
The test set for each damaged state also requires data in the damaged state to obtain the detection
accuracy for the CAE. Thus, 6750 data among the 22,500 data in the damaged state were randomly
selected and added to the test set, thus balanced with the data in the undamaged state. Thus, the final
test for each damaged state set had 13,500 data. The process for configuring the training set and the
test sets was conducted for each measurement error.
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3.3. CAE Architecture

Based on the matrix size of the previously designed data, the architecture for CAEs for novelty
detection of bridges with multi-vehicle traffic loads is shown in Figure 9. Generally, the architecture
of a CAE consists of two CNN architectures composed of an encoder, which generates the features,
and a decoder, which restores the original input data (see Figure 9). The same 9 x 1400 acceleration
matrix data were used for both the input and output layers of the CAE, but the information about
the vehicle load was not used. The encoder of this CNN architecture has three convolutional layers,
two max pooling layers, and one fully connected layer. The decoder has three deconvolutional layers,
two unpooling layers, and one fully connected layer. The number of latent variables (features) is 700,
which is 1/18 of the input data.

Encoder Decoder
Y
N
A0 N
. \ N
; : \
\ D '
\ ’
2 : 4 24
9 2048 | 00 |1 1024
28672 28672
1 — Convolution Layer — Pooling Layer --- Flattening Layer --- Fully Connected Layer 1
— Deconvolution Layer — Unpooling Layer --- Unflattening Layer

Figure 9. CAE architecture for multi-vehicle traffic loads.

To improve the accuracy of the CAE, it is important to select and use appropriate hyperparameters
during training. In this study, epochs (one epoch represents one pass of the full training set) were
set up when the accuracy of CAE for each damage severity and each measurement error showed the
best results. The other hyperparameters for CAE training were set to be constant. The batch size was
set to 256. Xavier initialization was used as the initialization method and RMSprop was used as the
gradient method. The learning and decay rates were set to 0.001 and 0.01, respectively. Because the
rectified linear unit (ReLU) and hyperbaric tangent (tanh) in this study was empirically demonstrated
to be superior in performance as an activation function, each training process was performed twice
independently applying each activation function. The CAE model needs to be overfitted in the training
set if its purpose is to cluster two states of data using the CAE loss that represents the difference
between actual outputs and predicted outputs. In the study, the mean squared error was used for the
function of CAE loss. Because the input data of CAE has no unit by min-max scaling, the CAE losses,
too, have no unit. The architecture and hyperparameters of the CAE were designed and configured
using Keras (deep learning library) with Python and all training and test processes were performed
in the following hardware environment: Intel i7-8700K CPU, 32 GB DDR4 RAM, and two NVIDIA
GTX-1080Ti GPUs.

3.4. Results and Discussion

For each of the three measurement errors, the CAE was trained and tested using the corresponding
training and test data sets. Table 3 shows the best accuracies of CAE for the three measurement errors
and the corresponding false negative rates (FNRs), false positive rates (FPRs), epochs, activation
functions, final training losses and thresholds. Figure 10 shows the examples of CAE losses of the test
data (with 50% damage severity) from both the undamaged and damaged states for multi-vehicle
traffic loads. As shown in Figure 10, the CAE needs a baseline threshold to cluster the two states of
the bridge. There is no unit in the thresholds as in the CAE losses. The thresholds were set with the
trial-and-error approach to ensure the best accuracies.
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Figure 10. Examples of CAE losses of test data from both undamaged and damaged states for multi-
vehicle traffic loads (TP indicates true and positive. FP indicates false and positive. TN indicates true
and negative. FN indicates false and negative. True means that the CAE correctly detected the state
of bridge. False means that the CAE incorrectly detected the state of bridge. Positive means that the
predicted state is the damaged state. Negative means that the predicted state is the undamaged state.).
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The accuracy calculated by Equation (1) represents the ratio of the total number of true positive
(TP) and true negative (TN) sets to the number of total test sets (Figure 10), indicating the rate at which
the CAE correctly clusters the test set. The final training loss is the training loss of the final epoch, and
its value close to zero means that the CAE is well trained:

TP+TN
TP+TN+FP+FN

Accuracy = 1)

