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Abstract: Human action recognition plays a significant part in the research community due to
its emerging applications. A variety of approaches have been proposed to resolve this problem,
however, several issues still need to be addressed. In action recognition, effectively extracting
and aggregating the spatial-temporal information plays a vital role to describe a video. In this
research, we propose a novel approach to recognize human actions by considering both deep spatial
features and handcrafted spatiotemporal features. Firstly, we extract the deep spatial features by
employing a state-of-the-art deep convolutional network, namely Inception-Resnet-v2. Secondly,
we introduce a novel handcrafted feature descriptor, namely Weber’s law based Volume Local
Gradient Ternary Pattern (WVLGTP), which brings out the spatiotemporal features. It also considers
the shape information by using gradient operation. Furthermore, Weber’s law based threshold value
and the ternary pattern based on an adaptive local threshold is presented to effectively handle the
noisy center pixel value. Besides, a multi-resolution approach for WVLGTP based on an averaging
scheme is also presented. Afterward, both these extracted features are concatenated and feed to the
Support Vector Machine to perform the classification. Lastly, the extensive experimental analysis
shows that our proposed method outperforms state-of-the-art approaches in terms of accuracy.

Keywords: deep spatial features; spatiotemporal features; Inception-Resnet-v2; Weber’s law based
volume local gradient ternary pattern

1. Introduction

Human action recognition is an attractive research topic in the area of computer vision due
to its wide range of applications in video surveillance, sports video analysis, movie search, etc.
Action recognition is challenging due to different viewpoint, occlusions, clothing, and the subject’s
appearance, personal style, action length, and complex background motion [1–4]. Despite extensive
research done on this topic, several issues still need to be resolved.

Feature extraction is an essential and core step for image and video analysis [1,2,4–10]. Basically,
there are two different kinds of feature descriptor for the video representation, one is hand-crafted
descriptors and another one is deep-learning based descriptors. The deep-learning based approach
determines the trainable feature automatically from the video, whereas handcrafted descriptors
obtain the features based on the manually designed algorithms. Recently, the Convolutional Neural
Networks (CNN) based approach is the most commonly studied approach in numerous disciplines of
computer vision and image processing, including action classification, and has obtained an excellent
achievement. CNN is basically practiced to obtain spatial features from the static image. On the other
hand, Wang et al. [11] presented that motion information obtained through HOF descriptor is adequate
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to produce a satisfactory classification result for the action recognition problem, however, it is not
sufficient to fully specify an action, particularly when actions are actively associated with particular
objects. Conversely, single frame based CNN is able to extract the spatial information from the video
sequence, which is very important to represent the appearance, however, they failed to extract the
motion information [12,13]. Furthermore, a two-stream CNN architecture [10] by combining spatial
and optical based motion information is also introduced. However, optical flow is the apparent motion
of intensity values, which can be produced by lighting changes without any actual motion.

Previously, in [1–3,7,14] texture based spatiotemporal features are introduced to resolve the
problem of action recognition due to their notable achievements and computational efficiency.
However, these approaches are variants of Local Binary Pattern (LBP) [6] and suffer from similar
kinds of issues that LBP faces, which include sensitivity to noise and limited capability to obtain
more discriminative information. Moreover, these approaches do not take shape information into
account. In order to address the above-mentioned issues in this paper, we introduce a novel approach to
recognize the human actions by considering both deep spatial features and handcrafted spatiotemporal
features. At first, we extract the deep spatial features by employing a state-of-the-art deep convolutional
network, namely Inception-Resnet-v2 [15]. The Inception-Resnet-v2 net is responsible to extract the
local features from each frame. Later on, these local features are aggregated to form the global features
of each video. In parallel, we also apply our proposed dynamic feature descriptor, Weber’s law based
Volume Local Gradient Ternary Pattern (WVLGTP) to bring out the effective spatiotemporal features.
Furthermore, a multi-resolution strategy for WVLGTP based on an averaging scheme is also introduced.
Afterward, both these features (deep spatial features and handcrafted spatiotemporal features)
are concatenated and feed to the Support Vector Machine (SVM) [16] to achieve the classification.
To evaluate the performance of our work, five benchmark datasets are employed, including the
KTH dataset [17], UCF Sports action dataset [18,19], UT-Interaction dataset [20], Hollywood2 [21],
and UCF-101 dataset [22]. The key contribution of this work is summarized as follows:

• In this work, we propose a novel approach for human action recognition by fusing deep spatial
feature and handcrafted spatiotemporal feature.

