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Abstract: Extensive studies have shown that many animals’ capability of forming spatial
representations for self-localization, path planning, and navigation relies on the functionalities of
place and head-direction (HD) cells in the hippocampus. Although there are numerous hippocampal
modeling approaches, only a few span the wide functionalities ranging from processing raw
sensory signals to planning and action generation. This paper presents a vision-based navigation
system that involves generating place and HD cells through learning from visual images, building
topological maps based on learned cell representations and performing navigation using hierarchical
reinforcement learning. First, place and HD cells are trained from sequences of visual stimuli in an
unsupervised learning fashion. A modified Slow Feature Analysis (SFA) algorithm is proposed to
learn different cell types in an intentional way by restricting their learning to separate phases of the
spatial exploration. Then, to extract the encoded metric information from these unsupervised learning
representations, a self-organized learning algorithm is adopted to learn over the emerged cell activities
and to generate topological maps that reveal the topology of the environment and information
about a robot’s head direction, respectively. This enables the robot to perform self-localization and
orientation detection based on the generated maps. Finally, goal-directed navigation is performed
using reinforcement learning in continuous state spaces which are represented by the population
activities of place cells. In particular, considering that the topological map provides a natural
hierarchical representation of the environment, hierarchical reinforcement learning (HRL) is used
to exploit this hierarchy to accelerate learning. The HRL works on different spatial scales, where a
high-level policy learns to select subgoals and a low-level policy learns over primitive actions to
specialize on the selected subgoals. Experimental results demonstrate that our system is able to
navigate a robot to the desired position effectively, and the HRL shows a much better learning
performance than the standard RL in solving our navigation tasks.

Keywords: vision; place cell; head direction cell; unsupervised learning; hierarchical reinforcement
learning; goal-directed navigation

1. Introduction

The ability to perform self-localization and navigating to desired target locations is of crucial
importance for both animals and autonomous robots. During interacting with environments,
many animals demonstrate an inborn capability of developing spatial representations of the ambient
world and are able to extract behaviorally relevant information from perceived environmental
information. Early studies [1,2] linked these abilities with the formation of the “cognitive map”,
which refers to an animal’s internal representation of the environment. However, for a long time, it we
did not know how and where spatial cognition is formed in an animal’s body.
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Recent advances in neuroscience have revealed that the formation of cognition is neurally
instantiated by animals’ hippocampus and related structures [3,4], where several types of neuronal
populations are found to be able to develop space-related firing properties. Among these neuron types,
place cells [5] and head-direction (HD) cells [6] develop activity profiles that are closely related to
an animal’s current spatial location and gaze direction, respectively. Place cells are primarily located
in the CA1-CA3 regions of the hippocampus [5]. Experimental recordings on rats show that place
cells only fire when a rat reaches a specific location in an environment, and their firing activities
in open fields tend to be invariant to a rat’s head direction [7]. Different place cells are active in
different locations of the environment. They are regarded as the neural representations of an animal’s
spatial positions and encode an animal’s position with their location-selective firing characteristics.
HD cells are found in many brain areas including the hippocampus and several cortical and subcortical
areas [8,9]. These cells tend to significantly increase their firing rates when an animal’s orientation
meets a specific direction and different cells have different preferred directions to fire. Such firing
activities are independent of the location [10] and the population of these activities underpins an
animal’s sense of direction. Considering their spatial awareness, these specialized navigation neurons
including later found grid cells [11], border cells [12], interact with each other and collectively form a
dynamic neural circuit for animals to perform self-localization, planning, and navigation.

In terms of modeling place and HD cells, there are many approaches [13–15] that are able to
explain the formation of hippocampal representations, among which some intended to solve spatial
learning for robot navigation [16,17]. Generally, these models could capture the spatially selective firing
pattern of one or several cell types on different levels of abstraction, using different sensory inputs
and formation mechanisms [13,15,16]. From the perspective of neural computation, the slowness
principle [12,18] recently has been argued as a fundamental principle for hippocampal learning.
Based on this principle, a hierarchical Slow Feature Analysis (SFA) network is able to explain the
self-organization of certain hippocampal cell types, such as place and HD cells, through learning from
visual stimuli in an unsupervised fashion [19,20]. In this work, we use the SFA algorithm to generate
place and HD cells from vision, whose ensemble activities represent the positional and directional
information, respectively.