As shown in Table 3, the accuracies for 100% damage severity are 81.0%—-82.1% when there is
no measurement error or a 5% or 10% measurement error. The accuracies for 75% and 50% damage
severities are 79.5%-85.8% and 69.4%-84.0%, respectively, when there is no measurement error or a 5%
or 10% measurement error. These results indicate that the accuracies of CAEs are not high enough,
but are still acceptable for 100% and 75% damage severities with all error levels. However, the results
show unsatisfactory accuracy for 50% damage severity with the error levels of 5% and 10%, while
its accuracy with no error is satisfactory. The difference in the accuracies for 50% damage severity
between no error and 5% and 10% error levels is also supported by the scatter plots of the CAE losses
(which is a measure of how far the predicted CAEs are from the actual value) of the test data for 50%
damage severity in Figure 10. While the distinction between the undamaged and damaged states is
moderately apparent with no error as shown in Figure 10a, the distinctions are vague with 5% and
10% error levels as shown in Figure 10b,c. For the performance verification of the CAEs, besides the
accuracies, false negative (FN) should be considered. FN is a wrong negative test result that occurs
when a CAE incorrectly predicts the damaged state of a bridge. Since FN might lead to loss of life
and collapse of the bridge, FN is more severe than false positive (FP) that is a false alarm. Therefore,
with the best accuracy thresholds, the FNRs calculated by Equation (2) need to be checked carefully.
The results shown in Table 3 confirm that the FNRs for multi-vehicle traffic loads are relatively low
(5.3%-8.3%) when the accuracies are acceptable (79.5%—-85.8%). The FNRs are also 1.5-2.1 times lower
than the corresponding FPRs calculated by Equation (3). These results show that the FNRs remain low
with the best accuracy thresholds:

False negative rate (FNR) = TP+ TNF—iz—V FP+FN ?

FpP
TP+ TN+ FP+FN

The results of accuracies of the CAEs can be confirmed based on the area under the curve (AUC) of
the receiver operating characteristic (ROC), as shown in Figure 11. The AUC indicates the classification
ability of the classifiers. The AUC ranges of the developed CAE for 100% damage severity and 75%
damage severity are 0.89-0.90 (Figure 11a) and 0.88-0.93 (Figure 11b) for different levels of measurement
errors, respectively. The AUCs for 50% damage severity are 0.92 with no error, 0.81 with 5% error
level, and 0.76 with 10% error level, respectively (Figure 11c). The AUCs remain near 0.9 for 100% and
75% severities with all error levels, indicating good classification ability, and for 50% severity with no
error. However, the AUCs drop to 0.8, or less for 50% severity with 5% and 10% error levels. These
results show that the CAEs can accurately classify undamaged and damaged states for 100% and 75%
damage severities with error, but the CAEs will not be robust and can fail to classify the states with
good accuracy for 50% damage severity with measurement errors. Therefore, it is concluded that the
CAEs for multi-vehicle traffic loads are effective when damages are severe, but not when damages
are moderate.

False positive rate (FPR) = 3)
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Figure 11. ROC curves and AUCs of CAE models corresponding to three levels of measurement errors
for multi-vehicle traffic loads.

Considering that the accuracy and AUC are acceptable for 50% damage severity with no error,
the low accuracies and AUCs for 50% severity with 5% and 10% error levels are probably because
the difference in the patterns of acceleration data between undamaged and damaged states become
unclear amid errors. This limitation can be addressed to use acceleration data with clearer patterns.
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As shown in Figure 6, a single-vehicle traffic load (only one vehicle is on the bridge at a given time)
generates clearer patterns of acceleration data compared to multi-vehicle traffic loads. Therefore, it is
considered that the undamaged and damaged states of the bridge can be better distinguished by using
acceleration data for a single-vehicle traffic load for the development of CAEs.

4. Single-vehicle Traffic Load

The CAE development process for single-vehicle traffic load is the same as that with multi-vehicle
traffic loads, but the acceleration data from single-vehicle traffic load were used for training and testing
the developed CAE. The CAE was trained using the data set of undamaged state only, and the trained
CAE was validated with the test data from both undamaged and damaged states as in the case of the
multi-vehicle traffic loads.

The process of developing the CAE for a single-vehicle traffic load case is organized as follows:
in Section 4.1, the datasets from the single-vehicle traffic load are generated using a multiplication
process with base data and divided into training and test datasets. In Section 4.2, the architecture and
corresponding hyperparameter for the CAE are configured. In Section 4.3, the test results of the CAE
are discussed.