• We introduce a novel handcrafted feature descriptor, namely Weber’s law based Volume Local
Gradient Ternary Pattern (WVLGTP), which brings out the spatiotemporal features. It also takes
shape information into account by using gradient operation. Furthermore, Weber’s law based
threshold value and the ternary pattern based on an adaptive local threshold is introduced to
effectively handle the noisy center pixel value.

• Besides, a multi-resolution approach for WVLGTP based on an averaging scheme is also presented.
• Lastly, we present an extensive experimental analysis to prove the effectiveness of our approach

over state-of-the-art.

The remainder of the paper is represented as follows. Section 2 surveys related researches,
while Section 3 thoroughly describes the proposed approach for action recognition. Datasets and
experimental results are explained in Section 4. In the end, conclusions are drawn in Section 5.

2. Related Work

Numerous researches have been proposed in the area of action recognition. However, mainly two
different types of descriptors are studied in the existing works: hand-crafted descriptors and deep
learning based descriptors. In this section, we will discuss the related approaches those are most
relevant to our work.

2.1. Hand-Crafted Descriptor

Baumann et al. [1] introduced Volume Local Binary Pattern (VLBP) for action recognition,
which was first proposed in [5] for recognizing the facial expressions. VLBP describes the dynamic
texture feature by comparing the intensity values of the neighboring voxels in the spatiotemporal
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domain. Later on, Baumann et al. [2] also proposed the Motion Binary Pattern (MBP), which extracts
the motion feature to recognize the actions. However, these approaches sensitive to noise and suffers
from the illumination problem, since they are the simple extension of Local Binary Pattern (LBP) [6].
Similar to [1,2], Uddin et al. [7] presented Adaptive Local Motion Descriptor (ALMD) to recognize
the human actions and their approach produced consistent patterns against intensity fluctuation due
to employing adaptive ternary pattern concept. Besides, extended computation of LBP to 9 slices for
three orthogonal planes are introduced in [14] to recognize the human actions. Moreover, here the
authors employed the bag of words recognition model after detecting the space-time interest points.
Furthermore, Laptev et al. [3] proposed Local Ternary Pattern for three orthogonal planes (LTP-TOP)
in order to perform the action recognition. Local Trinary Patterns based on comparing nearby patches
are proposed in [23], which is robust to variations in texture. In addition, Guo et al. [24] introduced 3D
gradient LBP based feature descriptor, which takes the benefit of the neighborhood information of
cuboids in three dimensions. A novel Salient Foreground Trajectory (SFT) based extraction method is
introduced in [4] by employing background trajectory subtraction to represent the trajectory-based
feature for action recognition. In [8], an unsupervised approach is proposed that models the action
as mid-level action elements (MAE) in hierarchical structure. Lastly, Tu et al. [25] presented a novel
Multi-label Hierarchical Dirichlet Process (ML-HDP) to recognize the actions by proposing a generative
topic model and utilizing the iDT (Improved Dense Trajectories) [9] with MBH (Motion Boundary
Histogram) [26] descriptor, which simultaneously represents multiple complex movements and motion
segments at various hierarchical levels. Previously, wang et al. [27] introduced the Dense Trajectories
(DT) for video representation, which captures the foreground local motion. Low-level feature-based
approaches were introduced in [28,29] respectively. Ohnishi et al. [30] presented a novel low-level
feature descriptor that pools crossed convolutional layers with iDT.