Numerous experiments have demonstrated the essential role of hippocampus cells in solving
navigational tasks including self-localization [21], orientation detection [22], route planning [23] and
goal-directed navigation [24], etc. However, it is still an open question of what are the exact functional
roles of these location- and direction-related cells in guiding navigational behaviors. A navigation
task can be simply concluded as the process of moving from a starting location to a designated goal
location, where the whole navigation process is driven by the goal. To solve such a task, Reinforcement
Learning (RL) [25] provides a suitable framework by learning navigational polices during interacting
with the environment. However, despite great successes in many applications [26–28], standard RL
methods show low learning efficiency in environments with sparse and delayed reward and do not
scale well for larger, more complex tasks. To solve this, hierarchical reinforcement learning (HRL) [29]
provides a promising direction by breaking down complex tasks into sub-tasks through a hierarchy of
abstractions. In a typical HRL paradigm, high-level policies learn to select from a series of subgoals
which might only consist of several abstract, high-level observations and actions (macro-actions,
options), and low-level policies learn over primitive actions to accomplish the selected subgoal. This
greatly reduces each level’s search space and facilitates temporal credit assignment. Besides, the
low-level policies can be re-used in tasks that consist of the same subgoals. The key problem of HRL is
how to recognize the hierarchy in a learning system. While most studies [30] rely on human-designed
hierarchical structures and learn policies within hardwired structures, a more plausible solution is to
automatically discover these subgoals during interacting with the environment.

This work is the following work of our previous work [31,32] on realizing robot navigation based
on learned place and HD cells. In our previous work [31], we extended the standard SFA algorithm to
simultaneously learn separate cell types from visual images, where different cell types can be produced
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in an intentional way by restricting the SFA learning to different movement phases during the spatial
exploration. Based on the learned cell representations which implicitly encode spatial information,
we could enable a robot to perform self-localization and orientation detection. Specifically, we used
a self-organized learning algorithm to learn the statistical distribution of the place cell activities that
cover the traversable areas in the environment. This generates a topological map for a robot to perform
self-localization. Similarly, the robot’s orientation can be denoted by a second topological map that is
learned from the HD cell activities.

In this work, we move a step forward and aim to realize robot navigation based on the learned
representations. To this end, we adopt RL to map the cell activities into actions that support desired
navigations. In the RL paradigm, the state of the navigation system is represented by the ensemble
activity of a population of place cells. During learning, the relationships between the place cell
activities and behavioral actions are gradually found, where the state-to-action mapping function
is built to support corresponding navigational behaviors. Considering the challenge of learning
in large and complex environments, we scale up RL to HRL for better learning performance and
efficiency. The topological map, which is built through clustering the place cell activities, represents the
environment on a high-abstract level and provides a natural hierarchy for facilitating HRL. Particularly,
the map is built in a self-organized fashion during exploring the environment without any human
efforts. In our work, the HRL consists of two layers of policies that work on different spatial scales.
The high-level policy works within the topological map to select which subgoal to complete, where the
subgoal refers to the node in the topological map. The low-level policy works in the space of place cell
activities and chooses primitive actions to achieve the selected subgoal. Combining these together,
we present a navigation system that is able to perform goal-directed navigation based on learning
representations from vision, where intermediate processes involve modeling place and HD cells and
building topological maps for self-localization and orientation detection. Note that the focus of this
work is not the hippocampal modeling, instead, we want to build a pragmatic navigation system based
on the learning representations from the SFA model. Particularly, we highlight our contributions in
this paper as follows:

• We present a modified SFA learning model to produce place and HD cells by learning directly
from visual images in an unsupervised fashion. The proposed approach is able to learn different
cell types simultaneously by restricting the learning to separate phases of spatial explorations.

