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Abstract: A semiconductor array pH image sensor consisting of four separated blocks was fabricated
using charged coupled device (CCD) and complementary metal oxide semiconductor (CMOS)
technologies. The sensing surface of one of the four blocks was Si3N4 and this block responded to H+.
The surfaces of the other three blocks were respectively covered with cation sensitive membranes,
which were separately printed with plasticized poly (vinyl chloride) solutions including Na+, K+,
and Ca2+ ionophores by using an ink-jet printing method. In addition, each block of the image sensor
with 128 × 128 pixels could have a calibration curve generated in each independent measurement
condition. The present sensor could measure the concentration image of four kinds of ions (H+, K+,
Na +, Ca2+) simultaneously at 8.3 frames per second (fps) in separated regions on a chip.
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1. Introduction

Semiconductor ion sensors are suitable for visualizing local chemical species, because of the
capabilities of miniaturization and integration of the sensing area. Many miniaturized sensing
pixels based on ISFET were two-dimensionally lined up neatly as an array-imaging sensor [1–5],
and a semiconductor-sensing device was two-dimensionally divided into many sensing areas by an
addressable light such as LAPS [6–10]. Although almost 50 years has passed since the introduction of
the ISFET by Bergveld in 1970 [11], there are still many challenges to be overcome beyond ISFETOLOGY
including the REFET subject, in which he summarized the device and readout circuity reported in
2010 [12]. In particular, the array image sensor requires a dense, reliable and scalable ISFET array that
enables massive parallelism and high throughput [13]. Recently, several array image sensors were
reported including 32 × 32 (1k) pixels and 9.3 frame/s (fps) image sensor [14]; 512 × 576 (300k) and
375 fps image sensor [15]; 3600 × 3600 (13M) and 26 fps image sensor [16]. The number of pixels and
fps is increasing, and the spatial resolution is also improving. However, a high operation stability
of the array image sensor is required. Therefore, it is important for a reliable array image sensor to
demonstrate the image consisting of whole pixels, which indicates the total quality of achievement of
the image sensor.

We had developed a different type of semiconductor array pH sensor (liner 8 pixels) based on
charged coupled device (CCD) and complementary metal oxide semiconductor (CMOS) technologies
in 1999 [17], as an aim at developing the image sensor. According to the plan to finely visualize local
chemical species, the CCD pH sensor has steadily progressed to two-dimensional pH image sensors;
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from the initial stage of 10 × 10 (100) pixels and 30 fps [18]; 32 × 32 (1k) and 5 fps pixels [19]; 128 ×
128 and 50 fps (16k) pixels [20]; to 1320 × 976 and 27.5 (1.5M) pixels [21]. The size of sensing pixels
became small, and the spatial resolution increased; 100 × 100 µm2 [18], 23.55 × 23.55 µm2 [19], 12.1
× 12.1 µm2 [20], 3.75 × 3.75 µm2 [21], respectively. Each image that consisted of whole pixels was
demonstrated by an investigation of the sensor response to pH change.

The CCD pH image sensor can also convert into several CCD ion image sensors using the surface
coating of ion sensitive membranes. The image sensors monitored local concentrations of metal ions
such as K+ [22], and biogenic amines [23]. The K+ image sensor was applied to a tissue stimulation
response of a cultured hippocampal slice stimulated by glutamate [22]. The biogenic amine image
sensor was applied to mast cells stimulation response of mast cells by compound 48/80 [23]. On the
other hand, living cells have several ion pumps and ion channels for H+, Na+, K+, Ca2+, Cl−, and so
on, to maintain the homeostasis. Therefore, a minute investigation of cell dynamics is required to
simultaneously monitor these concentration changes. As the previous studies, we fabricated the CCD
multi-ion image sensor for Na+-K+ [24], K+-Ca2+ [25]. The K+-Ca2+ image sensor was applied to the
Ca2+ release of cultured PC12 cells stimulated by acetylcholine [25]. The multi-ion image sensor was
superior to monitor their concentration changes simultaneously for only one experiment.

