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Abstract: Three-dimensional (3D) reconstruction using line structured light vision system commonly
cooperates with motion restraint devices, such as parallel guide rail push-broom devices. In this
study, we propose a visual positioning method to eliminate the motion constraint. An extended
orthogonal iteration algorithm for visual positioning is proposed to obtain the precise position of the
line structured light binocular camera system during movement. The algorithm uses the information
acquired by the binocular camera, and produces a better positioning accuracy than the traditional
vision localization algorithm. Furthermore, a global optimization method is proposed to calculate
the poses of the camera relative to the world coordinate system at each shooting position. This
algorithm effectively reduces the error accumulation and pose drift during visual positioning, and
3D information of the surface can be measured via the proposed free-moving line structured light
vision system. The simulation and physical experiments performed herein validate the proposed
method and demonstrate the significant improvement in the reconstruction accuracy: when the test
distance is 1.5 m, the root mean square error of the point cloud is within 0.5 mm.

Keywords: 3D reconstruction; stereo vision; structured light; pose estimation; global optimization

1. Introduction

Vision measurement is widely used in the field of industrial measurement [1–5]. Vision-based
structured light measurement methods can effectively improve the precision of the measurement.
Structured light is becoming increasingly popular in areas such as surface reconfiguration, vision
navigation and workpiece inspection [6–9]. There are various forms of structured light, such as
dot structured light, line structured light and surface structured light. Dot structured light has low
surface reconstruction efficiency and is only suitable for several special scenarios. Surface structured
light has various forms, such as grating phase-based sine stripe structured light and Gray code time
series-based coding structured light. Surface structured light is projected by a digital light processing
(DLP) projector. Due to the power limitation of the projector, the surface structured light is normally
more suitable for high precision reconstruction of small indoor workpieces than for large surfaces and
outdoor scenes. Line structured light has strong light intensity and can be projected to long distance;
therefore, its application is very extensive. Line structured light typically requires a push-sweep motion
when reconstructing a measured surface. The traditional structured light push-broom device mostly
relies on a parallel guide rail. However, in many cases, it is not suitable to use the guide rail that limits
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the application of the line structured light. Therefore, to address these problems, we use the visual
positioning algorithm to remove the restriction of the slideway, and proposed a surface reconstruction
method based on binocular camera and structured light. This system projects line structured light
on the measured surface via a high-power linear laser projector and obtains the motion trajectory
through the visual positioning algorithm. Moreover, to obtain accurate pose information of the system
during movement, an extended orthogonal iterative algorithm that fits the binocular camera system
is proposed. In addition, we propose a global optimization algorithm to calculate the camera poses
relative to the world coordinate system at each shooting position. Through the pose information of the
system, the coordinates of the structured light stripes in the world coordinate system can be restored,
and then the surface topography of the measured object can be obtained.

2. Related Work

Visual measurement technology can be divided into two categories: active methods and
passive methods. Passive methods do not rely on illumination technology such as stereo vision
measurement [10–12]. The stereo vision method reconstructs the surface topography of the measured
object through photos taken from different perspectives, and the main process includes image
pre-processing, feature point matching, and spatial point cloud coordinate calculation. However,
when an object surface has insufficient texture information, stereo vision method cannot provide
accurate reconstruction results. On the contrary, active vision methods mainly rely on structured light,
such as line structured light and coding surface structured light [13,14]. The former is widely applied
in industrial non-contact measurement scenarios such as weld seam inspection and rail wear detection.
Wang et al. [15] proposed a method for measuring the contour of a track using line structured light. In
contrast to the conventional measurement methods, this method used multi-line structured light along
with the collinearity and parallelism constraints of the feature points on the laser plane to calibrate
the structured light to avoid measurement errors caused by structural variation. In addition, the
contour deformation error caused by system vibration was solved by projecting the light stripe to the
track cross section plan. Li et al. [16] described a method for weld inspection using line structured
light. In this study, a detailed vision measurement model was described, and a corresponding image
processing method was provided for the arc reflection situation in the welding process. Interference
points were removed using the space and time constraint algorithm, and the laser light stripes were
extracted precisely by Gaussian filtering and linear interpolation. Li et al. [17] performed a study
on the reconstruction of road ruts using a binocular structured light system. A structured light was
calibrated using a two-dimensional target, and the road ruts were reconstructed by extracting the light
stripes. To comprehensively evaluate the parameters of the road rut, the authors proposed a method
for extracting the depth and area of the ruts using the rutting support point. Usamentiaga et al. [18]
described a method for three-dimensional (3D) reconstruction using line structured light that was
primarily applied in vibration scenes. The object profile information was reconstructed using the
extracted multi-line structured light stripes to obtain the vibration pattern of the object. The vibration
information was removed by mathematical modeling. In the experiment, the vibration removal effects
of multi-line structured light and dual-line structured light were compared. The experiment showed
that the dual-line structured light achieved better results than those of the multi-line structured light
system. In addition, numerous studies have focused on the calibration method of line structured
light. Xie et al. [19] introduced a structured light calibration method. In this paper intersection
points between the laser plane and the grid line target were used as feature points to calculate the
intrinsic and extrinsic parameters of the system. There were two categories of feature points. The
first was the collinear feature points, and the coordinates of these points in the target coordinate
system were calculated using the principle of cross-ratio invariance. The second category was the
non-collinear points. Non-collinear points were obtained by multiple movements of the coordinate
measuring machine, the intrinsic parameters and the extrinsic parameters of the system were solved by
converting the coordinates of the feature points into the coordinate system of the coordinate measuring



Sensors 2019, 19, 1583 3 of 18

machine. Liu et al. [20] introduced a line structured light calibration method suitable for complex
light environments. Two parallel cylinders with identical diameters were used for calibration. Line
structured light was projected onto cylinders, and the light stripe images were captured. The elliptic
equation of the light stripe in the image was obtained using the fitting method, and the relationship
between the intersection line and the image eclipse was established using the perspective projection
model. The optical plane equation was solved based on the constraint that the short axis of the ellipse
is equal to the diameter of the cylinder.