• We propose a self-organized method to extract spatial information from unsupervised learning
representations, which generates topological maps and enables a robot to perform self-localization
and orientation detection.

• We perform goal-directed navigations by applying HRL to map the population activities of place
cells into actions that support corresponding behaviors. The hierarchy is provided by a topological
map which is built in an unsupervised fashion during interacting with the environment.

• Simulation experiments including comparisons with the standard RL method demonstrate
the validity and effectiveness of the proposed navigation system in performing goal-directed
navigations based only on vision.

For the following parts of this paper: Section 2 gives a brief review of the existing modeling
approaches and navigation systems incorporating hippocampal cells, together with HRL techniques.
Section 3 introduces the adopted algorithms in this work, including the SFA algorithm, Growing
When Required (GWR) network, and RL. Section 4 first presents our modified learning approach
that enables the separate learning of place and HD cells and then elaborates the process of building
topological maps, and finally explains the implementation details of using HRL to solve navigation
tasks. Section 5 presents the experimental results and compares our system with several different
approaches, which demonstrates the efficiency of the proposed system in solving goal-directed
navigation tasks. Finally, the paper ends with a general discussion of our system in Section 6 and a
conclusion in Section 7.
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2. Related Work

2.1. Hippocampal Modeling and Related Navigation Systems

Ever since their initial discovery in rodents’ hippocampus, place cells, which have demonstrated
their prominent roles in spatial representations [11] and episodic memory [33], have attracted
substantial attention from different research communities. For the hippocampal modeling, various
approaches have been proposed in an attempt to explain these spatially sensitive firing activities, such
as Gaussian function [16], neural plasticity [13,14], self-organizing map [15], etc. More biologically
motivated models suggested that place cells are originated from grid cells and generated place
cell responses from a subset of grid cell inputs [34,35]. However, although many models were
able to systematically develop the location- or direction-related firing patterns, few cared about the
computations happening in the hippocampus and there was little discussion over the computational
principle underlying the formation of these activities. Throughout the literature, only the SFA
model [20] tried to explain this problem from a computational point of view and was able to produce
signals featuring firing activities found in hippocampal cells by learning from raw sensory inputs.
The underlying learning mechanism is important since it reveals the detailed implementation of how
the brain utilizes the sensory information to extract behaviorally relevant features and to direct the
behavioral choices. This work uses the SFA algorithm to generate place and HD cells from visual
inputs only.

There also exist some neurobiologically inspired navigation systems that intended to accomplish
spatial awareness by incorporating one or several types of navigation-related cells. For example,
RATSLAM model [36] proposed to represent spatial information in synthesized pose cells, in which the
pose cells are represented in a 3-D continuous attractor network (CAN) by integrating internal sensing
and external vision perception. The pose cells in their work can be regarded as a combination
of place cells and HD cells. Tejera et al. [37] developed a neural grid cell model to represent
’neural odometry’ which is integrated to place cells in the representation of different locations in
the environment. For navigation, Giovannangeli et al. [38] presented a hippocampal model performing
transitions and plannings based on the gradient diffused from the goal on top of the learned place cell
representations, which enables to reach a goal from a random position. Some works [13,39] employed a
reinforcement learning paradigm to accomplish place cells’ functional role in goal-oriented navigation
tasks, in which the states are represented by locations encoded in the population activity of place cells
and the state-action value is learned online with respect to a specific goal during searching phases.
Besides, to demonstrate the predictive ability of the hippocampal cells, Erdem et al. [40] presented a
goal-directed navigation model that allows for finding direction to remembered goal locations based
on the interconnections of HD cells, place cells, and grid cells. However, they utilized many elaborate
mechanisms in order to explain the emergence of different neuron types according to the movement,
rather than using the emerged firing activity to direct behavioral choices.

