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Abstract: The literature indicates that 90% of clinical alarms in intensive care units might be false.
This high percentage negatively impacts both patients and clinical staff. In patients, false alarms
significantly increase stress levels, which is especially dangerous for cardiac patients. In clinical
staff, alarm overload might lead to desensitization and could result in true alarms being ignored.
In this work, we applied the random forest method to reduce false arrhythmia alarms and specifically
explored different methods of probability and class assignment, as these affect the classification
accuracy of the ensemble classifiers. Due to the complex nature of the problem, i.e., five types of
arrhythmia and several methods to determine probability and the alarm class, a synthetic measure
based on the ranks was proposed. The novelty of this contribution is the design of a synthetic
measure that helps to leverage classification results in an ensemble model that indicates a decision
path leading to the best result in terms of the area under the curve (AUC) measure or the global
accuracy (score). The results of the research are promising. The best performance in terms of the
AUC was 100% accuracy for extreme tachycardia, whereas the poorest results were for ventricular
tachycardia at 87%. Similarly, in terms of the accuracy, the best results were observed for extreme
tachycardia (91%), whereas ventricular tachycardia alarms were the most difficult to detect, with an
accuracy of only 51%.
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1. Introduction

The population is aging worldwide, and the elderly need complex medical attention more
often. With increasing numbers of elderly patients, machine and algorithm support is crucial for the
smooth functioning of medical facilities. In intensive care units (ICU), patients’ lives are monitored
by multiple bedside devices. Some of the signals recorded are electrocardiogram (ECG), respiratory
effort, or pulsatile waveforms such as arterial blood pressure (ABP) and photoplehtysmogram (PPG).
Based on these signals, heart arrhythmias are detected and alarms are generated. According to
Aboukhalil et al. [1] and Drew et al. [2], the rates of false alarms in ICUs might be as high as almost
90%. Unnecessary alarms can negatively impact both ICU patients and medical stuff. Hence, reduction
of false alarms would improve the quality of help provided for critical care patients. The task of
reducing the false alarms starts at level of heart beat detection from the ECG signal, as no universal
algorithms are resistant to all quality issues present in ECG recordings, e.g., noise or artefacts resulting
from patient movements. The other problem occurs when the leads of electrodes fall off patients’
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bodies. In this case, no heart beats are detected in ECG signals, just like in asystole; hence, an alarm
would be generated. To avoid such errors, simultaneous analysis of additional signals is necessary.
Generation of false alarms is a real and complex problem, which was examined in 2015 by organizers of
the PhysioNet/Computing in Cardiology Challenge [3]. In this challenge, contestants were provided
with 750 signals registered 5 min before the alarm generation and information about what type
of arrhythmia caused the alarm. The alarms were triggered by five types of arrhythmia: asystole,
bradycardia, tachycardia, ventricular tachycardia, and ventricular fibrillation or flutter. All the signals
were analyzed by expert annotators and labelled as true or false.

Many of the well-performing algorithms in the challenge incorporated problem-specific rules.
However, only a few of the researchers tried to apply general methods such as algorithms from the
machine learning field. As such, in this study, we examined different methods of probability and
class determining using random forest (RF). In particular, using the PhysioNet Challenge dataset
that included the five types of the arrhythmia data, we aimed to answer the following research
questions: (1) To what extent is it possible to reduce false arrhythmia alarms? (2) Which method best
determines the probability/score from the classifier in terms of the performance on a new unseen
dataset? (3) Which method best determines the class label from the classifier’s probability for classifying
the new observation on the new unseen dataset?

The remainder of this paper is organized as follows: Section 2 provides an overview of the similar
research problems for both reducing false arrhythmia alarms and RF. In Section 3, the theoretical
framework of the RF algorithm is presented. In Section 4, model performance measures are presented.
Section 5 describes theoretical aspects of the probability and class label assignment based on RF.
Section 6 outlines the experiments and presents the discussion of the results. The paper ends with
concluding remarks in Section 7.

2. Related Works

2.1. Arrhythmia Detection

In general, an arrhythmia occurs when the heartbeat is irregular, but some of them are defined
only by the frequency of heart muscle contractions. Bradycardia occurs when there are less than
40 heart beats per minute (bpm). Tachycardia is diagnosed when a heart rate is over 140 bpm. No beat
detected in at least four seconds is asystole. Such precise definitions make these arrhythmias easily
detectable from an algorithmic point of view, but only when high quality data are available. In real
life, the signals are often noisy and include artefacts, which is why it is so important to use robust
algorithms for heart beat location within a signal. No golden standard algorithm yet exists for heart
beat detection. The approaches used vary among scientific teams and companies. The most widely
used method is the Pan-Tompkins algorithm [4], which is based on filtering techniques and precisely
determines the location of the heartbeat but cannot handle different QRS complex morphologies (the
part of ECG illustrating contraction of ventricles) [5], so the algorithm cannot analyze more complex
arrhythmias such as ventricular tachycardia. To address this limitation, more advanced methods
were developed [6,7]. When the quality of the ECG signal is poor but pulsatile waveforms or other
signals are available, beats should be distinguished in such signals and used instead for arrhythmia
identification. In the 2014 PhysioNet Challenge, methods were proposed to substitute the poor quality
parts of ECG recordings with beats detected from other, usually pulsatile, signals such as arterial
blood pressure (ABP) and plethysmogram (PLETH) [8–10]. In many cases, such operation allowed
continuous monitoring of heart rate and its variability.

Ventricular tachycardia and ventricular flutter or fibrillation are arrhythmias that not only have
abnormally fast rhythms but the morphology of the QRS complexes is different than in normal signals.
Wider QRS complexes are characteristic of ventricular tachycardia apart from high heart rate (above
100 bpm), which distinguishes it from standard tachycardia. For ventricular flutter and fibrillation,
heart rate is immeasurable, as properly developed QRS complexes do not occur in the signal. Here, the
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alarm would be generated when the oscillatory waveform characteristic for these arrhythmias is present
for at least four seconds. Hence, in analysing such signals, the algorithm cannot rely solely on heart
rate. The methods already proposed for detection of ventricular tachycardia include flutter/fibrillation
approaches like autocorrelation analysis [11], wavelet transformations [12,13], sample entropy [14],
machine learning methods with features derived from signal morphology and analysis of power
spectrum [15], time-frequency representation images [16], empirical mode decomposition [17], or
using the zero crossing rate combined with base noise suppression with discrete cosine transform and
beat-to-beat intervals [18].

Analysing all mentioned arrhythmia types was the task for the 2015 PhysioNet/Computing in
Cardiology Challenge by classifying all alarms generated in ICUs as true or false [3]. The approaches
among participants varied significantly in terms of heartbeat detection methods, type of generated
features, or length of signal considered. Many defined a set of heuristic rules as a final classifier.
Contestants concentrated mostly on proper detection of heart beats and assessment of signal quality.
Liu et al. [19] analysed 60 s of data prior to the alarm and, apart from generating standard features like
QRS width or maximum heart rate, they compared the morphology of detected heart beats against the
predefined template. Rodrigues and Couto [20] based their analysis on open-source beat detectors for
most arrhythmias, but for ventricular fibrillation, they proposed their own solution, fitting a parabola
on windows of 125 ms. They used information from both ECG and waveform signals, but ECG was
given higher priority in this solution. Knowing that poor quality signals are often a main cause of
alarm generation, Plesinger et al. [21], as a first step of the analysis, annotated parts of the signals as
INVALIDS. Such segments were not totally excluded from further analysis and number of invalid
samples were used as one of the features. The signals were then tested for regularity and if the
result was negative, the test for specific arrhythmia was performed. This approach meets the logical
assumption that normal signals should be the easiest to determine. Features were created as a result
of Hilbert and Fourier transformations and descriptive statistics. A more unconventional approach
was proposed by Hoog Antink et al. [10]. Instead of generating features easily understandable from
physiological point of view, they analysed the self-similarity of the signal based on autocorrelation
and beat-to-beat estimation. They adopted image processing methods such as two-dimensional (2D)
Fourier transformation and principal component analysis to reduce dimensionality. The final decision
was made with multiple machine learning methods. Among the solutions, two approaches used the
random forest (RF) algorithm. Asadi et al. [22] firstly concentrated on assessment of signal quality.
Then, based on the beats detected from both ECG and pulsatile signals, they generated a set of features
that concentrated mostly on the regularity of the beats. Having this set of features describing the signal
for each arrhythmia type, a separate RF classifier was applied for each. Srivastava et al. [23] presented
a two-step approach. First, RF was implemented for parameters based on combinations of features
obtained for ECG, PPG, and ABP. Then, some specific thresholds were set for parameters solely from
pulsatile waveforms. The ensemble of these two steps produced a final algorithm.