The multi-image sensors were successfully demonstrated, however, further developments were
required; increments of numbers of ions measured simultaneously, clear distinction and refinement of
separated sensing regions. For instance, multi-ion-vision equipment that displays a high-resolution
image of many ions simultaneously such as a color television is one of the ultimate goals. In this paper,
we fabricated a new CCD multi-ion image sensor with four divided regions of 128 × 128 pixels array
in order to accomplish the measurement of several ions simultaneously and the clearly separated
sensing regions on the chip. Each region of the new image sensor can individually configure the Vref.
Thus, the sensor can monitor four-ion concentration changes simultaneously. The establishment of
the simultaneous monitoring technique for four ions is important in the developing process in order
to develop the future multi-ion-vision equipment. The CCD multi-ion image sensor was fabricated
from a newly designed CCD pH image sensor with four divided regions of 128 × 128 sensing pixels.
Thereafter, three regions were prepared with Na+, K+, and Ca2+ sensitive membranes. These sensitive
membranes were constructed by an ink-jet printing method. The present sensor could simultaneously
determine the changes of pH, Na+, K+, and Ca2+ concentrations in an intracellular concentration region.

2. Fabrication Process and Readout Procedure

2.1. Pixel Design and Sensor Chip

The sensor system using CMOS technology based on the previous block diagram of 128 × 128
sensor [14] was designed and fabricated. The main circuit design and pixel structure were the same.
The present ion image sensor has four times more pixels than the 128 × 128 pixels sensor. Here, the
basic sensing principle was briefly mentioned using Figure 1 with the cross-sectional view of a sensing
pixel. The key is to be able to measure the surface membrane potential between the aqueous solution
and the membrane or the Si3N4 film in Figure 1. Hydrogen ions adsorb and desorb onto the Si3N4,
and affect the surface membrane potential in the sensing area. On the other hand, when Si3N4 was
covered with a plasticized polyvinyl chloride (PVC) membrane including a cation selective ionophore,
the cations adsorb and desorb onto the membrane, and change the surface membrane potential. Thus,
their surface membranes depend on the concentration of the sensitive cations. The sensor chip has
four terminals to process the charge. The input control gate (ICG) and transfer gate (TG) electrodes are
used to control the potential level as the gating. The input diode (ID) and floating diffusion (FD) are
pn junctions that supply the charge and detect the quantity of charge, respectively. With a decreasing
ID potential, the charge exceeds over ICG, and is filled at the charge sensor area corresponding to the
membrane potential, as shown in Figure 1a. With an increasing ID potential, the charge is spilled and
holds, as shown in Figure 1b. With an increasing TG, the charge is transferred into FD, as shown in
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Figure 1c. The charge process can be repeated, and the charge is accumulated without noise. Therefore,
the sensitivity is increasing, which is an excellent advantage for the CCD sensor.

The structure of the sensor chip and the wiring on the package board is shown in Figure 2. In
order to hold a compact size and use previous equipment, the sensor chip is divided into four blocks
and each block has a timing generator, shift register, horizontal and vertical scanner, respectively. Each
terminal with the same name except for CE is electrically connected on a package board.
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The switching time of each CE terminal is due to the order, as shown in Figure 3. The block whose
CE terminal becomes high is activated. The measurement conditions data of each block are saved into
Shift resister when CE terminal changes to be high.
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Figure 3. Serial timing chart for the operation of four blocks.

The whole photographs of a sensor chip and its extended image were shown in Figure 4. The 4 ×
16K array CCD ion image sensor possessed 65,536 sensing pixels in a two-dimensional 4 × 128 × 128
array, as shown in Figure 4A. The dimensions of the pixel and the sensor area were 37.3 × 37.3 µm2,
9.549 × 9.549 mm2, respectively. The interval of blocks was 20 µm. The chip size was 12.2 × 12.2 mm2.
The frame speed was constant at 8.3 fps. The sensing area of a pixel was in a hollow of ~ 3 µm depth
and its size was 13.5 µm × 24.5 µm, as shown in Figure 4B.Sensors 2019, 19, x FOR PEER REVIEW 5 of 11 
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Figure 4. (A) A picture of the 256 × 256 array charged couple device (CCD)-type image sensor; (B) a
micrograph of the sensor pixels.