Likewise, the application of coded structured light is also very extensive: for instance, structured
light coding is used to mark the surface of the measured object [13]. After calibration, the depth
information of the object surface can be calculated to reconstruct the surface of the object [21,22]. Color
coded structured light uses the color information to mark the surface of the object. The advantage of
this method is that the surface depth information of the object can be obtained from a single image.
However, when the color or the reflection rate of the object interferes with the color of the structured
light, the reconstruction precision gets affected. The sequence projection technique projects a series of
patterns onto the surface of the object through a projector, including sinusoidal stripes, binary codes,
and Gray codes [23–25]. The grayscale coding information about each point on the object surface is
demodulated to obtain the corresponding projector pixel coordinates. Thus, the depth information is
reconstructed. However, the discontinuous object surface or non-diffuse reflection surface reduces
the measurement accuracy of the sine stripe method. The binary code and Gray code technologies
are more reliable and insensitive to object surface characteristics. However, to obtain a high spatial
resolution, several patterns should be projected, therefore, these methods are only suitable for static
measurement scenes.

3. System Architecture and Optimization Algorithm

The proposed structured light surface reconstruction system consists of a binocular camera and a
high-power line structured light projector. The surface of the measured object is reconstructed using a
push-broom motion of light stripes on the measured surface. The binocular camera is used to recover
the motion trajectory of the system and obtain structured light information. The traditional vision
structured light systems mostly rely on a parallel guide rail. These systems are fixed on a parallel
guide rail to scan the measured object. Since the moving velocity and moving direction of the guide
rail are known, the motion information of the structured light system can be determined. Based on this
motion information, the surface topography of the measured object can be obtained by transforming
the coordinates of the extracted light stripes to the world coordinate system. Another form of the push
broom system is that the vision structured light system is fixed, the measured object is driven by a
guide rail and moves at a constant speed, and the surface topography can be obtained by splicing
the light stripes based on the motion pattern of the measured object. As the above methods require a
guide rail, there are significant constraints on the application scenarios that make them unsuitable for
outdoor scenarios or large surface reconstructions.

To address these issues, this study proposes a structured light reconstruction system that moves
freely without the restriction of a slideway. It adapts to various scenarios because of the high power of
the line structured light. The system architecture is shown in Figure 1. While moving, the binocular
camera captures the structured light stripe. At the same time, the pose information of the system in
the world coordinates system is restored by the inter-frame match point track method, and then the
motion trajectory of the system is obtained. The light stripes taken at various positions are restored
to the world coordinate system by the motion pose parameters of the system; thus we can obtain the
morphology of the curved surface.
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Figure 1. Schematic of surface reconstruction using push-broom structured light system. 
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The critical technology of the free-moving structured light push-broom system is the recovery 
of the system’s motion trajectory and pose information. The motion posture recovery precision 
directly affects the reconstruction precision. To obtain precise system posture information during 
movement, an extended orthogonal iterative algorithm is designed for the binocular system. The 
traditional orthogonal iterative algorithm [26] is only suitable for monocular cameras, whereas the 
proposed extended orthogonal iterative algorithm makes full use of the binocular information for 
pose calculations. The orthogonal iterative algorithms are primarily used for posture measurements 
of cooperative target. In the calculation process, it is necessary to know the coordinates of the feature 
points in the object coordinate system. In traditional algorithms, an artificial mark point must be 
posted. In the proposed algorithm, we use image feature points to replace artificial mark points, and 
the feature points are tracked. The 3D coordinates of the match points in the system coordinate 
system are calculated by the extrinsic parameters of binocular camera. The relative pose of the system 
between different positions is calculated by the extended orthogonal iterative algorithm through the 
tracking of the matching points set. To obtain the system pose relative to the world coordinate system 
at each shooting position, a global optimization algorithm has been designed. This algorithm 
effectively reduces the error accumulation in the calculation process and the motion trajectory drift 
problem.  

3.1.1. Extended Binocular Orthogonal Iterative Algorithm 

The proposed extended orthogonal iterative algorithm is suitable for binocular systems. In 
contrast to the traditional orthogonal iterative algorithms, this algorithm can simultaneously use the 
feature points observed by both left and right cameras, which significantly increases the number of 
feature points in the calculation and effectively enhances the robustness of the algorithm. In the 
proposed extended binocular orthogonal iterative algorithm, the sum of the collinearity errors of the 
left and right camera is defined as the error function for the iteration. The principle of the collinearity 
errors of the two cameras is shown in Figure 2. 

Figure 1. Schematic of surface reconstruction using push-broom structured light system.

3.1. System Localization Method

The critical technology of the free-moving structured light push-broom system is the recovery
of the system’s motion trajectory and pose information. The motion posture recovery precision
directly affects the reconstruction precision. To obtain precise system posture information during
movement, an extended orthogonal iterative algorithm is designed for the binocular system. The
traditional orthogonal iterative algorithm [26] is only suitable for monocular cameras, whereas the
proposed extended orthogonal iterative algorithm makes full use of the binocular information for
pose calculations. The orthogonal iterative algorithms are primarily used for posture measurements of
cooperative target. In the calculation process, it is necessary to know the coordinates of the feature
points in the object coordinate system. In traditional algorithms, an artificial mark point must be
posted. In the proposed algorithm, we use image feature points to replace artificial mark points, and
the feature points are tracked. The 3D coordinates of the match points in the system coordinate system
are calculated by the extrinsic parameters of binocular camera. The relative pose of the system between
different positions is calculated by the extended orthogonal iterative algorithm through the tracking
of the matching points set. To obtain the system pose relative to the world coordinate system at each
shooting position, a global optimization algorithm has been designed. This algorithm effectively
reduces the error accumulation in the calculation process and the motion trajectory drift problem.