2.2. Random Forest as a Machine Learning Algorithm

RF is an ensemble supervised machine learning technique that emerged in the beginning of the
21st century. Machine learning techniques have applications in many areas of statistical data analysis,
which can be broadly classified as descriptive or predictive. Descriptive data analyses concentrate
rather on describing the data (e.g., probability distributions) or grouping data into categories using
the unsupervised paradigm. The most commonly solved problems in this context are: (1) clustering,
which includes algorithms such as K-means, hierarchical clustering [24], and grade data analysis [25];
(2) dimensionality reduction, algorithms such as principal component analysis (PCA) and non-negative
matrix factorization [26]; and (3) association and sequential rule mining, which includes algorithms
such as Apriori, Eclat, CM-SPADE, and PrefixSpan [27].

Predictive data analysis involves exploring past data and generating conclusions or trends for
future prediction. Predictive data analysis is related to the classical approach of model building using
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the supervised paradigm. The goal in supervised learning is to teach a function that maps an input
to an output based on example input-output pairs. It infers a function from labeled training data
consisting of a set of training examples. A supervised learning algorithm analyzes the training data
and produces an inferred function that can be used for mapping new examples (from validation or
test datasets). An optimal scenario allows the algorithm to correctly determine the response/outcome
for unknown instances. This requires the learning algorithm to generalize from the training data to
unseen situations in a reasonable way. Standard supervised learning problem can be generalized as:
(1) standard supervised learning, which includes algorithms such as support vector machine (SVM),
naïve Bayes, decision trees, k-nearest neighbor, boosting, random forest, or artificial neural network
(ANN) [28]; (2) semi-supervised learning, including algorithms such as artificial neural networks or
graph-based methods [29]; and (3) structured prediction algorithms, such as Bayesian networks or
random field [30].

Standard supervised learning can be further divided into two categories in terms of the nature of
the response variable [31]: (1) classification, which involves the problem of identifying to which of a
set of predefined class/categories an observation belongs; and (2) regression, which is the problem of
predicting a continuous quantity output.

In the context of the classification problem (due to the nature of the Challenge), an ensemble
consists of a set of individually trained classifiers whose predictions are combined for classifying
an instance. Many researches have shown that an ensemble is often more accurate than any single
classifier in the ensemble [32]. In particular, we are of the opinion that the RF algorithm produces one
of the best accuracies to date in many practical applications and has important advantages over the
other techniques in terms of ability to handle highly non-linear biological data, robustness to noise,
tuning simplicity (compared to other ensemble learning algorithms), and opportunity for executing
parallel processing. Bagging [33] and boosting [34] are two popular methods for producing ensembles.
These methods use re-sampling techniques to obtain different training sets for each of the classifiers.
Bagging stands for “bootstrap aggregating”, which works on the concept of bootstrap samples, where
each sample is generated from original dataset by sampling with replacement. The multiple classifiers
generated in bagging are independent of each other [35]. In boosting, weights are assigned to each
sample from the training dataset. They are generated sequential such that one classifier is generated in a
single iteration. For generating classifier weights, training samples are updated based on classification
results of classifier from previous iteration. The classifiers generated by boosting are dependent on
each other [35].

The theoretical and the empirical research related to ensemble have shown that an ideal ensemble
consists of highly correct classifiers that disagree as much as possible [35]. Generally, there are four
approaches for building ensembles of diverse classifiers [36]: (1) combination level: design different
combiners; (2) classifier level: use different base classifiers; (3) feature level: use different feature
subsets; and (4) data level: use different data subsets.

To construct a good ensemble model, some improvements in RF have been introduced, which
will be explained further. Boinee et al. [37] proposed meta learning techniques that are based on the
concept that RF is the base classifier. Meta random forest incorporates both well-established concepts:
bagging and boosting. Robnik-Šikonja et al. [38] proposed the ReliefF algorithm to evaluate attributes
in the pre-processing step; quality estimates are used as weight for selecting subsamples of attributes
at each level of the tree. This helps decrease the correlation between the attributes while maintaining
the strength. Tsymbal et al. [39] suggested three different techniques for improving the voting scheme
based on performance of local predictors: Dynamic Selection (DS), Dynamic Voting (DV), and Dynamic
Voting with Selection (DVS). Bernard et al. [40] discussed a Forest algorithm in which the number of
features considered in each split is randomly selected at each node during the tree induction process.
To develop RF, usually many trees are required to increase the stability of the model and reduce the
prediction errors. Unfortunately, a huge number of trees makes the forest uninterpretable. To resolve
this problem, Wang et al. [41] proposed a shrinkage method to reduce the number of trees while
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simultaneously maintaining a similar level of accuracy. Xuanfu et al. [42] proposed an algorithm called
BAGA that generates the ensemble using combination of bagging and genetic algorithm techniques, so
that individual classifiers are determined at execution time. In dynamic random forests [40], individual
base trees are added in a dependent manner rather than an independent approach. A new tree is
added in the forest by evaluating of the sub-forest already built, thus taking an adaptive approach.

3. State-of-the-Art Random Forest

3.1. Decision Tree as a Base Algorithm

In a classification context, there is a training sample (training dataset D) of n observations on
a class variable Y, which takes values 1, 2, . . . , k, (in this study k = 2) and p predictor variables,
X1, . . . , Xp. The goal is to find a model (DT) for predicting the values of Y from new X values [43].
In theory, the solution is simply a partition of X space into k disjoint sets, A1, . . . , Ak, such that the
predicted (Ŷ) value of Y is j if X belongs to Aj for j = 1, 2, . . . , k. Classification tree methods yield
rectangular sets Aj by recursively partitioning the data set one X variable at a time.

One of the oldest and commonly used decision tree algorithm is the classification and regression
tree (CART) [44], employing a measure of node impurity based on the distribution of the observed Y
values in the node by splitting a node by exhaustively searching over all X and S for the split {X ∈ S}
that minimizes the total impurity of its two child nodes, defined by the Gini Index [45]:

IG = 1−
k

∑
j

p2
j , (1)

where pj denotes the estimated probability that an observation in Aj belongs to class j. If X takes
ordered values, the set S is an interval of the form (−∞, c]. Otherwise, S is a subset of the values taken
by X. The process is applied recursively to the data in each child node. Splitting stops if the relative
decrease in impurity is below a pre-specified threshold. Algorithm 1 provides the pseudocode for the
basic steps.

Algorithm 1: Decision tree algorithm pseudocode.

input: List of all explanatory variables (X), training dataset (D)
output: Decision tree (DT)
/1/ Start at the root node
/2/ for each X in X do
/3/ find the set S that minimizes the sum of the node impurities in the two child nodes
in Equation (1) and choose the split {X∗ ∈ S∗} that produces the minimum overall X and S
/4/ end
/5/ if stopping criterion is reached then do
/6/ stop
/7/ else do
/8/ apply step 2 to each child node in turn
/9/ end
/10/ return DT

There are various stopping criteria controlling the growth of the tree such as the minimum number
of observations that must exist in a node in order for a split to be attempted, the minimum number
of observations in any terminal node (leaf), or the maximum depth of any node of the final tree.
To achieve good generalization ability (i.e., small error rate on the unseen examples), the tree first
grows in an overly large size and then it is pruned to a smaller size to minimize the misclassification
error. CART employs 10-fold (default) cross-validation.
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Each branch of the tree ends in a terminal node, each terminal node is uniquely defined by a
set of rules, and each observation falls into exactly one terminal node. Finally, each of the leaves
assigns the probability of an observation belonging to a particular class. Many computer software
implementations simply return the class label by taking class with the highest probability. For example,
in a binary classification problem, if the probability ≥ 0.5, then Class1; otherwise, Class2.