2.2. Deep Learning Based Descriptor

Deep learning based methods bring out the optimal features automatically from the video data.
Simonyan et al. [10] proposed the deep learning based approach for recognizing the human actions,
in which spatial information is obtained by spatial ConvNet and dynamic information is obtained
by multi-frame dense optical flow with ConvNet. However, optical flow is the apparent motion of
intensity patterns, which can also be produced by lighting variations without any actual motion
and may lead to wrong information. Similarly, Karpathy et al. [12] introduced a multi-resolution
CNN structure for large-scale action recognition, in which they utilized low-resolution stream and
high-resolution stream. However, they did not consider the motion information. Later on, in [31] the
trajectory-based feature with CNN is employed to extract the features from the video data to classify
the actions. Similar to [31], Lu et al. [32] also proposed trajectory pooling approach along with 3D
ConvNets for action recognition, in which they computed multiscale dense trajectories and on 3D
ConvNets they produced trajectory pooling. In [33], the authors extracted the features in multiple
temporal scales and employed Res3D neural network model. Furthermore, they acquired information
from RGB channels and optical flow. Wang et al. [34] introduced a deep multi-stream neural network
using ResNet architecture that fuses temporal awareness for action recognition. Here, they employed
RGB video frame, optical flow and warped optical flow images as input to ResNet. ActionVLAD
CNN layer is introduced in [35], which aggregates both the spatial and temporal features. However,
they lose much temporal features in the sequential frames. Later on, Sequential Video VLAD layer is
proposed in [36], which addresses the issues of ActionVLAD. Zhao et al. [37] introduced an efficient
pooling approach called Line pooling, which pools stacked features along the timeline.

3. Proposed Method

In this section, we describe our proposed approach for recognizing human actions. At first,
we perform few pre-processing operations that include frame extraction and frame resizing. Afterward,
our proposed novel feature descriptor, namely Weber law based Volume Local Gradient Ternary
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Patterns (WVLGTP) is employed to extract the significant spatiotemporal information from the videos.
In parallel, we also applied the Inception-Resnet-v2 network [15] to bring out the deep spatial features
from the videos. Later on, these features are concatenated and feed to the Support Vector Machine
(SVM) [16] to perform the classification. Figure 1 demonstrates the proposed approach to recognize
the actions.

Figure 1. Flowchart of our proposed approach for human action recognition.

3.1. Deep Spatial Feature Extraction Using Inception-Resnet-v2 Network

In order to obtain the deep spatial features from the videos, we adopt the state-of-the-art
Inception-Resnet-v2 network [15], which is a combination of two recent architectures, one is Residual
connections [38] and another one is Inception architecture [39]. The employed Inception-Resnet-v2
model includes Stem, Inception Resnet, and Reduction layers. These layers are followed by an
average-pooling layer and a fully connected layer with 1000 channels. The Stem includes preliminary
convolution operations executed before entering the Inception blocks. The Inception Resnet layers
include residual connections along with the convolution operation whereas Reduction layers are
responsible for adjusting the height and width of the grid. The convolutional layers are responsible
for extracting the spatial features while pooling layers decrease the dimensionality of individual
feature map, but hold the most significant features and make the model invariant to illumination and
translation. Furthermore, the convolutional layers are followed by the batch normalization layer and
Rectified Linear Unit (ReLU), which is a nonlinearity function and helped to decrease the training time.
The Inception-Resnet-v2 takes individual RGB frames as input with size 299× 299× 3, which captures
the spatial information from each video frame. The appearance information represented by spatial
information is a very important clue because many actions are actively correlated with particular
objects. Figure 2 illustrates the architecture of deep spatial feature extraction using Inception-Resnet-v2
network. The Inception-Resnet-v2-Net extracts the local features from each frame. Later on, these local
features are aggregated to form the global features of each video.
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Figure 2. Deep spatial feature extraction using the Inception-Resnet-v2 network.