3.1.1. Extended Binocular Orthogonal Iterative Algorithm

The proposed extended orthogonal iterative algorithm is suitable for binocular systems. In
contrast to the traditional orthogonal iterative algorithms, this algorithm can simultaneously use the
feature points observed by both left and right cameras, which significantly increases the number
of feature points in the calculation and effectively enhances the robustness of the algorithm. In the
proposed extended binocular orthogonal iterative algorithm, the sum of the collinearity errors of the
left and right camera is defined as the error function for the iteration. The principle of the collinearity
errors of the two cameras is shown in Figure 2.

We use the camera coordinate system of the left camera as the system coordinate system, and the
optical centre of the left camera is defined as the origin of the system coordinate system. Based on the
orthogonal iterative algorithm [26], the spatial collinearity error of feature point pi observed by the left
camera is defined as follows:

ei
l = (I −Vl)(Rpi + t) (1)

where Vl = vlvT
l /(vT

l vl) is the projection matrix along the line of sight; vl denotes the normalized
image coordinates of the feature point, pi denotes the coordinates of the feature point in the object
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coordinate system, R and t denote the rotational matrix and translation vector between the system
coordinate system and the object coordinate system, respectively, and I denotes the identity matrix.Sensors 2019, 19, 1583 5 of 18 
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Figure 2. of the extended binocular orthogonal iterative algorithm. 

We use the camera coordinate system of the left camera as the system coordinate system, and 
the optical centre of the left camera is defined as the origin of the system coordinate system. Based 
on the orthogonal iterative algorithm [26], the spatial collinearity error of feature point ip  observed 
by the left camera is defined as follows:  
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image coordinates of the feature point, ip denotes the coordinates of the feature point in the object 
coordinate system, R and t denote the rotational matrix and translation vector between the system 
coordinate system and the object coordinate system, respectively, and I denotes the identity matrix.  

To calculate the collinearity error of the right camera and maintain consistency with the 
collinearity error of the left camera, the coordinates of points observed by the right camera and the 
projection matrix along the line of sight of the right camera should be converted to the system 
coordinate system. By calibrating the extrinsic parameters, we can obtain the rotational matrix and 
translation vector of the right camera coordinate system relative to the left camera coordinate system. 
In Figure 2, cR and ct  denote the rotational matrix and translation vector between the two cameras, 
respectively. In addition, we assume that the optical centre of the right camera is rO  and that the 
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Figure 2. of the extended binocular orthogonal iterative algorithm.

To calculate the collinearity error of the right camera and maintain consistency with the collinearity
error of the left camera, the coordinates of points observed by the right camera and the projection
matrix along the line of sight of the right camera should be converted to the system coordinate system.
By calibrating the extrinsic parameters, we can obtain the rotational matrix and translation vector of
the right camera coordinate system relative to the left camera coordinate system. In Figure 2, Rc and tc

denote the rotational matrix and translation vector between the two cameras, respectively. In addition,
we assume that the optical centre of the right camera is Or and that the coordinate of the feature point
observed by the right camera in the system coordinate system is qi. The vector Orqi in the system
coordinate system is expressed as follows:

Orqi = Rpi + t− tc (2)

if vr denotes the image point coordinates of spatial point pi projected to the normalized phase plane of
the right camera, then the coordinate of the vector Orvr in the system coordinate system is expressed
as follows:

Orvr = (Rcvr + tc)− tc

=Rcvr
(3)

The projection matrix of the right camera along the line of sight in the system coordinate system
is expressed as follows:

Vr =
(Orvr)(Orvr)

T

(Orvr)
T(Orvr)

=
RcvrvT

r RT
c

vT
r RT

c Rcvr
(4)

The objective function of the spatial collinearity error of point pi observed by the right camera is
expressed as follows:

ei
r = (I −Vr)(Rpi + t− tc) (5)

When n1 feature points are observed by the left camera and n2 feature points are observed by the
right camera, the objective function of the extended orthogonal iterative algorithm is represented by
the following expression:

E(R, t) = min(
n1

∑
i=1

∥∥∥ei
l

∥∥∥2
+

n2

∑
i=1

∥∥∥ei
r

∥∥∥2
), subject to RT R = I (6)
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After the vector parameters in the coordinate system of the right camera are converted to the
system coordinate system, the collinearity error function of the right camera er and that of the left
camera el have identical forms. Then we can use the method in [26] to solve the above equation.
Referring to the solution process of the orthogonal iterative algorithm, when the objective function is
minimum, the R matrix and the t vector are the system pose relative to the object coordinate system.

3.1.2. Calculation Process of Localization Algorithm

During the system positioning process, the image match points are used as mark points for pose
estimation. The positioning process can be described as follows:

Step 1: The ORB features [27] of the binocular camera’s left and right images at the current position
are extracted and matched.

Step 2: The mismatches are removed through the RANSAC algorithm [28].
Step 3: The 3D coordinates of the feature points at the current position are calculated from the extrinsic

parameters of the binocular camera by the triangular method, and then these coordinates are
saved to generate 3D point set.

Step 4: The ORB feature points of the image captured at the next position (or another position)
corresponding to the current 3D point set are extracted by feature point tracking method.

Step 5: Based on the current 3D point set and the pixel coordinates of the matching points on the
left and right images of the next position (or another position),the relative pose of the current
and the next position (or another position) is calculated by the extended orthogonal iterative
algorithm presented in Section 3.1.1.