3.2. Standard Random Forest Algorithm

The original [46] RF algorithm operates by constructing many decision trees during training and
outputting the prediction of the individual trees, i.e., class label. RF overcomes decision tree’s habit of
overfitting their training dataset.

The training algorithm for RF applies the general technique of bootstrap aggregating [33], also
called bagging, to the base learners (decision tree). Given a training dataset D of size n, bagging
generates m new training sets Di, each of size n′, by sampling from D uniformly and with replacement.
By sampling with replacement, some observations may be repeated in each Di. If n′ = n, then for
large n, the dataset Di is expected to have the fraction 1− 1

e ≈ 63.2% of the unique examples of D, the
rest being duplicates. The m models are fitted using the above m bootstrap samples and combined by
majority voting:

ŶRF = majority voting
{

Ŷi
}m

1 , (2)

where Ŷ is the predicted class from the ith tree in the forest. For the draw, a class for a particular
observation is assigned randomly. This bootstrapping procedure leads to better model performance
because it decreases the variance in the model without increasing the bias. This means that although
the predictions of a single tree are highly sensitive to noise in its training dataset, the average of many
trees is not as long as the trees are not correlated.

The above procedure describes the original bagging algorithm for decision trees. The RF algorithm
has an additional modification—it uses a modified Algorithm 1, called a random decision tree that
selects a random subset of the features mtry at each candidate split in the learning process. This
process is sometimes called feature bagging. The reason for doing this is the correlation of the trees
in an ordinary Bootstrap sample: if one or a few features are very strong predictors of the response
variable (target output), these features will be selected in many of the m trees, causing them to become
correlated. Typically, for a classification problem with p features, f loor

(√
p
)

features are used in each
split. All the steps for building the RF are summarized in Algorithm 2.

Algorithm 2: Random Forest algorithm pseudocode.

input: Number of Trees (m), random subset of the features (mtry), training dataset (D)
output: random forest (RF)
/1/ RF is empty
/2/ for each i to m do
/3/ Di = Bootstrap Sample (D)
/4/ DTi = Random Decision Tree (Di, mtry)
/5/ RF = RF∪DTi
/6/ end
/7/ return RF

Each tree within the forest is built to its maximum size, i.e., without pruning. The evaluation
of the model performance on the training dataset is often replaced by an Out of Bag (OOB) sample.
This is a method of measuring the prediction error on the remaining 36.8% observations not observed
in the bootstrap sample (In Bag). OOB is the mean prediction error using only the trees that did not
have a particular observation in their bootstrap sample.



Sensors 2019, 19, 1588 7 of 23

4. Model Performance Measures

Evaluating models based on machine learning algorithms is an essential part of any project. We
used different types of evaluation metrics, which are briefly described below.

4.1. Confusion Matrix and Score Function

Confusion matrix, as the name suggests, produces a matrix as the output and describes the
complete performance of the model. Consider a binary classification problem [47]. Samples can belong
to one of the two classes: yes or no. A classifier predicts a class for a given input sample. In this context,
there are four important terms, as shown in Table 1:

• True Positives (TP): the cases that predicted yes and the actual output was also yes,
• True Negatives (TN): the cases that predicted no and the actual output was no,
• False Positives (FP): the cases that predicted yes and the actual output was no, and
• False Negatives (FN): the cases that predicted no and the actual output was yes.

Table 1. Confusion matrix for binary classification.

Predicted Value

Positive (P) Negative (N)

Real value
Positive (P) True Positive (TP) False Negative (FN)

Negative (N) False Positive (FP) True Negative (TN)

For the purpose of the Challenge and based on the above table, the score measure was computed.
The score measure was designed to treat FN, genuinely life-threatening events that the program
considered unimportant, especially harshly, and is defined as:

Score =
100× (TP + TN)

TP + FP + TN + 5× FN
. (3)

Each classifier returns a probability of belonging to a particular observation in the positive class
(in this case, yes). This probability is then discretized into two possible outcomes based on the same
threshold/cutoff value, which is usually set to 0.5. It is a natural approach to assign the most probable
class, i.e., if probability ≥ 0.5, then yes; otherwise, no. Unfortunately, in many situations, this threshold
is not optimal (optimality should be defined in advance), but some methods can determine the best
cutoff point. These are outlined in Section 5.

4.2. Receiver Operating Curve (ROC) and Area Under the ROC

Area Under the Curve (AUC) is one of the most widely used metrics for evaluation. AUC is
used for binary classification problem (extensions for multiclass classification problems also exists).
The AUC of a classifier is equal to the probability that the classifier will rank a randomly chosen positive
example higher than a randomly chosen negative example [48]. Before defining AUC, two basic terms
should be explained: true positive rate (TPR or sensitivity) is defined as TP/(FN + TP). Sensitivity
corresponds to the proportion of positive data points that are correctly considered positive with
respect to all positive data points. False positive rate (FPR or specificity) is defined as FP/(FP + TN).
Specificity corresponds to the proportion of negative data points that are mistakenly considered
positive with respect to all negative data points. For the purpose of the Challenge, complementary
measures, such as true negative rate, defined as TNR = 1− FPR, are easily determined.

FPR and TPR both have values in the range [0, 1]. FPR and TPR are both computed at threshold
values, such as (0.00, 0.02, 0.04, . . . ., 1.00) and a graph was drawn as shown in Figure 1. AUC is the
area under the curve of the plot FPR vs. TPR at different points in [0, 1].
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Figure 1. The receiver operating curve (ROC) and its possible variants.

As evident, AUC has a range of [0, 1]. The greater the value, the better the performance of the
model is.

4.3. Optimal Treshold for Class Determination

Since the ROC is considered to be the best global measure assessing the effectiveness of a model,
it is a good starting point for searching for an optimal cutoff point. To benefit from the optimal score
threshold, Youden’s J statistic [49] was employed. The optimal cutoff is defined as (see the purple line
in Figure 1):

max(TPR + (1− FPR)). (4)

The Youden Index is the point on the ROC that is farthest from line of equality (diagonal line in
Figure 1). The main aim of the Youden Index is to maximize the difference between TPR and FPR.
The value of J for a continuous test can be located by searching plausible values where the sum of
sensitivity and specificity is maximized. The Youden Index is the most commonly used criterion
(compared to other measures used in this context) because this index reflects the intension to maximize
the correct classification rate and is easy to calculate [50].

5. Methods of Probability and Class Determining

After the RF is built, every computer implementation (packages like randomForest or ranger in
R environment) returns both a matrix with an estimated probability for each observation and a tree
within the forest, and a matrix that indices whether a particular observation was in the In Bag (1 flag)
or the OOB (0 flag) sample for a particular tree. After combining the information in these matrixes, the
estimated probability for a particular observation can be determined in four different ways (Figure 2):
(1) averaging (Avg Prob table); (2) majority class voting, where the cutoff for class determining is
derived based on the In Bag sample (dashed Voting Prob table); (3) majority class voting, where the
cutoff for class determining is derived based on the training sample (dotted-dashed Voting Prob table);
and (4) majority class voting, where the cutoff is set to 0.5 (red Voting Prob table). For the sake of
this example, assume that an entire dataset that includes 100 observations is divided into a training
sample (90 observations) and a validation sample (10 observations). Also assume that the RF includes
500 trees, which means that the analyzed matrix is 100 × 500.