3.2. Spatiotemporal Feature Extraction Using WVLGTP

To improve the performance of spatiotemporal feature descriptor, we introduce Weber’s law
based Volume Local Gradient Ternary Pattern (WVLGTP), which represent both spatial and dynamic
information. The basic spatiotemporal feature descriptor Volume Local Binary Pattern (VLBP) [1]
works similar to the conventional LBP (Local Binary Pattern) [6], which compares the gray value of
neighboring voxels within the space-time volume of the voxel’s center and assign 1 or 0 accordingly.
Figure 3 illustrates the approach of calculating VLBP on three successive frames. Hence, VLBP also
suffers from a similar type of problems that LBP undergoes. In order to extract the information
more effectively, we proposed WVLGTP, which brings out the shape information using gradient
operation. Furthermore, Weber’s law based threshold value and the ternary pattern based on an
adaptive local threshold is introduced to effectively handle the noisy center pixel value. Besides,
a multi-resolution approach for WVLGTP based on an averaging scheme is presented, which is able
to tackle the illumination problem. Figure 4 explains the process of WVLGTP in three consecutive
frames. At first, gradient operation is performed on the consecutive frames by computing the absolute
difference between the neighbor pixels and given center pixel, which represent the shape information.
Here, we compute the gradient for neighboring pixels Cn of the center frame C as gCn = |Cn − Cc|,
where Cc is the center frame center pixel value and then, set the center frame center pixel value as
gCc

= 1
l ∑l−1

n=0 gCn by taking the average of l neighboring gradient values. Similarly, the gradient for
neighboring pixels Fn of the former frame F and the gradient for neighboring pixels Nn of the next
frame N are computed as gFn = |Fn − Fc| and gNn = |Nn − Nc|, respectively. Furthermore, weber’s
law based threshold is introduced to effectively handle the noisy center pixel value. Weber’s Law is a
psychological law [40], which can be expressed as

∆I
I

= K (1)

where ∆I denotes the increment threshold which represents the noticeable difference for discrimination;
I denotes the initial intensity, and K denotes the constant. Previously, Weber Local Descriptor was
introduced in [41] to extract the image (spatial) features effectively.

In our work, weber’s law based threshold value Twc is employed to effectively compute the
spatiotemporal features, which is defined as

Twc = gCc
+

l−1

∑
n=0

|Cn − Cc|
Cc

(2)



Sensors 2019, 19, 1599 6 of 18

here, |Cn−Cc |
Cc

denotes the Weber fraction. To generate the spatiotemporal feature vector FV, Weber’s
law based threshold value Twc is subtracted from the neighboring gradient values of the former frame
F, current frame C, and next frame N which are expressed by the following equations,

WVLGTP_FP,R(x, y) = S(gFn − Twc) (3)

WVLGTP_CP,R(x, y) = S(gCn − Twc) (4)

WVLGTP_NP,R(x, y) = S(gNn − Twc) (5)

Where, S(x) =


1, i f x > T
−1, i f x < −T
0, otherwise

(6)

here, adaptive local threshold T is derived to convert the intermediate features into ternary codes and
(P, R) represents the number of neighboring pixels and radius respectively. T is computed by taking
the median of |gCn − Twc |. In our example, T equals to 8. In [1,5], VLBP takes 8 neighboring pixels from
three continuous frames, which generates a huge feature vector and leads to ambiguities. In order
to overcome this issue, in our work we consider the spatial information and temporal information
separately. The feature vector for temporal information is produced by comparing the former frame
and next frame with the current frame, whereas the feature vector for spatial information is produced
based on the current frame. Furthermore, the magnitude vector MC is also considered during the
generation of spatial features. The magnitude vector acts as an auxiliary feature and includes more
discriminating power. In this work, we introduce two one-dimensional features of the mean and the
variance of MC to keep the magnitude information rather than directly utilizing the magnitude vector.
The mean of the magnitude vector indicates its average deviation and the variance of magnitude vector
indicates its overall changes. The mean µc and variance σ2

c of the magnitude vector is computed based
on the following equations

µc =
1
l

l−1

∑
n=0

gCn (7)