Step 6: Steps 1 to 5 are repeated to obtain the relative pose of the system at each adjacent positions.
When we define the system coordinate system at the first position as the world coordinate
system, the system poses at each position relative to the world coordinate system can be
obtained from the relative pose of the system between each adjacent positions.

3.2. Light Stripe Extraction and Splicing Method

The structured light stripes are extracted using the Steger algorithm [29,30]. The Steger method
can extract sub-pixel information of structured light stripes. Before light stripe extraction, an epipolar
rectification of the left and right images is performed by the Fusiello algorithm [31]. After the epipolar
rectification, the vertical coordinates of the corresponding light stripe points in the left and right
images become consistent, the corresponding points of the light stripes on the left and right images
are conveniently determined, and the spatial 3D coordinates of the points on the strips are calculated
using the triangulation method.

After obtaining the light stripe point cloud at each position, the light stripes are restored to the
world coordinate system based on the system pose information at each position to reconstruct the
surface topography. The pose information of the binocular structured light system at various positions
is calculated using the method presented in Section 3.1.

R and t denote the calculated rotational matrix and translation vector of the system coordinate
system relative to the world coordinate system at various positions, respectively. The coordinates of
the light stripe point in the world coordinate system are represented by Pi, and the coordinates of the
light stripe point in the system coordinate system calculated by the triangular method are represented
by Pj, thus, the following relationship is established:

Pi = R−1Pj − t (7)

From the above formula, the coordinates of the light stripe point in the world coordinate system
can be obtained, and then the point cloud of the measured surface can be obtained.

The intrinsic parameters and the extrinsic parameters should be calibrated before the calculation
process. We use the checkerboard target to calibrate the cameras, and the Calibration Toolbox for
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MATLAB [32] is used to calibrate these parameters. Since many parameters are involved in the
calculation process, we summarize the pre-calibration parameters and the unknown parameters in
Table 1.

Table 1. The pre-calibrated variables and the variables to be determined.

Pre-Calibrated Parameters Unknown Parameters

Item Parameters Item Parameters

Extrinsic parameters of
the Binocular camera

Rotation matrix The pose of the camera in
the world coordinate system.

Rotation matrix

Translation vector Translation vector

Intrinsic parameters of
the left camera

Focal length The coordinates of the light
stripes in the camera

coordinate system

X-axis coordinates

Principal point coordinate Y-axis coordinates

Distortion coefficient Z-axis coordinates

Intrinsic parameters of
the left camera

Focal length The coordinates of the light
stripes in the word
coordinate system

X-axis coordinates

Principal point coordinate Y-axis coordinates

Distortion coefficient Z-axis coordinates

3.3. Global Optimization Algorithm of Pose Estimation

The relative pose of the system between two adjacent positions is calculated by the method
presented in Section 3.1.2. The system coordinate system at the first position is regarded as the world
coordinate system. According to the relative pose of the system between adjacent positions, the poses
of the system relative to the world coordinate system at each shooting position can be calculated
one by one. This pose calculation method is widely used in incremental 3D reconstruction. In this
method, the pose of the system in the world coordinate system depends on the accuracy of the pose at
the previous position; however, this could result in an error accumulation. The global optimization
algorithm effectively prevents this problem. The idea of global optimization algorithm is to combine all
associated frames based on match points and calculate the pose relative to the word coordinate system
in a unified framework that can effectively suppress the cumulative errors caused by the incremental
reconstruction method and significantly reduce the system positioning error in the world coordinate
system at each position.

3.3.1. Global Optimization Method of Rotation Matrices

To obtain accurate pose calculation results, the rotational matrix and translation vector are
optimized separately. The idea of global optimization of the rotational matrix is inspired by
reference [33]. We assume that the camera’s rotational matrix at position i relative to the world
coordinate system is Ri. The camera’s relative rotational matrix between positions i and j is Rij. When
the images taken at position i and position j have a certain number of matching points, the rotation
matrix Rij of the system between the two positions can be calculated by the extended binocular
orthogonal iterative algorithm explained in Section 3.1.1. We can get the following formula:

Rj = RijRi (8)

Equation (8) can be divided into three parts:

rj
1 − Rijri

1 = 03×1

rj
2 − Rijri

2 = 03×1

rj
3 − Rijri

3 = 03×1

(9)



Sensors 2019, 19, 1583 8 of 18

where ri
1, ri

2 and ri
3 denote three columns of the matrix Ri, i.e., Ri =

[
ri

1 ri
2 ri

3

]
. Equation (9) can

be rearranged to the following linear equation group:

 −R 0 0 I 0 0
0 −R 0 0 I 0
0 0 −R 0 0 I

·


ri
1

ri
2

ri
3

rj
1

rj
2

rj
3


=

 03×1

03×1

03×1

 (10)

When the relative pose Rij between position i and position j is obtained by using the extended
orthogonal iteration algorithm, the rotation Rij, Ri, Rj can be written in the form of Equation (10).
These equations can be combined and written into an over-determined linear equation group in the
form of Ax = 0, where x is the combination of the three columns in the rotational matrix of the system
relative to the world coordinate system, and A is composed of the relative rotational matrix Rij and the
identity matrix I3×3. By solving the linear equation, the system rotation matrix Ri relative to the world
coordinate system can be calculated by the least squares method. To ensure the orthogonality of the
rotation matrix Ri, the orthonormality constraints are forced by projecting the approximate rotation
to the closest rotation in the Frobenius norm using SVD [34]. Let the singular value decomps of R be
USVT, and then the closest orthogonal matrix in Frobenius norm is R’ = UVT. We can get the accurate
rotation matrix by replacing R with R’. In this way, the rotation matrices of the system at each position
relative to the world coordinate system are solved by the relative rotation matrices of all associated
positions. This method effectively utilizes redundant pose information, reduces the accumulation of
measurement noise, and improves the positioning accuracy. In this study, we use a linear method
to solve the equation and then use SVD to guarantee the orthogonality of the rotation matrix. This
method has high computational efficiency and is suitable for situations with limited computational
resources. When the computing resources are sufficient, the Lagrangian multiplier method can be used
to calculate the equations with orthogonal constraint as a penalty factor.