Now consider the first method to determine probability (for the training examples) based on
averaging. Table 2 presents the probability of an observation belonging to the positive class with
the indicator of whether an observation is in the In Bag (INB, 1 flag on the bright red color) or the
Out of Bag (OOB, 0 flag on the bright green color) sample. The final probability is determined as an
average probability for all the trees (directly without any inner steps like in other approaches) where an
observation was in INB (bright red) or in OOB (bright green). In the third case, the average probability
is simply taken based on all the trees (white). The probability for the validation sample is also taken
from all trees e.g., based on the first row ((0.5 + 0.7 + 0.1 + 0.1)/4) is 0.35.
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Table 2. Example of Probability matrix and In Bag matrix with estimated probability for each
observation based on the average probability.

No. Tree1 Tree2 Tree3 Tree4 Avg Prob INB Avg Prob OOB Avg Prob Train
1 0.6(1) 0.7(0) 0.8(1) 0.2(0) 0.70 0.45 0.58
2 0.5(1) 0.7(1) 0.1(0) 0.1(0) 0.50 0.10 0.35
3 0.1(0) 0.9(1) 0.4(1) 0.8(0) 0.65 0.45 0.55

Now consider the second method to determine the probability of the training examples based
on majority voting (Table 3). Consider that the class label for each tree is determined based on the
cutoff for probability set to 0.5, i.e., if probability ≤ 0.5 then “NO” else “YES”. This is equivalent to the
standard Breiman’s implementation of the RF (red line in Figure 2). As in the previous example, voting
is completed in three different ways. Take the second observation: there are two trees where it is in the
INB sample. Unfortunately, these trees predict two different classes this is why the final probability is
set at 0.5. In the OOB sample, Tree3 and Tree4 predict class “no”; therefore, the final probability of
being positive is 0.

Table 3. Example of Probability matrix and In Bag matrix with estimated probability for each
observation based on the majority voting.

No. Tree1 Tree2 Tree3 Tree4 Vote Prob INB Vote Prob OOB Vote Prob Train
1 YES (1) YES (0) YES (1) NO (0) 1.00 0.50 0.75
2 NO (1) YES (1) NO (0) NO (0) 0.50 0.00 0.25
3 NO (0) YES (1) NO (1) YES (0) 0.50 0.50 0.50

This simple example shows that the estimated probabilities could be very different. Considering
other approaches to setting the optimal cutoff (based on the Youden Index) for determining the class
label for majority voting produces many different and diverse solutions. The variety of approaches for
determining of the class probability implicates 10 different methods for deriving the final class for a
particular observation. These approaches incorporate determining the final class either based on the
cutoff set to 0.5 or derived from the Youden Index.

In summary, the probability (first level of aggregation) and the final class (second level of
aggregation) assignment to each observation can be derived from four main approaches and
10 sub-approaches (Figure 2):

(1) Probability: averaging all the probabilities from all the trees within the forest (Avg Prob; upper
solid line table);

(a) Class: cutoff (Youden Index) for class determination is derived based on the In Bag sample
(abbreviation: Prob INB),

(b) Class: cutoff (Youden Index) for class determination is derived based on the training
sample (abbreviation: Prob Train),

(c) Class: cutoff for class determination is set at 0.5 (abbreviation: Prob 0.5).

(2) Probability: majority class voting where the cutoff for class determining is derived based on the
In Bag sample (upper-middle dashed line table; abbreviation: Voting Prob INB);

(a) Class: cutoff (Youden Index) for class determining is derived based on In-Bag sample
(abbreviation: Vote INB INB),

(b) Class: cutoff for class determination is set to 0.5 (abbreviation: Vote INB 0.5).

(3) Probability: majority class voting where the cutoff for class determining is based on the training
sample (lower-middle dotted-dashed line table; abbreviation: Voting Prob Training);



Sensors 2019, 19, 1588 10 of 23

(a) Class: cutoff (Youden Index) for class determining is based on the training sample
(abbreviation: Vote Train Train),

(b) Class: cutoff for class determination is set to 0.5 (abbreviation: Vote Train 0.5).

(4) Probability: majority class voting where the cutoff is set to 0.5 (bottom red line table, equivalent
to the standard RF; abbreviation: Voting Prob 0.5);

(a) Class: cutoff (Youden Index) for class determination is derived based on the In Bag sample
(abbreviation: Vote 0.5 INB),

(b) Class: cutoff (Youden Index) for class determination is derived based on the training
sample (abbreviation: Vote 0.5 Train),

(c) Class: cutoff for class determination is set to 0.5 (abbreviation: Vote 0.5 0.5).

After producing both the probabilities and the class labels, various model performance measures
for each dataset and the approach can be computed.

6. Empirical Analysis

6.1. Feature Vector

As mentioned in the introduction, the data included two ECG channels, at least one
pulsatile waveform, either arterial blood pressure (ABP) or plethysmogram, and respiratory effort.
The contestants were provided with 750 recordings as a training set. The distribution of the signals
among arrhythmias and whether the alarms were true or false are presented in Table 4. The numbers
presented in the table vary slightly from those in the paper describing the challenge data in detail [3].
After the 2015 Challenge ended, there was a discussion that some of the arrhythmia type labels were
assigned incorrectly. This resulted in organizers consulting the experts and reloading the data with
corrected arrhythmia type labels. Those data were analyzed in this paper: each recording was 5 min
long and recorded with a sampling frequency of 250 Hz. Then, each recording was pre-filtered against
noise with mains notch filters and a FIR band pass filter (0.05–40 Hz) [3].

The first step of the data processing was beat detection in both ECG and pulsatile signals,
which enabled later proper signal selection. Beat detection in ECG was performed as proposed
by Eerikäinen et al. [51], based on the low-complexity R-peak detector [52]. The beat locations were
determined with the use of an adaptive threshold on a convolution of ECG and single wavelet.
The algorithm used for beat detection in ABP and PLETH was wabp [53], an open source algorithm
from PhysioNet [3]. Then, the quality of the signals was assessed using the F1 score [51]. In this
method, both ECG leads and available pulsatile waveforms were compared to each other. In window
of 14–16 s before the alarm (depending on the arrhythmia type), signals were compared beat by beat to
verify whether their locations matched. If so, beats were marked as true positive (TP); otherwise, as
false positive (FP) or false negative (FN) depending on which of the compared signals an additional
beat was detected. Then the F1-score was calculated as F1 = 2 TP/(2 TP + FP + FN). A result of
1 signified that detected beats matched among all signals; a result of 0 meant that found annotations
were totally different. Based on the F1 scores, two signals were chosen for the next step, which was
feature computation.
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The set of features for the arrhythmias was generated in line with the schema presented by
Eerikäinen [51]. For each arrhythmia, features were generated based on the clinical definition provided
by challenge organizers [3]. For asystole, extreme bradycardia, and extreme tachycardia, only the
features described by heart rate and inter-beat intervals were considered 14–16 s before the alarm [51].
For ventricular tachycardia and ventricular flutter or fibrillation, such metrics were insufficient due to
their characteristics (Section 2.1.). Hence, the modified spectral purity index (SPI) [51] approach was
implemented and the minimum and maximum of the calculated SPI were incorporated as features.

Table 4. Arrhythmia types and alarm distribution used in the 2015 Challenge.

Arrhythmia Type NO YES

Ventricular Tachycardia 252 89
Asystole 100 22

Extreme Tachycardia 9 131
Ventricular Fibrillation or Flutter 52 6

Extreme Bradycardia 43 46

6.2. Numerical Implementation

All numerical experiments were conducted in the R environment [54] using a personal computer
equipped with an Intel Core i5-2430M 2.4 GHz processor (2 CPU× 2 cores), 8 GB RAM, and the Ubuntu
16.04 LTS operating system. The core of the entire analysis is the ranger package [55], implementing
the state-of-the-art Breiman’s RF. This software is written in C++ and R and is a fast implementation
of RF, especially suited for high dimensional data. To conduct the research, many wrapper functions
working on the output from the ranger package were written. For instance, these functions extract
the class probability matrix or In Bag/Out of Bag matrix for each observation and tree. The optimal
threshold for class determining based on the Youden Index was calculated using the pROC library [56].