σ2
c =

1
l

l−1

∑
n=0

(gCn − µc)
2 (8)

MeanMV = SM(µc − tµ) (9)

VarianceMV = SM(σ2
c − tσ) (10)

Where, SM(x) =


1, i f x > TM
−1, i f x < −TM
0, otherwise

(11)

where local thresholds tµ and tσ are the average values of mean µc and variance σ2
c in the current

sub-frame. Here, TM is derived to convert the magnitude vector into ternary codes. TM is also
computed by taking the median of |Cn − Cc|. Later on, the feature vectors for spatial information and
temporal information is concatenated for both lower and upper patterns.
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Figure 3. An approach of computing Volume Local Binary Pattern (VLBP) on three successive frames.

Figure 4. The feature extraction process of Weber’s law based Volume Local Gradient Ternary
Pattern (WVLGTP).
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3.2.1. Multi-Resolution Approach for WVLGTP

Above we present the approach of extracting WVLGTP on a single scale with the number of
neighboring pixels P = 8 and radius R = 1. In this work, a multi-resolution approach for the proposed
descriptor is applied to increase the recognition accuracy. The multi-scale WVLGTP feature vector
is formed by combining the WVLGTP feature vector of every single resolution with varying P and
R. Figure 5 demonstrates the multi-resolution approach of WVLGTP. Furthermore, in this work,
we also introduced an averaging scheme before performing the gradient operation, which is able to
tackle the illumination problem. In this averaging scheme, it computes the average of neighboring
pixels and forms new intensity value. Figure 6 shows the process of the averaging scheme for the
multi-resolution approach, in which direction and color represent the neighboring pixels used for
computing the average value. For example, with P = 16 and radius R = 2, the resultant intensity
value 149 of the top right pixel (i + 1, j− 1) is computed by taking average of

{
152, 140, 156

}
.

Figure 5. The Multi-resolution approach of WVLGTP.

Figure 6. Averaging scheme for the multi-resolution approach.

3.3. Classification Using SVM

Afterward, the deep spatial features generated by the Inception-Resnet-v2 network and
spatiotemporal features produced by WVLGTP are concatenated and fed into a Support Vector
Machine (SVM) for classification. In our work, we employ nonlinear SVM with the RBF kernel
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function [16] to classify the actions from the feature vector. The best parameters C and γ were selected
by performing 5-fold cross-validation.

4. Experiments

In this part, we evaluate the proposed approach on five benchmark datasets, which include the
KTH dataset [17], UCF Sports action dataset [18,19], UT-Interaction dataset [20], Hollywood2 [21],
and UCF-101 dataset [22]. The UCF-101 dataset consists of a large number of video clips with many
action categories, while the UT-Interaction dataset represents the interaction between two persons.
In contrast, the Hollywood2 dataset represents complex activities rather than simple actions like the
KTH dataset. Furthermore, Hollywood2 is quite a challenging dataset since each video includes
notable camera motion and fast scene changes. At first, we present the datasets and implementation
details. Later on, experimental analysis and the comparisons with state-of-the-art approaches are
demonstrated. In our work, performance is measured by the average accuracy.

4.1. KTH Dataset

The KTH dataset [17] comprises 600 videos including six action categories: walking, running,
jogging, boxing, clapping, and waving. Each action includes 100 sequences performed by 25 persons
in four diverse situations. Sample frames of KTH dataset are presented in Figure 7a.

Figure 7. (a) Sample frames of the KTH dataset; (b) Sample frames of the UCF Sports action dataset;
(c) Sample frames of the UT-Interaction dataset; (d) Sample frames of the Hollywood2 dataset,
and (e) Sample frames of the UCF-101 dataset.
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4.2. UCF Sports Action Dataset

The UCF Sports action dataset [18,19] includes 150 video sequences with a resolution of
720× 480. It comprises 10 actions that include walking, running, kicking, lifting, diving, golf swing,
riding horse, skateboarding, swing-side, and swing-bench. These actions are performed in different
real environments that cover diverse viewpoints and also including a lot of camera motion. An instance
of UCF Sports action dataset is displayed in Figure 7b.