2.2. Reagents

Bis[(12-crown-4)-methyl]-2-dodecyl-2-methylmalonate (bis(12-crown-4)), 2-Nitrophenyloctyl
ether (NPOE), sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaTFPB) were purchased
from Dojindo Lab., Inc. (Kumamoto, Japan). Polyvinylchloride (MW = 80,000) (PVC), 10,19-Bis
[(octadecylcarbamoyl)methoxyacetyl]-1,4,7,13,16-pentaoxa-10,19-diazacycloheneicosane (K23E1),
valinomycin, 1,3,5,7,9,11,13,15-oct(propylmethacryl)pentacyclo[9.5.1.13,9.15,15.17,13]octasiloxane
(POSS), and tris(hydroxymethyl)aminomethane (Tris) were purchased from Sigma-Aldrich, Inc.
(St. Louis, MO, USA). Potassium tetrakis(4-chlorophenyl)borate (K-TCPB) was purchased from Tokyo
Chemical Industry (Tokyo, Japan). Dioctyl sebacate (DOS), n-dioctyl phthalate (DOP), tetrahydrofuran
(THF), cyclohexanone (CHN), cyclohexane, and other reagents were purchased from Wako Pure
Chemical Industries, Ltd. (Osaka, Japan). Water deionized by a Milli-Q system was used in all the
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experiments. Metal ion solutions were prepared daily by dilution from a 1 M stock solution of each
metal chloride.

2.3. Ink-Jet Device and the Printing Conditions

An ink-jet apparatus (IJK-200T, Microjet, Shiojiri, Japan) was set up in a large glove box. The
nozzle diameter (IJHB-300) was 300 µm. The apparatus was a piezoelectric dot ink-jet printer, and
can place the printing solution at the desired point on a chip. The state of the produced drops was
monitored using a strobe light camera. The proper adjustment of two voltage pulses on the operating
piezoelectric device formed one drop. The pulse conditions were adjusted daily; 80.0–85.0 V as the
pulse voltages, 5.0–10.0 µS as the 1st pulse range, 3.0–10.0 µS as the interval pulse range, 3.0–10.0 µS
as the 2nd pulse range. One drop of the cocktail solution covered about 36 (6 × 6) sensing pixels.
The rate of line printing and the interval of the pitch decided in each ion sensitive membranes. The
waiting time before the recoating was 10 s. After printing, the membrane was dried for 24 h at room
temperature. Since the ink-jet apparatus had only a single injection head, when a multi-ion membrane
was prepared, each solution was separately printed.

2.4. Procedure of the Preparation of Each Sensitive Membrane

In order to increase the adhesion of the plasticized PVC membrane on the chip, the ink-jet printing
areas were pretreated with sodium hydroxide solution. A 0.1 mM sodium hydroxide solution laid on
the ink-jet printing area for more than 30 min, and washed with pure water, and the sensor was dried
in a clean glove box at room temperature. After the pretreatment, each membrane was formed by the
ink-jet method. For the Na+ sensitive printing solution, PVC 44.0 mg, POSS 30.0 mg, DOP 22.0 mg, Bis
(12-crown-4) 2.7 mg, TFPB 1.3 mg were dissolved in a solvent mixture of 5 mL of THF and 5 mL of
CHN (THF-CHN solution). The mixed printing solution was dropped into the Na+ sensing area with
a number of overcoats of 20 times. At this time, the pitch of the drop was set to 100 µm. For the K+

sensitive printing solution, PVC 30.0 mg, POSS 30.0 mg, DOS 36.0 mg, valinomycin 2.7 mg, K-TCPB
1.3 mg were dissolved in THF-CHN solution of 10 mL. The mixed printing solution was dropped
into the K+ sensing area with a number of overcoats of 20 times, and the pitch of the drop was set to
80 µm. For the Ca2+ sensitive printing solution, PVC 30.0 mg, POSS 11.2 mg, NPOE 55.2 mg, K23E1
3.0 mg, TFPB 1.3 mg were dissolved in THF-CHN solution of 10 mL. The mixed printing solution was
dropped into the Ca2+ sensing area with the number of overcoats of 40 times, and the pitch of the drop
was set to 80 µm.