3.3.2. Global Optimization Method of Translation Vectors

Based on the rotational matrix of the system relative to the world coordinate system, the translation
vector optimization method is introduced. Assuming that the system translation vector at position i
relative to the world coordinate system is ci and the relative translation vector between positions i and
j is tij. Then, we have the following expression [35]:

Rj(ci − cj) = tij (11)

i.e., ci − cj = R−1
j tij (12)

Equation (12) can be rearranged to the linear equation group:

[
I3×3 | −I 3×3

]


c1
i

c2
i

c3
i

c1
j

c2
j

c3
j


=

 t1

t2

t3

 (13)

where ci =
[

c1
i c2

i c3
i

]T
, cj =

[
c1

j c2
j c3

j

]T
, and R−1

j tij =
[

t1 t2 t3

]T
. When the image

taken at position i and position j has a certain number of matching points, the relative translation
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vector of the system between the two positions can be calculated by the extended binocular orthogonal
iterative algorithm in Section 3.1.1. The translation vector can be rearranged into the form of
Equation (13). All the equations can be combined to obtain an over-determined group of linear
equations in the form of Ax = b, where x is made by stacking all the translation parameters ci, A is
a matrix consisting of the identity matrices I3×3 and −I3×3, and b is a column vector consisting of
the elements in R−1

j tij. Using the least squares method to solve the above equations, we obtain the
translation vector ci of the system relative to the world coordinate system at each position. Thus, the
translation vector of the system at each position relative to the world coordinate system is solved
by the relative translation vectors of all associated positions; this effectively utilizes the redundant
translation vector information and significantly suppresses error accumulation.

After Ri and ci are calculated as described above, the pose matrix

[
Ri ci
0 1

]
of the system at

each position relative to the world coordinate system can be obtained. When all the pose matrices
are obtained, we use the results as the initial values and use the bundle adjustment to optimize all
the poses. Using the algorithm described in Section 3.2, the coordinates of the stripes in the world
coordinate system can be recovered and the surface topography can be reconstructed.

4. Experiment Results

4.1. Simulation Experiment of the Extended Binocular Orthogonal Iterative Algorithm

Both simulation and physical experiments were carried out to test the proposed reconstruction
method. First, to verify the stability and robustness of the localization method for the free-moving
push-broom surface reconstruction system, we design a simulation experiment to compare the
precision of the proposed extended binocular orthogonal iterative algorithm with that of the traditional
orthogonal iterative algorithm, among which the traditional orthogonal iterative algorithm was
implemented by using 3D points and their projections on the left camera. The two cameras used in the
simulation experiment have the same intrinsic parameters, the focal length is set at 16mm, the image
resolution is 1280× 1024 pixel, the pixel size is 4.8 µm× 4.8 µm, and the principal point is at the image
centre. By referring to the simulation model of the orthogonal iterative algorithm [25], we uniformly
select 64 points in a space of [0, 15] × [0, 15] × [0, 15] × [0, 15] making up the feature point set of the
target. The feature points are divided into two groups that are projected onto the image planes of the
two cameras respectively to generate imaging points, with 48 points in each group. The extended
orthogonal iteration algorithm can use imaging information of both left and right cameras, while the
traditional orthogonal iteration algorithm can only use imaging information of the left camera. Ten
levels of Gaussian noise with variance from 0 to 2 pixels were added to all the imaging points. In the
experiment, the three rotation angles α, β and γ forming rotation matrix R were randomly generated
from a uniform distribution. Five hundred tests were conducted at each noise level. The accuracy of
the rotation was evaluated using the root mean square error (RMS) of three Euler angles:

R_noise =

√√√√ 1
N

N

∑
i=1

((α′ − α)2 + (β′ − β)2 + (γ′ − γ)2) (14)

where N denotes the number of test, α′, β′, γ′ denote the calculation results, and α, β, γ denote the true
values. Figure 3 compares the accuracy of the proposed localization algorithm and the traditional
orthogonal iteration algorithm at 10 levels of image noise. Figure 4 compares the accuracy of the two
algorithms at different distances under an image noise level of 0.2 pixels. The abscissa in Figure 4
represents the ratio of the distance between the camera and the target to the size of the target: tz/16.



Sensors 2019, 19, 1583 10 of 18

Sensors 2019, 19, 1583 10 of 18 

 

2 2 2

1

1R_noise (( ) ( ) ( ) )
N

iN =

′ ′ ′= − + − + − α α β β γ γ  (14) 

where N denotes the number of test, , ,α β γ′ ′ ′ denote the calculation results, and , ,α β γ denote the 
true values. Figure 3 compares the accuracy of the proposed localization algorithm and the traditional 
orthogonal iteration algorithm at 10 levels of image noise. Figure 4 compares the accuracy of the two 
algorithms at different distances under an image noise level of 0.2 pixels. The abscissa in Figure 4 
represents the ratio of the distance between the camera and the target to the size of the target: tz/16. 

  

(a) (b) 

Figure 3. error curve of the rotation angle and translation affected by noise. Graph (a) shows the RMS 
error curve of rotation angle at different noise levels, and graph (b) shows the RMS error curve of 
translation at different noise levels. 

 

(a) (b) 

Figure 4. RMS error curve of rotation angle and translation affected by distance. Graph (a) shows the 
RMS error curve of the rotation angle at different distances, and graph (b) shows the RMS error curve 
of the translation at different distances. 