Additionally, in our previous work, we have presented two different models that use the learned
place and HD cells to perform navigations. In the first work [32], based on the learned place and HD
cells, we presented a neural model that enables to build topological maps and perform navigation
in a self-organized manner, where a behavior-imitation mechanism is used to learn actions that
support state transitions and the robot is able to reach the target in a reward-ascending way. However,
anchoring action memories into the map requires lots of human efforts. In the second work [41],
we proposed a hybrid planning strategy that includes performing look-ahead planning based on a
world model on the global scale and object-driven reaching based on visual recognition on the local
scale. This enables a robot to navigate to a distant target with finer accuracy. However, the final
performance of this model relies heavily on the accuracy of the trained world model. In this work,
we aim to build a navigation system that is free of this requirement and is able to automatically learn
navigational behaviors during interacting with the environment.
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2.2. Hierarchical Reinforcement Learning

The basic idea of HRL is to break down a complex RL task into several sub-tasks which are
easier to solve through a hierarchy of abstractions. Compared with the standard RL which requires
an agent to make decisions on each primitive action at every granular state, HRL could abstract a
series of micro-decisions into a macro-decision and focuses on a small set of important decisions,
thus leading to a much faster learning speed. HRL has shown its superiority in solving many tasks
involving long-range delayed rewards. For example, Kulkarni et al. [42] presented a hierarchical-DQN
framework that integrates the temporal abstraction and an intrinsic motivation mechanism to be
able to play the classic Atari game ‘Montezuma’s Revenge’ which is a big challenge for standard
RL approaches. Tang et al. [43] used HRL to learn the dialogue policy for task-completion dialogue
agents, where subgoals in the complex goal-directed task are automatically learned in an unsupervised
fashion. Peng et al. [44] showed that the use of subgoals mitigates the reward sparsity and leads to
more effective exploration for learning.

Within the HRL paradigm, Sutton et al. [45] proposed the options framework which provides a
natural way for hierarchical policy learning, where an option is a generalization of primitive actions
to include temporally extended courses of action. However, it remains a troublesome problem of
how to find the options or how to define the hierarchy in a learning task, which is the main research
topic in relevant research areas. In terms of hierarchical formulations, many previous works assume
that the hierarchical structure is given by a designer, which requires the domain knowledge and
many human’s efforts. It is desirable for a learning system to learn the hierarchy itself. For this aim,
methods based on varying reward functions [46] or by composing existing options [47] have been
proposed to learn options in real-time. There are also lots of work on option discovery in the tabular
value function setting. For practical implementations, Goel [48] made use of the structure present
in a particular environment to discover subgoals by studying the dynamics along the predecessor
count curve, where the discovered subgoals usually refer to the junctions between different rooms.
Csimcsek et al. [49] used the betweenness centrality measures in a graphical representation of the
environment to identify subtasks. Menache et al. [50] adopted the clustering method to separate the
strongly connected components of a Markov Decision Processes (MDP) into different clusters that
are regarded as subgoals. Similarly, Lakshminarayanan et al. [51] addressed the automated option
discovery in HRL using spatio-temporal clustering. In this work, we identify the subgoals in our
navigation task within a topological map which is built in a self-organized way during exploring the
environment, where the self-organized learning can also be regarded as a clustering method.

3. Materials and Models

3.1. Slowness Principle

Slowness principle claims that more meaningful information within an input data stream is
capable of keeping its consistency for a relatively long period of time, while less meaningful information
always varies quickly. Considering an image sequence depicting a moving object, the object’s
moving trajectory always changs in a continuous way and can be easily captured by an observer,
while for the intensity value change of a single pixel, it changes too fast and contains no interpretable
information. Based on this principle, high-abstract features within the sensory input can be extracted
in an unsupervised fashion by considering their varying speed.