4.3. UT-Interaction Dataset

The UT-Interaction dataset [20] consists of 120 videos with a resolution of 720× 480. This dataset
includes 6 action classes: shake-handing, hugging, kicking, pushing, pointing, and punching.
Several persons with 15 different clothing conditions do these actions. An example of the UT-Interaction
dataset is presented in Figure 7c.

4.4. Hollywood2 Dataset

The Hollywood2 dataset [21] consists of 3669 video clips with 12 classes of human actions.
The actions include answer phone, drive car, eat, fight person, get out car, hand shake, hug person,
kiss, run, sit down, sit up, and stand up. Hollywood2 is a very challenging dataset since each video
clip includes notable camera motion and rapid scene switches. Figure 7d shows some sample frames
of the Hollywood2 dataset.

4.5. UCF-101 Dataset

The UCF-101 dataset [22] is one of the largest action datasets, which consists of 13, 320 video clips
including 101 action classes. All of these videos are obtained from YouTube. The videos are divided
into 25 groups covering 4 to 7 action sequences from each group. An example of the UCF-101 dataset
is presented in Figure 7e.

4.6. Model Training and Testing

For all the five datasets, 70 percent of the video data is used for training and the remaining
30 percent are applied during the testing. Furthermore, we also employed the 5-fold cross-validation
approach. In our work, we trained the Inception-Resnet-v2 network on Matlab R2018b. Similar to
previous works [10,32,34], we initialized the parameters of Inception-Resnet-v2 from a pre-trained
ImageNet model. The stochastic gradient descent (SGD) algorithm is employed with a mini-batch
size of 128 and the momentum set to 0.9. Furthermore, during the training phase, we employed data
augmentation by performing the horizontal reflection of the video frames to reduce overfitting [42].
During testing, we sample a fixed number of video frames (set to 35) with same temporal spacing
among them [10,34].

4.7. Experimental Analysis

We performed various experiments to investigate the performance of the proposed approach
to recognize human actions. Figure 8 presents the accuracy comparison of each category on
the KTH dataset. This experiment shows that our proposed method performs best on clapping,
boxing, and walking categories while running, jogging, and waving classes show competitive
recognition rate. The average accuracy when employing Inception-Resnet-v2 network, WVLGTP and
Inception-Resnet-v2 plus WVLGTP on the KTH dataset were 94.9%, 94.4%, and 96.5%, respectively.
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Figure 8. Accuracy comparison of each class by Inception-Resnet-v2, WVLGTP, and Inception-Resnet-v2
plus WVLGTP on the KTH dataset.

Comparison between the proposed approach and other state-of-the-art approaches on the KTH
dataset is depicted in Figure 9. From this figure, we can see that the proposed descriptor, WVLGTP
shows superior performance over the existing dynamic texture feature descriptors, which include
VLBP [1], LBP-TOP [5], MBP [2], ALMD [7], Extended LBP-TOP [14], LTP-TOP [3], and 3D Gradient
LBP [24]. Similarly, WVLGTP outperformed the STIP [28], MoSIFT[29], Dense Trajectories [27], iDT [9],
TDD [31], and CPD [30] by 2.6%, 5.25%, 0.2%, 1%, 0.3%, and 0.6%, respectively. Furthermore,
the proposed method (Deep spatial features with WVLGTP) also outperforms ML-HDP [25] by
2.4% on the KTH dataset. However, SFT [4] shows the best performance on KTH dataset and beats the
proposed approach by 1%.

Figure 9. Comparison between the proposed method and other state-of-the-art approaches on the
KTH dataset.