The experimental results shown in Figure 3 indicate that at each noise level, the proposed 
extended orthogonal iteration algorithm is superior to traditional orthogonal iteration algorithm in 
both rotational and translation accuracy. For instance, at the noise level of 2 pixels, the RMS rotation 
error of the traditional orthogonal iteration algorithm is 0.12 rad, while the RMS rotation error of the 
extended orthogonal iteration algorithm is less than 0.08 rad. The translation error of the traditional 
orthogonal iteration algorithm is 0.09 mm, while the translation error of the extended orthogonal 
iteration algorithm is less than 0.03 mm. Moreover, with an increase in image noise, the rotation and 
translation errors of the extended orthogonal iteration algorithm are significantly lower than those of 

Figure 3. error curve of the rotation angle and translation affected by noise. Graph (a) shows the RMS
error curve of rotation angle at different noise levels, and graph (b) shows the RMS error curve of
translation at different noise levels.

Sensors 2019, 19, 1583 10 of 18 

 

2 2 2

1

1R_noise (( ) ( ) ( ) )
N

iN =

′ ′ ′= − + − + − α α β β γ γ  (14) 

where N denotes the number of test, , ,α β γ′ ′ ′ denote the calculation results, and , ,α β γ denote the 
true values. Figure 3 compares the accuracy of the proposed localization algorithm and the traditional 
orthogonal iteration algorithm at 10 levels of image noise. Figure 4 compares the accuracy of the two 
algorithms at different distances under an image noise level of 0.2 pixels. The abscissa in Figure 4 
represents the ratio of the distance between the camera and the target to the size of the target: tz/16. 

  

(a) (b) 

Figure 3. error curve of the rotation angle and translation affected by noise. Graph (a) shows the RMS 
error curve of rotation angle at different noise levels, and graph (b) shows the RMS error curve of 
translation at different noise levels. 

 

(a) (b) 

Figure 4. RMS error curve of rotation angle and translation affected by distance. Graph (a) shows the 
RMS error curve of the rotation angle at different distances, and graph (b) shows the RMS error curve 
of the translation at different distances. 

The experimental results shown in Figure 3 indicate that at each noise level, the proposed 
extended orthogonal iteration algorithm is superior to traditional orthogonal iteration algorithm in 
both rotational and translation accuracy. For instance, at the noise level of 2 pixels, the RMS rotation 
error of the traditional orthogonal iteration algorithm is 0.12 rad, while the RMS rotation error of the 
extended orthogonal iteration algorithm is less than 0.08 rad. The translation error of the traditional 
orthogonal iteration algorithm is 0.09 mm, while the translation error of the extended orthogonal 
iteration algorithm is less than 0.03 mm. Moreover, with an increase in image noise, the rotation and 
translation errors of the extended orthogonal iteration algorithm are significantly lower than those of 
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The experimental results shown in Figure 3 indicate that at each noise level, the proposed
extended orthogonal iteration algorithm is superior to traditional orthogonal iteration algorithm in
both rotational and translation accuracy. For instance, at the noise level of 2 pixels, the RMS rotation
error of the traditional orthogonal iteration algorithm is 0.12 rad, while the RMS rotation error of the
extended orthogonal iteration algorithm is less than 0.08 rad. The translation error of the traditional
orthogonal iteration algorithm is 0.09 mm, while the translation error of the extended orthogonal
iteration algorithm is less than 0.03 mm. Moreover, with an increase in image noise, the rotation and
translation errors of the extended orthogonal iteration algorithm are significantly lower than those
of the traditional method. It can also be seen from the error curves of the two algorithms shown in
Figure 4 that the errors tend to increase as the distance increased, while the error corresponding to the
extended orthogonal iteration algorithm is obviously reduced compared with that of the traditional
algorithm. The above experimental results indicate that, since the available information for binocular
system is more than that for monocular system, the proposed binocular localization algorithm is
superior to the traditional orthogonal iteration algorithm under the same noise level. With an increase
in distance, the positioning accuracy decreases gradually, but the positioning accuracy of the extended
orthogonal iteration algorithm is higher than that of monocular orthogonal iteration algorithm.
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4.2. Simulation Experiment of Global Optimization Algorithm

A typical feature of the traditional incremental positioning method is that the pose of the camera
in the world coordinate system at different positions depends on the pose accuracy of the previous
camera, which easily causes an accumulation of errors. However, the global optimization algorithm
effectively resolves this problem. To verify the reliability of the global optimization algorithm proposed
in this study, a simulation experiment was performed. During the test, the binocular camera was made
to perform a push-broom action; a total of 30 positions were moved, and the relative poses between
adjacent positions were known values. Both the proposed algorithm and the incremental algorithm
were used to calculate the pose of the camera at each position relative to the world coordinate system.
After calculation, both methods were optimized by bundle adjustment. To further test the robustness
of the algorithm, Gaussian noise was added to the relative pose of the adjacent position. In the first
simulation experiment, a Gaussian noise with a variance of 0.1◦ was added to the three Euler angles
of the relative pose between any two adjacent positions. The global optimization algorithm was
compared with the incremental algorithm. The experiments were performed 500 times, and the RMS
error of the two methods at different positions was calculated; the evaluation method for rotation was
the same as that used in Section 4.1. The simulation results are shown in Figure 5.
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In the second simulation experiment, Gaussian noise with a variance of 5 mm was added to the
three translations of the relative pose between any two adjacent positions to verify the robustness of
the global optimization algorithm. The results produced by the global optimization algorithm were
compared with those of the incremental algorithm. The experiments are performed 500 times, Figure 6
shows the RMS error of the calculated values and the true values of the camera pose in the world
coordinate system at different positions.