4.1. Data Sets

In the case of a single-vehicle traffic load, it is possible to use only 60 sets of base data for each
of the four damage severities (undamaged, 50%, 75%, and 100% damage), as described in Section 3.1
because the base data are simulated with a single-vehicle traffic load on the Hannam 2 Overpass.
However, the amount of base data is too small for training and testing. Therefore, a multiplication
process was employed to increase the amount of data. Consequently, 1,260 data were generated in the
undamaged state and the damaged states, respectively for loads that are 0.5-1.5 (by 0.05 increments)
times larger than the load of the base data.

However, it takes up to 6 s for the vehicle with the slowest speed (20 km/h) to pass through the
bridge. Accordingly, the time window of the data was set to 10 s, and the sampling rate was 70 Hz (see
Section 3.1). There are nine sensors; thus, the matrix of each data for 10 s is designed to be of size 9
(number of sensors) x 700 (= 10s x 70 Hz).

The ratio of training set to test set is the same as that in the preceding multi-vehicle traffic loads’
case. The training set for CAE consisted of 882 data in only the undamaged state, which were 70%
of all the data (1,260 data) in the undamaged state. The test set consisted of both the remaining 30%
data (378 data) in the undamaged state and 378 data (randomly selected among 1,260 data) in the
damaged state to balance the data from the undamaged state. Thus, the final test set had 756 data.
Moreover, random measurement errors were intentionally applied to the acceleration data as in the
case of multi-vehicle traffic loads.

The measurement errors applied to the acceleration data are based on Gaussian distribution in
the same way they were used for multi-vehicle loads: the mean of all Gaussian distributions is zero
and the standard deviations are set to 5% and 10%. Thus, three levels of measurement errors were set,
including no error, and each measurement error was applied to the training and test sets. Finally, a
training set, test set, and CAE were generated for each of the three levels of measurement errors.

4.2. CAE Architecture

Figure 12 shows the CAE architecture for the single-vehicle traffic load. The acceleration data
with a matrix of size 9 x 700 were used for both the input and output layers of the CAE architecture,
and any information about the vehicle load was not used. The CAE architecture uses the same number
of layers and, correspondingly, the same size of filters. The input matrix size of the single-vehicle
traffic load is smaller than the input matrix size of the multi-vehicle traffic loads. Thus, faster training
and testing are possible.
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Figure 12. CAE architecture for single-vehicle traffic-load case.

The hyperparameters (epoch, regularizer, initialization, learning rate, activation function, etc.)
were set for CAE training in the same way as for the multi-vehicle traffic loads. However, as the
architecture is smaller than that in case of the multi-vehicle traffic loads, faster training can be achieved
in the single-vehicle traffic load case. Based on the designed architecture and hyperparameters, each
training set with different error levels was trained. This training process was performed for each of
the three error states. The training and tests of the single-vehicle traffic load were performed with the
same software and hardware environments that were used for the multi-vehicle traffic loads.

4.3. Results and Discussion

The CAEs were trained using each training set with three levels of measurement errors and tested
using the corresponding test set. Table 4 shows the best accuracies for the three levels of measurement
errors and three damage severities of the CAEs and corresponding FNRs, FPRs, activation functions,
epochs, final training losses and thresholds. As in multi-vehicle traffic loads, the thresholds for
single-vehicle traffic load were set with the trial-and-error approach to ensure the best accuracies.
The accuracies for 100% damage severity are 91.9%-95.1% when the measurement error is 0% (no
error), 5%, or 10%. The accuracies for damage severities of 75% and 50% for the three measurement
errors are 90.1%-92.6% and 91.9%-92.5%, respectively. The accuracies for single-vehicle traffic load
are satisfactory for all damage severities. The measurement errors do not show any significant effects
on the accuracies for any damage severity, thereby enabling a robust CAE. For single-vehicle traffic
load, as shown in Table 4, the low value of FNRs (0-0.5%) was also confirmed. From these results,
for similar to multi-vehicle traffic loads, it can be concluded that the FNRs remain low with the best
accuracy thresholds.