2.5. Measurement of Ion Concentration

The electrochemical cell consisted of a LF-1/2 leak-less Ag/AgCl reference electrode sample
solution/plasticized PVC membrane/semiconductor sensor. The potential slopes of sodium ion brock,
potassium ion block, and calcium ion block were evaluated from three different concentrations of
each ion solutions: 0.1 mol/L (M) Tris-buffered (pH 7.4) solutions with concentrations of 200, 20, and
2 mM sodium ions. 0.1 mol/L (M) Tris-buffered (pH 7.4) solutions with concentrations of 40, 4, and
0.4 mM potassium ions. 0.1 mol/L (M) Tris-buffered (pH 7.4) solutions with concentrations of 18, 1.8,
and 0.18 mM sodium ions. These solutions with the calibration were corresponding to the range of
extra-cellular concentration [26]. All signals of the sensing pixels were recorded as a video after each
pixel arrayed on the chip was calibrated with the above three solutions.

3. Results and Discussion

3.1. Evaluation of Potential Response to Each Cation

The potential response of each block to the corresponding cation was shown in Figure 5a–d. To
measure the hydrogen ion sensitivity of the sensor, ordinal buffered pH standard solutions (pH 4,
pH 7, and pH 9) were used. The numbers of the right upper block to pH sensing pixels was 16,384.



Sensors 2019, 19, 1582 6 of 10

The potential slope showed a distribution with an ideal high kurtosis. The maximum of the frequency
distribution of the pH sensitivity was 46 mV/pH (48 mV/pH to pH 4–7, 43 mV/pH to pH 7–9).
Although the slope is inferior to Nernstian response, most of the slopes indicated were highly
sensitive. The other three blocks were treated with the ink-jet printing. The left upper block of
the chip was printed with the sodium ion membrane, and the left under block with the calcium ion
membrane, the right under block with the potassium ion membrane. The potential slope of sodium ion
block is high and the maximum distribution was 61 [mV/decade] (63 mV/decade to 0.4 mM–4 mM,
60 mV/decade to 4 mM–40 mM) that were almost Nernstian response, as shown in Figure 5b. The
frequency distribution has a high kurtosis with a deviation to high value. The potential slope of the
potassium ion block is lower than that of the sodium ion block, as shown in Figure 5c. The maximum
distribution potential slope was 52 [mV/decade] (53 mV/decade to 2 mM–20 mM, 51 mV/decade
to pH 20 mM–200 mM), and has a wide normal distribution. Although many potential responses
did not achieve Nernstian slope, the sensitivity was higher than the pH block. The potential slope
of calcium ion block is lower than the other cation, as shown in Figure 5d. The lower sensitivity
was due to the ion valence of +2. The maximum distribution potential slope was 29.0 [mV/decade]
(26 mV/decade to 0.18 mM–1.8 mM, 32 mV/decade to 1.8 mM–18 mM) that was Nernstian slope. The
frequency distribution has a high kurtosis and a slight distribution with a small deviation to high
value. These potential slopes were not ideal, however, the response was close to Nernstian response or
sufficient response.Sensors 2019, 19, x FOR PEER REVIEW 7 of 11 
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3.2. Dynamic Response