On the KTH dataset, our proposed method (Inception-resnet-v2 with WVLGTP) shows
96.5% accuracy, whereas Inception-resnet-v2 with iDT [9], Inception-resnet-v2 with VLBP [1],
and Inception-resnet-v2 with ALMD [7] show 95.7%, 90.1%, and 93.7% accuracy, respectively.

Similar to the above experiments, Figure 10 demonstrates the accuracy comparison of each
category by Inception-Resnet-v2, WVLGTP, and Inception-Resnet-v2 plus WVLGTP while Figure 11
presents the comparison between the proposed method and other state-of-the-art approaches on UCF
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sports action dataset. The average recognition rates when applying Inception-Resnet-v2 network,
WVLGTP and Inception-Resnet-v2 plus WVLGTP on UCF sports action dataset were 92.9%, 93.3%,
and 94.6%, respectively. For the UCF sports action dataset, diving, riding horse, and swing-bench
classes show higher accuracy when applying the proposed approach while skateboarding shows
lower recognition rate due to the complexity of skateboarding video clips. On this dataset, our
proposed method slightly beats the SFT [4] by 3.23% and significantly outperforms the Mid-level
Action Elements (MAE) [8] by 11%. Besides, the proposed descriptor, WVLGTP shows excellent
recognition rate over the state-of-the-art dynamic texture feature descriptors. Similarly, WVLGTP beats
the STIP [28], MoSIFT [29], Dense Trajectories [27], iDT [9], and TDD [31] by 8.7%, 7.5%, 5.3%, 1.2%,
and 0.9%, respectively.

Figure 10. Accuracy comparison of each class by Inception-Resnet-v2, WVLGTP, and Inception-Resnet-v2
plus WVLGTP on the UCF sports action dataset.

Figure 11. Comparison between the proposed method and other state-of-the-art approaches on the
UCF sports action dataset.

On the UT interaction dataset, the deep spatial features extracted through Inception-Resnet-v2
model shows 96.6% average accuracy while the proposed spatiotemporal feature descriptor WVLGTP
shows 97.6% average accuracy. Since this dataset is more about the interaction rather than
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appearance information, due to this the proposed WVLGTP outperform the Inception-Resnet-v2
model. Figure 12 depicts the accuracy comparison of each class and Figure 13 presents the comparison
among our work and other spatiotemporal feature descriptors on UT interaction dataset. From this
experiment, we can see that the proposed approach outperforms the existing spatiotemporal feature
descriptors by a large margin, which include outperforming VLBP [1], MBP [2], ALMD [7], and 3D
Gradient LBP [24] by 12.67%, 10.47%, 7%, and 7.25%, respectively.

Figure 12. Accuracy comparison of each class by Inception-Resnet-v2, WVLGTP, and Inception-Resnet-v2
plus WVLGTP on the UT interaction dataset.

Figure 13. Comparison between the proposed method and other state-of-the-art approaches on the UT
interaction dataset.

Figure 14 demonstrates the accuracy comparison of each class using the proposed approach
while Figure 15 shows the comparison between our method and other state-of-the-art approaches
on Hollywood2 dataset. In this experiment, run, kiss, and stand up categories shows the best
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performance while sit-down and sit-up shows the worst performance due to the similarities of
these actions. The proposed spatiotemporal feature descriptor WVLGTP significantly outperformed
the VLBP [1], MBP [2], ALMD [7], Extended LBP-TOP [14], 3D Gradient LBP [24], VGG [43] and
AlexNet [42], while WVLGTP shows competitive performance with the MAE [8], ML-HDP [25], IDT [9],
TDD [31], ActionVLAD [35], Line Pooling [37], ResNet-101 [38], and Inception-v3 [39] on Hollywoo2
dataset. In contrast, Sequential VLAD[36] shows better accuracy than the proposed WVLGTP.
However, employing the proposed method by combining the deep spatial features extracted using
Inception-Resnet-v2 and spatiotemporal features extracted using WVLGTP significantly outperforms
the state-of-the-art approaches.