The high accuracies of CAEs for single-vehicle traffic are proved in Figures 13 and 14. In Figure 13,
the scatter plots of the CAE losses in the test data reveal an apparent distinction between the
undamaged and damaged states. In addition, as shown in Figure 14, the AUCs of the ROC curves
for 100%, 75%, and 50% damage severities are 0.92-0.95, 0.91-0.92, and 0.91-0.92, respectively, which
indicates excellent classification ability. These results demonstrate the robust classification ability and
satisfactory accuracy of the CAE.
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Table 4. Accuracies of the CAE models corresponding to the three levels of measurement errors for the single-vehicle traffic load

Damage Severity Level of Measurement Error Accuracy FNR FPR Activation Function/Epoch Final Training Loss Threshold
No error 95.1% 0% 4.90% tanh/30 1.35 x 1072 1.41 x 1072

100% 5% error 93.0% 0% 7.00% tanh/85 423 x 1073 5.07 x 1073

10% error 91.9% 0% 8.10% tanh /50 9.28 x 1073 9.76 x 1073

No error 92.6% 0.4% 7.00% tanh/15 2.07 x 1072 2.04 x 1072

75% 5% error 90.1% 0.5% 9.40% ReLU/60 9.56 x 1073 9.70 x 1073

10% error 92.1% 0% 7.90% tanh/250 132 x 1073 1.92 x 1073

No error 91.9% 0.1% 8.00% tanh/11 4.66 x 1072 2.93 x 1072

50% 5% error 92.5% 0% 7.50% ReLU/75 5.09 x 1073 6.29 x 1073

10% error 92.1% 0% 7.90% tanh/55 6.92 x 1073 7.58 x 1073

Average 92.4% 0.1% 7.5%
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Figure 13. Examples of CAE losses of test data from both undamaged and damaged states for single-
vehicle traffic load (TP indicates true and positive. FP indicates false and positive. TN indicates true
and negative. FN indicates false and negative. True means that the CAE correctly detected the state
of bridge. False means that the CAE incorrectly detected the state of bridge. Positive means that the
predicted state is the damaged state. Negative means that the predicted state is the undamaged state).
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Figure 14. ROC curves and AUCs of CAE models corresponding to three levels of measurement errors

for single-vehicle traffic load

These results also show that the CAE-based damage detection approach can provide a more useful
feature than the damage sensitive features, such as the natural frequencies in modes calculated using

the acceleration data of the bridge. For example, Figure 15 shows the natural frequencies in modes 1



Sensors 2019, 19, 1633 23 of 27

through 8 obtained by simulating undamaged and damaged bridges without any measurement error.
As shown in Figure 15, comparing the damage of the tendon with these natural frequencies in modes
would be difficult because the average difference of the frequencies, according to each state of the
bridge, is only up to 1%.

® Undamaged State Damaged State

45
40
35
30 ®
25
20
15

Frequency (Hz)

10

0 1 2 3 4 5 6 7 8 9
Mode No.

Figure 15. Natural frequencies in modes for both undamaged and damaged states of the Hannam
2 Overpass.

Because the CAEs for single-vehicle traffic load can provide satisfactory and robust accuracies
even with measurement errors, it will be possible to apply the CAEs to real bridges where measurement
errors are frequent. As single-vehicle traffic load can frequently occur early in the morning or late at
night, it should be possible to acquire acceleration measurement data from single-vehicle traffic load.
Therefore, the CAE-based novelty detection approach for single-vehicle traffic load can be applied to
detect tendon damages in PSC bridges in use, regardless of the damage severity.

However, the threshold setting would remain an issue while applying the CAEs in practice
because the damage severities and measurement errors are unknown. An alternative to set appropriate
thresholds is to use the CAE losses from undamaged states. The results of this study demonstrated
the following: for multi-vehicle traffic loads, the values of the third quartile (3Q) of the CAE losses
from the undamaged states are close to the best accuracy thresholds. For single-vehicle traffic load, the
values of 3Q + 0.3 interquartile range (IQR) of the CAE losses from the undamaged states are close to
the best accuracy thresholds. It is confirmed that the accuracies were slightly compromised even with
the approximate thresholds, as shown in Table 5. Even though further study on this topic is needed to
implement this approach to the approximate thresholds of bridges of different types and sizes, these
findings indicate the feasibility to set appropriate thresholds in practice.
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Table 5. Comparison between the best accuracy threshold and approximate threshold.