The estimates for the performance measures for the training and validation samples were
produced with k-fold cross-validation. The number of k sets was set to 10 when there were more than
10 samples in the smaller class. Otherwise, k was set to the size of the smaller class to ensure that
there was at least one sample from both of the classes (9 for extreme tachycardia and 6 for ventricular
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fibrillation or flutter). The k sets were generated so that the class distribution in every set represented
the class distribution of the entire dataset using stratified sampling based on the createFolds function
implemented in the caret library [57]. All further results are presented as an average over k-folds with
the standard errors of the estimates.

6.3. Detailed Results for AUC and Score for Various Samples

The classification performance of each approach for probability and class determination was
evaluated with AUC, TPR, TNR, and a challenge score (Equation (3)) within the training, In Bag,
Out of Bag, and validation datasets. The results are presented in Figures 3 and 4 and in Appendix A.
Each approach has its own color in the figure with whiskers representing standard error of estimation.
Standard errors for TPR and TNR are presented in brackets.

Because each tree within the forest is built to its maximum depth, each tree affects very few
observations on a particular leaf, which results in inpurity being almost 0, i.e., perfect classification.
This directly translates into almost perfect results in terms of AUC for the In Bag sample for each
type of arrhythmia (Figure 3). Since the training dataset is approximately 63.2% similar to the In Bag
dataset, the results for this sample were also reletively accurage. The acuracy was especially high
for ventricular tachycardia and extreme tachycardia. Due to dependency on the learning process,
the aforementioned samples should be considered only as additional information. Since in machine
learning the goal is generalization of the knowledge, the OOB and validation samples should be used
for assement of the models.

We observed that, in most of the cases, the highest AUC for the OOB sample was achieved using
the entire training sample for the Youden Index determination and then simple majority voting (gray
color). This occurred because the cutoff was determined also with respect to the knowledge partialy
(36.8%) contained in this sample. This approach has relatively smaller standard errors of the estimates.
In terms of the validation sample, we observed that the results for each method for extreme tachycardia
and extreme bradycardia were equal. The results for extreme tachycardia were almost perfect: there
were only nine negative cases (Table 4), and due to the stratified sampling, each fold contained only
one case of this type. Generally, ventricular tachycardia is the type of arrhythmia that is relatively
the most difficult to detect since the AUC for both unseen samples during the training process is the
smallest, i.e., ranging between 0.86 and 0.87, when for other types of arrythmia, the AUC is far greater
than 0.9.

In terms of the score measured in Equation (3), any case incorrectly classified as negative (FN) is
punished five times more greatly than other mistakes (FP). So, even one mistake has a considerable
influence on this measure. This was observed even for the In Bag sample, especially where, at some
stage of the final class determination (either for the probability or for the finall class label), the constant
cutoff set to 0.5 was employed, for instance for asystole or ventricular fibrillation.
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Figure 3. AUC results for each type of arrhythmia and data sample in terms of method of probability
assignment. (a) Asystole, (b) Ventricular Tachycardia, (c) Ventricular Fibrillation, (d) Extreme
Tachycardia, (e) Extreme Bradycardia.

For the previous measure, the relatively lowest results were produced for ventricular tachycardia
(score ranging between 30 and 50 for the validation sample). Extreme tachycardia was the type of
arrhythmia with the highest score values for the validation sample (80–90) and with the smallest
differences between each method of class label determination. Since the positive class in ventricular
fibrillation or flutter is relatively rare and the average value was estimated based on six folds
containing only one case, the results for the unseen sample are very different for each approach
of class determination.
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To compare our results with the those achived by other researchers [11,21–23,51], Appendix A
(Tables A1–A5) provides the detailed results of TPR and TNR for each type of arrhythmia and the
data sample in terms of methods for class assignment. We compared the top five results from the
2015 PhysioNet/Computing in Cardiology Challenge (after the follow-up phase) and two other
algorithms using RF for final classification with our best solution, as shown in Table A6. The results
shown in the table were calculated for the training set only, as we did not have access to the hidden
test set. The reason for providing the results from the follow-up phase of the Challenge, instead
of the official phase, is that they were calculated on the data with labels revised after the official
phase, which we used as well. The proposed algorithm produces the best results for both TPR and
TNR for extreme tachycardia and ventricular flutter fibrillation, and is among the top results for
asystole, extreme tachycardia, and extreme bradycardia. Most of the algorithms had the lowest false
alarm suppression for ventricular flutter/fibrillation and ventricular tachycardia, which, apart from
different morphology of the signals, might be a result of an unbalanced training set for these types
of arrhythmia. Of the algorithms using the RF method, the Asadi approach had noticeably lower
results and although Srivastava’s solution produced an impressive TPR for all arrhythmias, apart from
ventricular flutter/fibrillation, TN ratios were rather low. Our comparison among different approaches
proved that the proposed RF classifier often produces better results than already existing methods and
might contribute to solving the problem of the high rate of false arrhythmia alarms in ICUs.

6.4. Aggregated Ranks for AUC and Score Based on the Validation Sample

The results presented in Section 6.3. provide a broad overview of the performance of each
approach. However, analyzing the results on bar charts is a challenging task and our goal was to
present the aggregated results with a synthetic measure. Therefore, to answer the question of which
approach is the most appropriate for probability and for class assignment, a “global” synthetic measure
had to be developed. For this purpose, we used ranks that would require a two-step procedure. In the
first step, “local” ranks for each type of arrhythmia were derived, and secondly, based on these local
ranks, one global rank was created.

Ranks in the first step were created using the rank() function in R. This function returns integers
for each value where, in this case, the first position is assigned the highest value in terms of AUC or
score results. In some cases, the results might be equal (a so-called tie), which considerably impacts the
second step of this procedure. To overcome this issue, positions with equal values at the corresponding
indices were randomly assigned. In the second step, local ranks are aggregated to the global rank
using the RankAggreg library [58]. Rank aggregation is an essential approach for aggregating multiple
preferences. Rank aggregation could be cast in the framework of an optimization problem, which
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needs some objective function. In this context, the aim was to find a super list (rank) which would be
as close as possible to all individual ordered lists (ranks) simultaneously. This is a simple and intuitive
requirement and takes the form:

θ(σ) =
m

∑
i=1

wid(σ, Li), (5)

where Li is the ith ordered list (4 for AUC ranks and 10 for score ranks); σ is a proposed ordered list of
length k = |Li|, i.e., 4 for AUC ranks and 10 for score ranks; wi is the importance weight associated
with list Li (in this case all weights are equal); and d is a distance measure based on the Spearman
correlation (for better understanding please see Figure A1 in the Appendix B).

The main goal of ranks aggregation is to find σ∗ that minimize the total distance between σ∗ and
ith L:

σ∗ = argmin
m

∑
i=1

wid(σ, Li). (6)

Due to the relatively small number of the investigated lists, rank aggregation was performed
using the exhaustive search, i.e., generating all possible ordered lists and finding the list with the
minimum value of the above objective function [58]. For details of the aggregation process, refer to
Appendix B. This approach works for relatively small problems only and should not be attempted if k
is relatively large (k > 10); otherwise, methods like cross-entropy Monte Carlo and genetic algorithm
are applied but these methods do not guarantee an optimal solution and both these algorithms are
sensitive to the tuning parameters.

As the first step incorporates some randomness in determining the final ranks, the results
presented below (based on the validation sample) are created based on the simulation analysis. Local
ranks in the first step were determined in a repetitive manner (1000 repetitions; therefore, Tables 5
and 6 show the distribution of the appearance of each approach at a particular position in the global
rank (gray color palette indicates intensity from the highest in dark gray to the lowest in white).