3.2. Slow Feature Analysis

SFA is an unsupervised learning algorithm implementing the slowness principle. For consecutive
raw sensory, SFA is able to capture the slowly varying signals and leaves out quickly changing ones.
In most cases, these slowly varying features always contain the most descriptive statistical regularities.
For example, consider a mobile agent exploring an environment with its visual system, the change
of its visual information is always related to the continuously varying positions and orientations,
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where the emerging slow features compactly encode this information. Sufficient results from both
theoretical analyses and experimental tests have demonstrated that SFA is able to model certain types
of hippocampal cells by directly learning from raw visual inputs [18]. Combined with a sparse coding
mechanism, a localized firing activity similar to that found in the hippocampus can be organized in a
clear pattern [19].

Mathematically, the SFA learning problem can be described as follows: Given an I-dimensional
input signal x(t) = [x1(t), x2(t), . . . , xI(t)], find a set of J real-valued input-output functions g(t) =
[g1(t), g2(t), . . . , gJ(t)] such that the output signal y(t) = [y1(t), y2(t), . . . , yJ(t)]

T with yj(t) = gj(x(t))
satisfies the criteria:

∆(y) = 〈ẏ2
j 〉t is minimal (1)

under three constraints:
〈yj〉t = 0 zero mean

〈y2
j 〉t = 1 unit covariance

∀j′ < j : 〈yj′yj〉t = 0 decorrelation

where 〈·〉 and ẏ indicate the temporal averaging and the time derivative of y, respectively. Equation (1)
represents the primary objective of the optimization problem. The first two constraints are used
to guarantee the output signals with meaningful information, rather than a trivial constant value.
Decorrelation is used to avoid uninteresting solutions where all the output signals encode the
same information.

3.3. Growing When Required Network

The self-organizing network Growing When Required (GWR) [52] is a kind of neural networks
inspired by biological self-organization and is able to learn the important topological relations in a given
set of vectors in an unsupervised way. Different from previous approaches like the Self-Organising
Map (SOM) [53] and the Neural Gas (NG) [54], GWR does not need to define the size of the network
beforehand and exerts a dynamic growing mechanism to enable the network to grow automatically
when the current nodes cannot represent the inputs accurately. This enables it to respond quickly to
changes in the input distribution by dynamically learning, adding or deleting nodes and connections.

During learning, a GWR network starts with two random nodes n1 and n2 representing the input
space. For each iteration, two best matching nodes s and t are selected based on the distance to the
input, where these two nodes are always connected. Whenever s and t fail to represent the current input
with a certain accuracy, a new node will be inserted halfway between them. The criterion of adding
new nodes is also dependent on the firing counter of the best node. Training will drive the weights of
the best matching node and its neighbors towards the input and the rarely used nodes will be deleted
by an aging mechanism. The algorithm will keep iterating until meeting a stop criterion, such as the
desired performance has been met or the network has reached the maximum size. The learning steps
of GWR are described as follows:

1. Start with two neurons n1 and n2 with random weights wn1 and wn1 .
2. Generate an input signal ζ (place cell activity vector) according to the place cell network.
3. Find the nearest neuron s and second-nearest neuron t according to the distance from the

input: ‖ζ − wi‖.
4. If there is no connection between s and t, create it. Otherwise, reset the age of this connection to

zero. Calculate the activity of each neuron i: si = exp(−‖ζ − wi‖/2δ2)

5. If ss < activity threshold aT and firing counter hs < firing threshold hT , insert a new neuron
as follows:

• Add a new neuron r halfway between the best matching neuron and current input:
wr = (ws + ζ)/2
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• Insert connections between s and r and t and r
• Remove the connection between s and t

Else, i.e., no new neuron is added, adapt the positions of the best matching neuron s and its
neighbours i:

• ∆ws = εb · hs · (ζ − ws)

• ∆wi = εn · hi · (ζ − wi)

where 0 < εn < εb < 1 are learning rates and hs is the value of the firing counter for node s.
6. Age connections with an end at s: age(s,i) = age(s,i) + 1
7. Reduce the firing counters of neuron s and its neighbours:

• hs(t) = h0 − S(t)
αb

(1− e(−αbt/τb))

• hi(t) = h0 − S(t)
αn

(1− e(−αnt/τn))

where h0 is the initial strength and S is the stimulus strength. αb, αn and τb, τn are learning constants.
8. Remove all connections with ages larger than amax and remove neurons without connections.
9. If the stopping criterion is not yet fulfilled, go to step 2.