For the Best Accuracy Threshold

(the same as Tables 3 and 4)

For Approximate Threshold

Type of Damage Level of

Traffic Load Severity Measurement Error Threshold Accuracy Approximate Threshold Adjusted
(=3Q) Accuracy

No error 1.09 x 102 82.1% 1.09 x 102 82.0%

100% 5% error 324 x 1073 81.0% 321 x 1073 80.8%

10% error 299 x 1073 81.0% 297 x 1073 81.0%

Multi-vehicle No error 435 x 1073 79.5% 433 x 1073 79.4%

traffic loads 75% 5% error 437 x 1073 85.8% 417 x 1073 84.9%

10% error 3.01 x 1073 82.3% 298 x 1073 82.1%

No error 3.50 x 1073 84.0% 3.37 x 1073 83.7%

50% 5% error 343 x 1073 73.3% 3.63 x 1073 72.3%

10% error 2.80 x 1073 69.4% 3.15 x 1073 67.6%

Average 79.8% 79.3%
Damage Level of Approximate Threshold Adjusted
Severity Measurement Error Threshold Accuracy (=3Q + 0.3I0R) Accuracy

No error 1.41 x 1072 95.1% 1.37 x 1072 91.5%

100% 5% error 5.07 x 1073 93.0% 493 x 1073 91.4%

. . 10% error 9.76 x 1073 91.9% 9.61 x 1073 90.4%

Single-vehicle

traffic load No error 2.04 x 1072 92.6% 2.02 x 1072 90.5%

75% 5% error 9.70 x 1073 90.1% 9.76 x 1073 89.4%

10% error 1.92 x 1073 92.1% 1.81 x 1073 90.5%

No error 2.93 x 1072 91.9% 291 x 1072 90.7%

50% 5% error 6.29 x 1073 92.5% 6.14 x 1073 90.5%

10% error 7.58 x 1073 92.1% 7.53 x 1073 90.9%

Average 92.4% 90.6%
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5. Conclusions

The purpose of this study was to develop a CAE-based novelty detection approach for tendon
damage in a PSC bridge. To train the CAE, data from before and after the damage of an actual bridge
are required. However, it is practically impossible to cause damage to a bridge in service intentionally
because it poses a safety problem. Therefore, simulation data were used for training and testing the
CAE, and a structural model was designed based on the Hannam 2 Overpass. For this approach,
acceleration data were generated through a simulation and used for the input and output layers of the
CAE. Random measurement errors were also intentionally applied to the acceleration data to make
them more realistic.

The accuracies of the CAE test results for multi-vehicle traffic loads are 79.5%-85.8% for 100%
and 75% damage severities with all error levels, and 50% damage severity with no error. However, the
accuracies for 50% damage severity with 5% and 10% error levels drop to 69.4%—-73.3%. These results
show that the CAEs can accurately classify undamaged and damaged states for 100% and 70% damage
severities even with some error levels, but the CAEs will not be robust and can fail to accurately classify
the states for 50% damage severity with measurement errors. The reason for these unsatisfactory
accuracies is assumed as the lack of clear patterns of acceleration data due to measurement errors.

However, the acceleration data obtained for the single-vehicle traffic load are much simpler and
clearer. Hence, the results were used to develop another approach to harness single-vehicle traffic
load. The accuracies of the CAE test results for single-vehicle traffic load are between 90.1% and 95.1%,
which are satisfactory for all damage severities and error levels. The measurement errors do not show
any significant effect on the accuracies for any damage severity, thus enabling a robust CAE.

Based on the results, it is concluded that the proposed CAE approach for multi-vehicle traffic
loads can be effective when damages are severe, but not when damages are moderate. Meanwhile, if
the acceleration data can be obtained for a single-vehicle traffic load, the proposed CAE approach can
provide a highly accurate and robust method of tendon damage detection in PSC bridges in use, even
if the measurement errors are significant.

In practice, environmental conditions vary widely. Therefore, varying conditions must be
considered for the practical application of the CAE. However, if these environmental conditions
are reflected in the simulation, the simulation time will exponentially increase and it will take too much
time to generate the data. Therefore, environmental conditions were excluded from this study; instead
we focused on the dynamic behavior of the bridge according to the vehicle loads. Environmental
conditions generally cause systematic errors. Based on the AE mechanism, the training set is also
biased if an AE is trained with a training set with a systematic error. Therefore, if an AE is trained this
way and is tested using a test set with a systematic error, the affection of bias is likely to be excluded.
The studies on the CAEs considering the environmental conditions will be carried out in future work.

In addition, for the practical application of the CAEs, the threshold setting would remain an
issue because the damage severities and measurement errors are unknown. The findings of this study
indicate the feasibility to set appropriate thresholds in practice based on the CAE losses from the
undamaged state. Further studies are needed to apply this approach to the approximate thresholds of
bridges of different types and sizes. Finally, this study focuses on detecting severe tendon damages
because detecting them is difficult. However, developing CAEs that can detect moderate tendon
damages for a more effective SHM is necessary. This issue can be further addressed based on this study.
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