Table 5 shows that the highest AUC values for each type of arrhythmia are associated with the
approach where the probability for each observation is determined using majority class voting, where
the class is derived based on the cutoff set to 0.5 (Voting Prob 0.5). This resulted in 53.83% of the cases
the majority class voting delivering the highest AUC value (first ranking position: N1). The second
place (rank: N2, 51.25%) was the approach where the final probability is determined using averaging
(Avg Prob) of all the probabilities from all the trees. The third and the fourth place were assigned to
majority class voting where the cutoff for class determination is derived based on training or In Bag
samples, respectively.

Table 5. Distribution of global ranks for probability assignment in terms of the AUC measure observed
for the validation sample.

Approach Ranks

N1 N2 N3 N4
Avg Prob 27.86% 51.25% 15.38% 5.51%

Voting Prob INB 9.03% 13.14% 22.77% 55.06%
Voting Prob Train 9.28% 13.80% 51.89% 25.03%

Voting Prob 0.5 53.83% 21.81% 9.96% 14.40%

Regardless of the size of the analyzed problem, Table 6 reveals relatively stable results. The first
and the last place are known for sure in 100% of the cases. The best score was received by the approach
where, firstly, the probability for each observation is determined using majority class voting where
the cutoff for the class is set to 0.5 and, secondly, the final class is determined using the cutoff derived
based on the training sample. Last place is the approach where, at both stages, the cutoff is determined
based on the In Bag sample.
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Table 6. Distribution of global ranks for probability assignment in terms of the score observed on the
validation sample.

Approach Rank

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10
Prob INB 0.00% 0.00% 0.00% 0.00% 0.00% 53.06% 23.73% 5.25% 17.95% 0.00%

Prob Train 0.00% 25.04% 74.26% 0.70% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Prob 0.5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 61.91% 38.09% 0.00%

Vote INB INB 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
Vote INB 0.5 0.00% 74.96% 23.82% 0.00% 0.61% 0.61% 0.00% 0.00% 0.00% 0.00%

Vote Train Train 0.00% 0.00% 0.35% 0.00% 7.97% 38.62% 53.06% 0.00% 0.00% 0.00%
Vote Train 0.5 0.00% 0.00% 1.58% 59.19% 37.74% 1.49% 0.00% 0.00% 0.00% 0.00%
Vote 0.5 INB 0.00% 0.00% 0.00% 40.11% 53.68% 6.22% 0.00% 0.00% 0.00% 0.00%

Vote 0.5 Train 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Vote 0.5 0.5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 23.20% 32.84% 43.96% 0.00%

The most unstable results were related to probability averaging in the first stage and the Youden
Index determination based on the In Bag sample during the second stage (with four possible positions);
majority class voting where the cutoff for the class is set to 0.5 during the first stage and, during the
second stage, the cutoff is also set to 0.5 (with three possible positions with relatively similar chances).

7. Conclusions

The detection of false arrhythmia alarms in Intensive Care Units is a challenging task for
classification algorithms as a number of triggers for false alarms are possible, including the noises
arising from motion artifacts, patient sweating and movement, and temporary machine malfunctions,
such as detachment of electrodes and sensors.

The novelty of our research was demonstrated through the design of a synthetic measure that
helps to manage complex classification problems whenever the classification tasks pertain to a set of
classification tasks (e.g., predicting different arrhythmia types) and/or several methods to determine
the probability and the class labels. Our proposed measure helps to leverage classification results in
ensemble methods as it indicates the decision path leading to the best results in terms of the AUC
measure or the global accuracy (score).

In particular, we focused on the application of RF to the classification of five arrhythmia alarms
as true or false. Additionally, we examined four different methods for probability aggregation and
10 methods for class assignment in RF, as these impact the accuracy of the classification.

This synthesis of the approaches is applicable for probability and class assignment and addresses
the literature gap and draws attention to one of the important aspects of ensemble classifiers. The
classification performance of the RF algorithm was evaluated with the AUC, True Positive Rate, True
Negative Rate, and a challenge score [3] using the Out of Bag and validation datasets. The following
results were obtained:

(1) Ventricular tachycardia is the arrhythmia for which the false alarms are the most difficult to
detect since AUC values for both unseen samples (OOB and validation) have the lowest ranges,
between 0.86 and 0.87;

(2) Extreme tachycardia arrhythmia false alarms are by far the easiest to detect as the AUC values
are close to 1 for both OOB and validation datasets;

(3) The AUC value is the greatest for the OOB sample when the probability is selected using majority
class voting where the cutoff for class assignment is derived based on the training sample;

(4) In terms of the score measure, the validation dataset delivers better results for false alarms
detection in comparison with Out of Bag; however, the results are biased with higher
standard errors;

(5) In terms of the score measure, ventricular tachycardia false alarms are difficult to capture as the
scores are lower than 50, and slighly better scores are produced using the validaton dataset;
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(6) For ventricular fibrillation, the scores obtained on the validation dataset are 30 points better
than using OOB (score 50 vs. 80, respectively). This was observed when the cutoff for the class
assignment was derived based on the training sample, or the cutoff for class determining was set
to 0.5 (Figure 4).

For the aggregated results with ranks, the following results were observed:

(1) In 53.83% of the cases, the majority class voting with the cutoff set to 0.5 (Voting Prob 0.5)
produced the highest AUC value (first ranking position: N1);

(2) The best score (first ranking position: N1) was observed when the probability for each observation
was determined using majority class voting with the cutoff for the class set to 0.5. The final class
was determined using the cutoff derived based on the training sample (Vote 0.5 Train). This
approach produces the highest score on the validation dataset.

The results for the aggregated level indicate that application of the proper approach to determine
probability and the class label is an important task that may affect the classification accuracy. We think
that the problem of probability and class assignment in RF is valid, and therefore, our study can be
extended further with the application of other machine learning methods in ensemble mode or multiple
different learning algorithms to produce better predictive performance. This may lead to further study
on algorithms’ diversity and the effects of varying ensemble size on classification accuracy.
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Appendix A

Table A1. True Positive Rate (TPR) and True Negative Rate (TNR) for Asystole.

TPR In
Bag

TNR In
Bag

TPR Out
of Bag

TNR Out
of Bag

TPR
Training

TNR
Training

TPR
Validation

TNR
Validation

Prob INB 100(±0) 100(±0) 77.2(±0.9) 93.9(±0.3) 89.9(±1.7) 99(±0.1) 75(±8.3) 94(±2.2)
Prob Train 100(±0) 99.9(±0.1) 77.2(±0.9) 91.6(±0.4) 100(±0) 98.2(±0.3) 80(±8.2) 92(±2)

Prob 0.5 98.5(±0.8) 100(±0) 72.2(±1) 96.9(±0.2) 86.3(±0.8) 100(±0) 70(±8.2) 97(±1.5)
Vote INB INB 100(±0) 100(±0) 60.5(±3) 97.7(±0.3) 84.8(±1.3) 100(±0) 61.7(±6.6) 97(±1.5)
Vote INB 0.5 100(±0) 99(±0.2) 78.3(±0.8) 91.3(±0.4) 100(±0) 97.8(±0.3) 75(±8.3) 91(±2.3)

Vote Train Train 100(±0) 99.2(±0.2) 77.3(±0.9) 93.8(±0.7) 100(±0) 98.4(±0.2) 75(±8.3) 93(±2.1)
Vote Train 0.5 100(±0) 99(±0.2) 78.3(±0.7) 93.1(±0.5) 99.5(±0.5) 97.9(±0.3) 75(±8.3) 91(±2.3)
Vote 0.5 INB 100(±0) 100(±0) 77.2(±0.9) 91.9(±0.3) 92.9(±1.3) 97.6(±0.3) 80(±8.2) 92(±2)
Vote 0.5 Train 100(±0) 99.9(±0.1) 80.8(±1.5) 89(±0.5) 100(±0) 97.1(±0.3) 85(±7.6) 90(±2.6)

Vote 0.5 0.5 87.3(±0.9) 100(±0) 72.2(±1) 97.1(±0.2) 79.8(±1.5) 100(±0) 70(±8.2) 97(±1.5)

Table A2. TPR and TNR for Ventricular Tachycardia.