Snapshots of the multi-ion image sensor are shown in Figure 6. When 400 µL of the 200 mM
sodium ion solution was added into 400 µL of 2 mM sodium ion solution by a 1000 µL pipette, the
color of the left upper block immediately changed from blue to red (Figure 6a). The left upper block
responded to the concentration change of sodium ions, but no change appeared in the other block,
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except for slight areas at the upper edge of calcium ion block and the right edge of potassium ion
block. When the sodium membrane was prepared by the ink-jet method, it seemed that the sodium
membrane painting solution was leaked to these areas. When 400 µL of the 0.18 mM calcium ion
solution was added into 400 µL of 18 mM calcium ion solution by a 1000 µL pipette, the color of the left
under block immediately changed from blue to red (Figure 6b). The left under block responded to the
concentration change of calcium ions, but no change appeared in the other block. When 400 µL of the
0.4 mM potassium ion solution was added into 400 µL of 40 mM potassium ion solution by a 1000 µL
pipette, the color of the right under block immediately changed from blue to red (Figure 6c). The right
under block responded to the concentration change of potassium ions, but no change appeared in the
other block, except for the sodium ion block. The sodium ion block had a slightly potential response to
calcium ion concentration. All the concentration changes were completed in three s. For all additions
of the pipette, the pH region of the upper right did not show a concentration change. This is very
effective to selectively detect ion behaviors based on cell functions without considering pH variation.Sensors 2019, 19, x FOR PEER REVIEW 8 of 11 
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Figure 6. Snapshots of CCD multi-ion image sensor with 128 × 128 pixels array. (a) 200 mM sodium
ion solution (100 µL) was injected into a 400 µL of sample solution including 2 mM sodium ion solution
by a pipette; (b) 40 mM potassium ion solution (100 µL) was injected into a 400 µL of sample solution
including 0.4 mM potassium ion solution by a pipette; (c) 18 mM calcium ion solution (100 µL) was
injected into a 400 µL of sample solution including 0.18 mM calcium ion solution by a pipette.
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In order to demonstrate the visualization of the mixture solution, a phosphate buffer solution of
100 µL (pH 6.86, 0.025 M di-hydrogen potassium phosphate +0.025 M hydrogen di-sodium phosphate)
was added to a borate buffer solution of 400 µL (pH 9.18, 0.01 M borate solution of half-neutralization
by NaOH), as shown in Figure 7. The color of the Na+ region gradually changed because of increasing
Na+ concertation from 0.005 M to 0.01 M. The color of the H+ quickly changed because of pH 9 to
about 7. The color of part of the K+ region changed because of increasing K+ concentration to 0.005 M.
Unfortunately, the preparation of K+ membrane of this chip was insufficient. Since the two solutions
did not contain Ca2+, no color change was observed in the Ca2+ region. The change of these colors was
reasonable so that the simultaneous visualization by the change of three ions was demonstrated.Sensors 2019, 19, x FOR PEER REVIEW 9 of 11 
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4. Conclusions

We fabricated a CCD ion multi-image sensor that has a sodium ion region, a potassium ion region,
a calcium ion region, and a hydrogen ion region. Each region except for the hydrogen ion region was
respectively covered with the cation sensitive membrane, which was formed on the chip by an ink-jet
method. Each sensitive block sufficiently responded to the corresponding cation. In addition, we were
able to observe a dynamic change of ion concentration as an animation. These results showed that this
sensor didn’t have any problem as the structure of the multi-ion sensor essentially. This type of sensor
will be one of the useful tools for biochemical application. The subjects of increments of numbers of
ions measured simultaneously, and the distinction of separated sensing regions was accomplished.
The concentration of the measurable cations is relatively high at the biological environment. Therefore,
the sensitivity, which is the ability to identify the difference between large concentrations, rather than
the detection limit is required. The present sensor can demonstrate the difference of the Ca2+ release
of cultured PC12 cells stimulated by acetylcholine at least, because of the same basic design as the
Ca2+-K+ sensor [25]. Moreover, the increment of accumulation measurable cycles by a function which
was furnished in the present sensor system can further reduce the noise and improve the sensitivity to
be able to distinct the concentration of less than 0.01 of pH, or –log [M] [27]. Except for milli-sec order
study such as neural cells, sec order change of cells and tissue can be visualized. However, our CCD
sensors are still in the developing stage for the future multi-ion-vision equipment, four blocks were
large on the present sensor. Furthermore, refinement of sensing regions is required. Therefore, we are
now planning to develop the multi-ion sensor which has small (<30 µm) and numerous ion sensing
regions which are uniformly placed in the whole chip. On the other hand, improvement of the frame
rate of the imaging is also required. The present sensor system has only one single analog to digital
converter (ADC), so the frame rate is reduced by increasing the numbers of sensing pixels. Therefore,
we will be able to improve the frame rate by increasing with the number of ADC.
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