The above simulation experiments show that the incremental method often results in large drifting
error. As the push-broom motion progresses, the error of rotation and translation gradually increases.
The global optimization algorithm effectively avoids error transmission and accumulation. Figure 5
shows that under the interference of noise, the angle error of the incremental method at the 30th
position reaches 0.28 rad, while the error of the global optimization method is always within 0.15 rad.
Similarly, Figure 6 shows that the errors of the incremental method are transmitted step by step; and
while the location error of the translation at the 30th position using the incremental method is 4.3 mm,
the location error of translation using global optimization algorithm is always within 1.5 mm.
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4.3. Free-Form Surface Reconstruction Experiment

To verify the correctness of the above methods and processes, we used a high-precision lunar
surface model. The experimental setup is shown in Figure 7.
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Figure 7. The schematic diagram of the experimental device.

The size of the lunar model used in the experiment is 0.5 m × 0.5 m. The image resolution of the
cameras used in the experiment is 1280 × 1024 pixels, the pixels size is 4.8 µm × 4.8 µm, and the focal
length is 12 mm. The laser wavelength is 532 nm, the power is 150 mW, and the contour width is less
than 1 mm when the visual distance is 2 m.

First, the binocular system was calibrated, and the calibration results are presented in Table 2.
The structured light stripes were projected onto the model while the binocular structured light system
performed a push-broom motion. The binocular camera captures images in real time. Using the system
coordinate system at the first position as the world coordinate system, a total of 78 images were taken
during the movement. The extended binocular orthogonal iteration algorithm was used to recover
the pose information of the system at the adjacent positions, and the global optimization of the pose
was performed according to the algorithm described in Section 3.3. Thus the position of the system in
the world coordinate system at each position was obtained. In the world coordinate system, the pose
information of the left camera at the first 23 positions is shown in Figure 8a. The recovered camera pose
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was used to restore the position of the light stripes according to the method described in Section 3.2.
The positions of the restored light stripes and left camera pose in the world coordinate system are
shown in Figure 8b, while Figure 9 is a rendering of the surface topography after triangulation of the
point cloud and surface fitting.

Table 2. Camera parameters.

Camera fu/Pixels fv/Pixels u0/Pixels v0/Pixels kc

Left 2564.60 2464.09 635.77 509.03 [−0.17, 0.18, 0.003, 0.0004, 0.00]
Right 2571.32 2570.61 625.87 503.24 [−0.13, 0.16, 0.001, 0.0003, 0.00]

om [−0.01615, 0.15960, 0.01905]
T0/mm [−215.2829, −2.1204, 16.5770]
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Figure 8. Splicing the light strips based on the camera pose information. Graph (a) shows the pose 
information of the left camera at the first 23 positions, and graph (b) shows positions of the restored 
light stripes and pose of the left camera in the world coordinate system. 

Figure 8b shows that the restored light stripes are clear and continuous, and the average spacing 
between the 3D points is 4.9 mm. On average, there are 73,582 3D points on the entire surface and 
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of the terrain surface. Among the more than 70,000 3D points, the number of gross-error points 
outside the entire surface was very small and the reconstruction accuracy was high. In the next 
section, we used a flat calibration board to quantitatively evaluate the reconstruction accuracy. 
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Figure 8. Splicing the light strips based on the camera pose information. Graph (a) shows the pose
information of the left camera at the first 23 positions, and graph (b) shows positions of the restored
light stripes and pose of the left camera in the world coordinate system.Sensors 2019, 19, 1583 14 of 18 
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Figure 9. The rendering of the surface topography after triangulation of the point cloud and
surface fitting.

Figure 8b shows that the restored light stripes are clear and continuous, and the average spacing
between the 3D points is 4.9 mm. On average, there are 73,582 3D points on the entire surface and 943
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3D points on a single light stripe. From the observations made by rotating and scaling the reconstructed
surface, the reconstructed results were found to be in good agreement with the details of the terrain
surface. Among the more than 70,000 3D points, the number of gross-error points outside the entire
surface was very small and the reconstruction accuracy was high. In the next section, we used a flat
calibration board to quantitatively evaluate the reconstruction accuracy.

4.4. Evaluation Experiment of Reconstruction Accuracy

In the experiment described in Section 4.3, we have verified the correctness of the proposed
algorithm and procedure by performing a reconstruction of a free-form surface model. In this section,
we designed an experiment to evaluate the reconstruction accuracy wherein a flat calibration board
was reconstructed, and the reconstruction precision was evaluated by the flatness of the 3D points
on the light stripes. The structured light system used in this experiment was the same as that used
in the experiment in Section 4.3. The size of the flat calibration board is 60 cm × 60 cm, and the
system performed a free push-broom movement at a distance of 1.5 m from the flat panel. During the
experiment, 13 pictures of the structured light were taken from the moving system, and the stereo
vision positioning method was used to recover the pose of the system in the world coordinate system;
accordingly the positions of the light stripes were obtained. Both the incremental method and the global
optimization method were used to recover the system pose. Figure 10 demonstrates the reconstructed
surface of the calibration board without using the global optimization method: Figure 10a shows the
recovered positions of the light stripes in world coordinate system, and Figure 10b shows the surface
after triangulation and surface fitting.
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Figure 10. Reconstruction results of the flat calibration board before global optimization. Graph (a)
shows the recovered positions of the light stripes in world coordinate system, and graph (b) shows the
surface after triangulation and surface fitting.

Figure 11 demonstrates the reconstructed surface of the board using the global optimization
method: Figure 11a shows the recovered positions of the light stripes in the world coordinate system,
and Figure 11b shows the plane model after triangulation and surface fitting. Figures 10 and 11 show
that before using the global optimization algorithm the surface has minor fluctuations, while the
surface after global optimization is smoother and shows better flatness.