TPR In
Bag

TNR In
Bag

TPR Out
of Bag

TNR Out
of Bag

TPR
Training

TNR
Training

TPR
Validation

TNR
Validation

Prob INB 100(±0) 100(±0) 51.8(±1.1) 91.1(±0.5) 98(±0.3) 99.6(±0.1) 56.7(±6.3) 90.1(±1.5)
Prob Train 100 (±0) 100(±0) 58.9(±2.3) 88.4(±0.8) 99.6(±0.2) 99.4(±0.1) 65.6(±4.5) 88.1(±1.9)

Prob 0.5 100(±0) 100(±0) 42.5(±0.9) 94.4(±0.2) 94(±0.4) 100(±0) 42.9(±5.7) 94.5(±0.9)
Vote INB INB 100(±0) 100(±0) 36.8(±1.4) 95.4(±0.2) 93.3(±1.1) 100(±0) 38.1(±5.2) 95.3(±1.2)
Vote INB 0.5 100(±0) 99.8(±0.1) 64.2(±0.9) 86.1(±0.4) 100(±0) 97.3(±0.2) 68.9(±4.6) 85.3(±1.6)

Vote Train Train 100(±0) 100(±0) 53.4(±2.3) 92.1(±0.5) 99.1(±0.2) 99.3(±0.1) 55.6(±6.4) 89.7(±1.5)
Vote Train 0.5 100(±0) 99.6(±0.1) 69.3(±0.6) 86.1(±0.4) 99.8(±0.2) 96.7(±0.2) 68.9(±4.6) 85.3(±1.6)
Vote 0.5 INB 100(±0) 100(±0) 58.7(±1.3) 88.5(±0.5) 98.3(±0.2) 99.3(±0.1) 63.3(±4.7) 87.7(±1.8)
Vote 0.5 Train 100(±0) 100(±0) 58.4(±2.4) 88(±0.8) 99.1(±0.2) 99.4(±0.2) 67.8(±5.4) 88.9(±1.4)

Vote 0.5 0.5 99.5(±0.2) 100(±0) 39.5(±1.1) 95.1(±0.2) 90.5(±0.8) 100(±0) 39.3(±5.3) 95.3(±1)
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Table A3. True Positive Rate and True Negative Rate for Ventricular Fibrillation or Flutter.

TPR In
Bag

TNR In
Bag

TPR Out
of Bag

TNR Out
of Bag

TPR
Training

TNR
Training

TPR
Validation

TNR
Validation

Prob INB 100(±0) 100(±0) 23.3(±9.5) 96.2(±0.5) 66.7(±6.7) 98.9(±0.8) 16.7(±16.7) 98.2(±1.9)
Prob Train 100(±0) 96.6(±0.5) 56.7(±8) 95.4(±0.6) 100(±0) 96.2(±0.5) 83.3(±16.7) 94.2(±2.6)

Prob 0.5 86.7(±6.7) 100(±0) 13.3(±4.2) 97.7(±0.8) 56.7(±6.1) 99.6(±0.4) 16.7(±16.7) 98.2(±1.9)
Vote INB INB 100(±0) 100(±0) 0(±0) 99.6(±0.4) 13.3(±8.4) 100(±0) 0(±0) 100(±0)
Vote INB 0.5 100(±0) 95.4(±0.6) 70(±6.8) 94.2(±1) 100(±0) 95.4(±0.6) 83.3(±16.7) 92.4(±3.8)

Vote Train Train 100(±0) 96.2(±0.5) 56.7(±3.3) 96.2(±0.5) 100(±0) 96.2(±0.5) 83.3(±16.7) 96.3(±2.3)
Vote Train 0.5 100(±0) 95.4(±0.6) 70(±6.8) 94.2(±1) 100(±0) 95.4(±0.6) 83.3(±16.7) 92.4(±3.8)
Vote 0.5 INB 100(±0) 100(±0) 33.3(±9.9) 95.4(±0.6) 83.3(±6.1) 98.1(±0.9) 50(±22.4) 98.2(±1.9)
Vote 0.5 Train 100(±0) 98.1(±0.9) 43.3(±10.9) 93.1(±1.2) 100(±0) 96.2(±0.5) 83.3(±16.7) 94.2(±2.6)

Vote 0.5 0.5 73.3(±6.7) 100(±0) 10(±4.5) 98.9(±0.8) 50(±4.5) 100(±0) 16.7(±16.7) 100(±0)

Table A4. True Positive Rate and True Negative Rate for Extreme Tachycardia.

TPR In
Bag

TNR In
Bag

TPR Out
of Bag

TNR Out
of Bag

TPR
Training

TNR
Training

TPR
Validation

TNR
Validation

Prob INB 100(±0) 100(±0) 99.2(±0.1) 69.4(±4.5) 100(±0) 98.6(±1.5) 99.2(±0.8) 77.8(±15.6)
Prob Train 100(±0) 100(±0) 99.2(±0.1) 66.7(±4.9) 100(±0) 100(±0) 99.2(±0.8) 77.8(±15.6)

Prob 0.5 100(±0) 100(±0) 99.2(±0.1) 76.4(±1.5) 99.3(±0.1) 100(±0) 99.2(±0.8) 77.8(±15.6)
Vote INB INB 100(±0) 100(±0) 99.7(±0.2) 54.2(±4.9) 100(±0) 86.1(±4.1) 99.2(±0.8) 66.7(±17.7)
Vote INB 0.5 99.2(±0.1) 100(±0) 98.8(±0.2) 83.3(±3.1) 99.2(±0.1) 100(±0) 98.5(±1.1) 88.9(±11.8)

Vote Train Train 100(±0) 100(±0) 99.2(±0.1) 62.5(±3.8) 100(±0) 100(±0) 99.2(±0.8) 66.7(±17.7)
Vote Train 0.5 99.2(±0.1) 100(±0) 98.8(±0.2) 83.3(±3.1) 99.2(±0.1) 100(±0) 98.5(±1.1) 88.9(±11.8)
Vote 0.5 INB 100(±0) 100(±0) 99.2(±0.1) 66.7(±5.4) 100(±0) 93.1(±3.9) 99.2(±0.8) 66.7(±17.7)

Vote 0.5 Train 100(±0) 100(±0) 99.2(±0.1) 70.8(±3.8) 100(±0) 100(±0) 99.2(±0.8) 77.8(±15.6)
Vote 0.5 0.5 99.4(±0.2) 100(±0) 99.1(±0) 79.2(±2.2) 99.2(±0.1) 100(±0) 99.2(±0.8) 77.8(±15.6)

Table A5. True Positive Rate and True Negative Rate for Extreme Bradycardia.

TPR In
Bag

TNR In
Bag

TPR Out
of Bag

TNR Out
of Bag

TPR
Training

TNR
Training

TPR
Validation

TNR
Validation

Prob INB 100(±0) 100(±0) 86.7(±0.8) 87.9(±1.3) 96.1(±0.7) 94.6(±0.6) 82.5(±8.7) 87(±4.7)
Prob Train 99.5(±0.3) 100(±0) 85.5(±1.1) 88.1(±1.6) 96.4(±1) 97.9(±0.8) 82.5(±8.7) 91(±3.7)

Prob 0.5 100(±0) 100(±0) 86.5(±0.7) 88.9(±1.2) 95.4(±0.8) 96.6(±0.7) 82.5(±8.7) 88.5(±3.9)
Vote INB INB 99.3(±0.4) 100(±0) 86.7(±0.9) 87.1(±1.4) 94.9(±0.6) 95.6(±0.7) 85(±8.9) 88.5(±3.9)
Vote INB 0.5 98.6(±0.4) 100(±0) 86(±0.7) 89.4(±1.1) 94(±0.6) 97.4(±0.4) 82.5(±8.7) 88.5(±3.9)

Vote Train Train 96.9(±1) 97.9(±0.8) 89.1(±1.5) 85.2(±2.4) 95.9(±1.3) 96.6(±1.2) 85(±8.9) 88.5(±3.9)
Vote Train 0.5 97.1(±0.7) 100(±0) 86.7(±0.5) 91.2(±0.9) 93.5(±0.6) 96.6(±0.6) 82.5(±8.7) 90.5(±3.9)
Vote 0.5 INB 99.8(±0.2) 100(±0) 87(±1) 86.6(±1.3) 95.4(±0.7) 94.8(±0.9) 85(±8.9) 87(±4.7)
Vote 0.5 Train 98.3(±0.7) 99.7(±0.3) 86.7(±0.7) 87.1(±1.8) 96.1(±0.8) 97.7(±0.6) 84.5(±8.9) 91(±3.7)

Vote 0.5 0.5 98.3(±0.5) 100(±0) 85.7(±0.9) 90.4(±0.9) 93.7(±0.5) 97.9(±0.3) 82.5(±8.7) 93(±3.6)

Table A6. Comparison of our best solution (Vote 0.5 training), top 5 solutions from the 2015
PhysioNet/Computing in Cardiology Challenge (after the follow-up phase), and two other solutions
that used RF in their approach. All the results were calculated for the training set.