On Hollywood2 dataset, our proposed method (Inception-resnet-v2 with WVLGTP) shows
70.3% accuracy, while Inception-resnet-v2 with iDT [9], Inception-resnet-v2 with VLBP [1],
and Inception-resnet-v2 with ALMD [7] show 76.7%, 60.3%, and 61.8% accuracy, respectively.

Figure 14. Accuracy comparison of each class by Inception-Resnet-v2, WVLGTP, and Inception-Resnet-v2
plus WVLGTP on the Hollywood2 dataset.

Figure 15. Comparison between the proposed method and other state-of-the-art approaches on the
Hollywood2 dataset.

Lastly, Figure 16 shows the comparison between the proposed method and other state-of-the-art
approaches on UCF101 dataset. From this experiment, we can see that the proposed feature descriptor,
WVLGTP shows superior accuracy over the existing dynamic texture feature descriptors which
includes VLBP [1], MBP [2], ALMD [7], and 3D Gradient LBP [24]. Similarly, WVLGTP shows
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competitive performance with Dense Trajectories [27], iDT [9], and Line Pooling [37]. However,
TDD [31], Res3D [33], Action VLAD [35], and Sequential VLAD [36] show better accuracy than
the proposed WVLGTP due to their discriminative power while employing a large number of
action categories. On this dataset, the proposed method (Inception-Resnet-v2 plus WVLGTP) greatly
outperforms the VLBP [1], MBP [2], ML-HDP [25], two-stream CNN [10], and multi-resolution
CNN [12] by 16.5%, 13.7%, 5.6%, 6.9%, and 30.4%, respectively. In contrast, our approach slightly
beats the TDD [31], TC3D [32], Res3D [33], ActionVLAD [35], and Sequential VLAD [36] since these
approaches also achieved more discriminative power by considering the deep features and motion
feature with CNN. Furthermore, ATW CNN [34] shows almost similar accuracy with our approach,
since their approach incorporates the temporal attention with CNN.

For UCF-101 dataset, our proposed method (Inception-resnet-v2 with WVLGTP) shows
94.9% accuracy, whereas Inception-resnet-v2 with iDT [9], Inception-resnet-v2 with VLBP [1],
and Inception-resnet-v2 with ALMD [7] shows 92.7%, 82.1%, and 87.6% accuracy, respectively.

Figure 16. Comparison between the proposed method and other state-of-the-art approaches on the
UCF101 dataset.

Figure 17 presents the average recognition rates of WVLGTP with multi-resolution approach
on all five datasets. This experiment proves the effectiveness of multi-resolution approach. As can
be seen in Figure 17, employing the number of neighboring pixels P = 8 with radius R = 1 and the
number of neighboring pixels P = 16 with radius R = 2 yields the best performance, while applying
the number of neighboring pixels P = 4 with radius R = 1 shows the worst performance due to less
information. Furthermore, this experiment also indicates that the proposed WVLGTP consistently
obtains the best recognition rates in almost all the multi-resolution environments. Finally, to validate
the effects of the proposed method we visualize some sample results of action recognition on Figure 18.
In summary, the experimental analysis proves the discriminative power of the proposed WVLGTP
over existing spatiotemporal feature descriptor and moreover, it also proves the superiority of the
proposed approach over state-of-the-art approaches.
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Figure 17. Classification accuracy (%) of WVLGTP with multi-resolution approach on all five datasets.

Figure 18. Some sample results of action recognition.

5. Conclusions

In this paper, we combine both deep spatial features and handcrafted spatiotemporal features for
action recognition. In order to obtain the deep spatial features from the video frames we adopt the
state-of-the-art Inception-Resnet-v2 network, whereas the spatiotemporal features are computed by
the proposed descriptor, called Weber’s law based Volume Local Gradient Ternary Pattern (WVLGTP).
Finally, these features are concatenated and fed into an SVM for action classification. The experimental
results prove the superiority of the proposed method over state-of-the-arts on five different datasets.
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