We also quantified the magnitude of the flatness using the 3D points on the light stripes. A total
of 9942 3D points were generated from the scanning, with an average of 764 3D points per light strip.
We utilized 9931 points to fit the board plane, and calculated the distance from each point to the fitted
plane. The calculation results (see Table 3) which reflected flatness were used as the basis to evaluate
the reconstruction and optimization precision.

Table 3 indicates that the maximum and average distances between the 3D points to the fitted
plane before using the global optimization algorithm are 2.32 mm and 0.76 mm, respectively, and the
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RMS error is 0.9052 mm. In contrast, the maximum and average distances between the 3D points to the
fitted plane according to the data after using global optimization algorithm are 1.51 mm and 0.43 mm,
respectively, and the RMS error is 0.4177 mm. The data show that the reconstruction accuracy of the
plane is significantly improved by utilizing the global optimization algorithm.
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Figure 11. Reconstruction results of the flat calibration board after global optimization. Graph (a)
shows the recovered positions of the light stripes in world coordinate system, and graph (b) shows the
surface after triangulation and surface fitting.

Table 3. Error from 3D points to the fitted plane.

Error Type Maximum Error Average Error RMS Error

Before optimization 2.32 mm 0.67 mm 0.9052 mm
After optimization 1.51 mm 0.43 mm 0.4177 mm

The RMS errors of the distances between the 3D points on 13 light stripes and the fitted plane
before and after global optimization are shown in Figure 12. The RMS errors before optimization
are observed to be higher and tend to increase with the increase in the number of light stripes. This
result is in agreement with the explanation that the posture error accumulates gradually before global
optimization. Furthermore, the precision is clearly observed to improve after global optimization, as
the error of all light stripes is less than 0.5 mm. Since the measurement distance is 1.5 m, the relative
error is 0.03%. The above experimental results show that the proposed algorithm is accurate and that
the optimization method significantly improves the measurement results.Sensors 2019, 19, 1583 16 of 18 
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4.5. Discussion 

The characteristic of this method is that it enables the system move freely. In this study a visual 
positioning method is proposed to eliminate the motion constraint. The motion trajectory is 
accurately restored by various optimization methods. It should be noted that when the number of 
pictures to be processed is large, the dimension of matrix A in Section 3.3.1 is large, which may result 
in a decrease in computational efficiency. The dimension of matrix A is relative to the number of 
images and the number of relative poses obtained from these images. Assuming a total of n pictures 
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the dimension of the A matrix is 9m×9n. However, we can see that matrix A is sparse, so we use the 
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the problem to some extent. In the experiment, we run all codes in MATLAB 2014b on a desktop with 
an i7 4790 CPU and 6 GB RAM, the number of photos was less than 100, and the calculation efficiency 
was not significantly reduced. 
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4.5. Discussion

The characteristic of this method is that it enables the system move freely. In this study a visual
positioning method is proposed to eliminate the motion constraint. The motion trajectory is accurately
restored by various optimization methods. It should be noted that when the number of pictures to be
processed is large, the dimension of matrix A in Section 3.3.1 is large, which may result in a decrease
in computational efficiency. The dimension of matrix A is relative to the number of images and the
number of relative poses obtained from these images. Assuming a total of n pictures were taken, we
obtained m relative rotation matrices in the n pictures using the method in Section 3.3.1, then the
dimension of the A matrix is 9m × 9n. However, we can see that matrix A is sparse, so we use the Eigs
function in MATLAB to calculate the linear equation by referring to the method in [33,34]. MATLAB’
Eigs function is suitable for solving sparse matrices with large dimension, and can solve the problem
to some extent. In the experiment, we run all codes in MATLAB 2014b on a desktop with an i7 4790
CPU and 6 GB RAM, the number of photos was less than 100, and the calculation efficiency was not
significantly reduced.

To demonstrate the advantages of this method more clearly, a comparative analysis is conducted
with the existing method. Wang et al. [1] used standard industrial 3D scanners called TRITOP for
three-dimensional reconstruction. Since the measurement range of the scanner is small, some artificial
marked points are attached on measured object to expand the scanning range. In this study, at a
measurement distance of 300 mm, the error is 0.05 mm, and the relative error is 0.016%. Yang et al. [25]
used a binocular system to capture the line structured light patterns projected by a projector, and a
conicoid method is used to improve the accuracy. The relative error of this method is 0.26%. The
relative error of our method is 0.03%. From the above comparison we can see that the accuracy of the
method in this paper is close to that of the method in [1], but much higher than the method in [25].
However, the method in [1] needs to post artificial markers on the surface of the object to expand the
measurement range, the operation process is complicated. In comparison, our proposed method is
easier to operate.

5. Conclusions

In this study, a free-moving surface reconstruction technique using binocular structured light
was proposed. To achieve a better practical effect and ensure reconstruction accuracy, an improved
scheme was proposed for system positioning and posture optimization and an extended orthogonal
iteration algorithm was designed for this system. Compared with the traditional orthogonal iteration
algorithm, this algorithm fully utilizes the binocular matching information making it more suitable
for binocular positioning system. Furthermore, to solve the problem of error accumulation in the
push-broom process, a global optimization method was proposed and the simulation results showed
that the extended binocular orthogonal iteration algorithm improves the accuracy of pose estimation
between adjacent frames. Moreover the global optimization method unifies the poses of the system
of each frame in the world coordinate system, and effectively avoids the accumulation of drift errors
in the push-broom process. Physical experiments for reconstructing a free-form surface and a flat
calibration board were designed to verify the accuracy of the proposed scheme. Experimental results
showed that when the system is 1.5 m away from the surface to be measured, the RMS error is reduced
from 0.9 mm to 0.4 mm. This shows that the global optimization algorithm can effectively restrain the
error of pose calculation, and the proposed scheme has the ability to precisely reconstruct the surface
of objects.
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