Method Asystole Ventricular
Tachycardia

Ventricular
Flutter or

Fibrillation

Extreme
Tachycardia

Extreme
Bradycardia

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

Gajowniczek et al.
(Vote 0.5 training) 100 97 99 99 100 96 100 100 96 98

Plesinger et al. [3] 100 68 80 80 100 85 99 78 91 60
Krasteva et al. [3] 100 99 81 77 100 96 100 100 98 91
Kalidas et al. [3] 100 86 84 85 100 65 100 89 100 93

Hoog Antink et al. [3] 100 89 93 85 100 92 100 100 100 77
Eerikäinen et al. [3] 90 90 89 63 67 94 98 88 93 83

Asadi et al. [22] 39 49 68 85 78 89 87 82 56 60
Srivastava et al. [23] 100 89 100 67 83 88 100 67 100 72
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Figure A1. The approach to derive global ranks (N1–N4) for each method (M1–M4) for probability assignment and each arrhythmia type based on the AUC measure
on the validation sample. Orange and yellow highlight the equal ranks; these were subject to 3-fold random rank assignment.



Sensors 2019, 19, 1588 21 of 23

References

1. Aboukhalil, A.; Nielsen, L.; Saeed, M.; Mark, R.G.; Clifford, G.D. Reducing false alarm rates for critical
arrhythmias using the arterial blood pressure waveform. J. Biomed. Inform. 2008, 41, 442–451. [CrossRef]

2. Drew, B.J.; Harris, P.; Zègre-Hemsey, J.K.; Mammone, T.; Schindler, D.; Salas-Boni, R.; Bai, Y.; Tinoco, A.;
Ding, Q.; Hu, X. Insights into the problem of alarm fatigue with physiologic monitor devices: A
comprehensive observational study of consecutive intensive care unit patients. PLoS ONE 2014, 9, e110274.
[CrossRef] [PubMed]

3. Clifford, G.D.; Silva, I.; Moody, B.; Li, Q.; Kella, D.; Shahin, A.; Kooistra, T.L.; Perry, D.; Mark, R.G. The
PhysioNet/computing in cardiology challenge 2015: Reducing false arrhythmia alarms in the ICU. In
Proceedings of the 2015 Computing in Cardiology Conference (CinC), Nice, France, 6–9 September 2015;
pp. 273–276. [CrossRef]

4. Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236.
[CrossRef] [PubMed]

5. Subramanian, B. ECG signal classification and parameter estimation using multiwavelet transform. Biomed.
Res. 2017, 28. Available online: http://www.biomedres.info/biomedical-research/ecg-signal-classification-
and-parameter-estimation-using-multiwavelet-transform.html (accessed on 29 March 2019).

6. Christov, I.I. Real time electrocardiogram QRS detection using combined adaptive threshold. Biomed. Eng.
Online 2004, 3, 28. [CrossRef] [PubMed]

7. Arzeno, N.M.; Deng, Z.-D.; Poon, C.-S. Analysis of First-Derivative Based QRS Detection Algorithms. IEEE
Trans. Biomed. Eng. 2008, 55, 478–484. [CrossRef]

8. Silva, I.; Moody, B.; Behar, J.; Johnson, A.; Oster, J.; Clifford, G.D.; Moody, G.B. Robust detection of heart
beats in multimodal data. Physiol. Meas. 2015, 36, 1629–1644. [CrossRef]
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Science and Information Systems, ódź, Poland, 13–16 September 2015. [CrossRef]

49. Youden, W.J. An index for rating diagnostic tests. Cancer 1950, 3, 32–35. [CrossRef]
50. Unal, I. Defining an optimal cut-point value in roc analysis: An alternative approach. Comput. Math. Methods

Med. 2017, 2017. [CrossRef]
51. Eerikäinen, L.M.; Vanschoren, J.; Rooijakkers, M.J.; Vullings, R.; Aarts, R.M. Reduction of false arrhythmia

alarms using signal selection and machine learning. Physiol. Meas. 2016, 37, 1204–1216. [CrossRef] [PubMed]
52. Rooijakkers, M.J.; Rabotti, C.; Oei, S.G.; Mischi, M. Low-complexity R-peak detection for ambulatory fetal

monitoring. Physiol. Meas. 2012, 33, 1135–1150. [CrossRef] [PubMed]
53. Zong, W.; Heldt, T.; Moody, G.B.; Mark, R.G. An open-source algorithm to detect onset of arterial blood

pressure pulses. Comput. Cardiol. 2003, 30, 259–262. [CrossRef]
54. R: A Language and Environment for Statistical Computing. Available online: https://www.gbif.org/tool/

81287/r-a-language-and-environment-for-statistical-computing (accessed on 29 March 2019).
55. Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in

C++ and R. J. Stat. Softw. 2017, 77. [CrossRef]
56. Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source

package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [CrossRef] [PubMed]
57. Kuhn, M. Building Predictive Models inRUsing thecaretPackage. J. Stat. Softw. 2008, 28. [CrossRef]
58. Pihur, V.; Datta, S.; Datta, S. RankAggreg, an R package for weighted rank aggregation. BMC Bioinform. 2009,

10, 62. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/1937992
http://dx.doi.org/10.1023/A:1017934522171
http://dx.doi.org/10.12693/APhysPolA.129.971
http://dx.doi.org/10.1002/1097-0142(1950)3:1&lt;32::aid-cncr2820030106&gt;3.0.co;2-3
http://dx.doi.org/10.1002/1097-0142(1950)3:1&lt;32::AID-CNCR2820030106&gt;3.0.CO;2-3
http://dx.doi.org/10.1155/2017/3762651
http://dx.doi.org/10.1088/0967-3334/37/8/1204
http://www.ncbi.nlm.nih.gov/pubmed/27454128
http://dx.doi.org/10.1088/0967-3334/33/7/1135
http://www.ncbi.nlm.nih.gov/pubmed/22735075
http://dx.doi.org/10.1109/cic.2003.1291140
https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing
https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing
http://dx.doi.org/10.18637/jss.v077.i01
http://dx.doi.org/10.1186/1471-2105-12-77
http://www.ncbi.nlm.nih.gov/pubmed/21414208
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.1186/1471-2105-10-62
http://www.ncbi.nlm.nih.gov/pubmed/19228411
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Arrhythmia Detection 
	Random Forest as a Machine Learning Algorithm 

	State-of-the-Art Random Forest 
	Decision Tree as a Base Algorithm 
	Standard Random Forest Algorithm 

	Model Performance Measures 
	Confusion Matrix and Score Function 
	Receiver Operating Curve (ROC) and Area Under the ROC 
	Optimal Treshold for Class Determination 

	Methods of Probability and Class Determining 
	Empirical Analysis 
	Feature Vector 
	Numerical Implementation 
	Detailed Results for AUC and Score for Various Samples 
	Aggregated Ranks for AUC and Score Based on the Validation Sample 

	Conclusions 
	
	
	References