3.4. Deep Reinforcement Learning

Reinforcement Learning (RL) is an important type of machine learning techniques where an
agent learns in an interactive environment by trial and error using feedback from its own actions
and experiences. In RL, an agent interacts with an environment over a series of time steps. At each
time step t, the agent perceives a state st and needs to select a possible action at according to an
action-selection policy π, where the π is the probability of selecting an action a to be performed for
a given state s. Executing the selected action at leads the agent to the next state st+1, and the agent
also receives a reward r from the environment. During learning, the agent’s aim is to find the optimal
policy π∗ that maximizes the expected value of reward received over time.

Given a policy π, the action-value (Q-value) of a state-action pair (s, a), which indicates the
expected total discounted reward when executing actions following policy π from state s, is defined
as follows:

Qπ(s, a) = E
[ ∞

∑
t=0

γtrt|s0 = s, a0 = a, π

]
(2)

where the expectation is with respect to the transition distribution under policy π and rt is the reward
for action a = at under the policy π in the state s = st. γ is the discount rate determining future
action’s influence (0 < γ < 1).

Based on the Bellman equation, the optimal π∗ corresponds to taking the best action in any state s
where Q∗(st, a) = maxπE[Rt|st, a, π] and the optimal Q-value function Q∗ can be obtained as follows:

Q∗(s, a) = rt + γ max
a′

E
[

Q∗(st+1, a′)
]

(3)

where a′ represents the possible actions in the future state st+1.
Recently, the technique of combing deep neural network and RL, where neural networks work as

function approximators, has shown promises in handling high-dimensional sensory inputs and has
extended RL to a large variety of applications. This is the main principle behind (Deep Reinforcement
Learning) DRL [55,56].
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4. Proposed Approach

The proposed navigation system is based on the learning representations from vision. Specifically,
it involves producing place and HD cells through learning from visual images using the modified SFA
algorithm and building topological maps based on the learned cell activities. The topological map then
provides a natural hierarchy for implementing HRL. We will briefly introduce them in this section.

4.1. Training Different Cell Types from One Exploration

For the place and HD cells learning, we use the SFA algorithm to learn directly from a robot’s
visual images during exploring the environment. Considering that the SFA is a purely sensory-driven
model whose learning is based on the concept of temporal stability among consecutive input stimuli,
the temporal structure of the sensory data for training will be closely related to the final representations.
This provides us with the possibility of varying the emerged firing patterns by manipulating the input
statistics. For this aim, during modeling different cell types, a robot is driven to actively explores
the environment with its visual system and its visual images during different movement phase are
collected for separate training. Specifically, during forward movements, where the robot’s position
continuously changes and its direction rarely changes, the emerging slow features during these phases
compactly encode the robot’s moving direction and are used to model HD cells. Similarly, images
from the rotational movements can be used to train the place cell network. After training, with these
two networks, the response of a network to a single image which is captured at a certain position to
a certain direction will approximate the place cell activity at that position or the HD cell activity to
that direction.

The model configurations and the training process are illustrated in Figure 1. The model consists
of two parallel visual processing channels. Each channel consists of a hierarchical architecture including
3 SFA layers and 1 ICA (independent component analysis) layer. For each SFA layer, a certain number
of SFA nodes are organized in a regular grid, where each node contains 30 or 50 output channels
(cells) and acts on a local receptive field. The first layer has 63× 9 SFA nodes working directly on
the raw input images and each node extracts features based on the slowness principle from its own
local-field area. Neighboring nodes cover overlapping areas, which facilitates feature detection over
the whole input frame. The second layer has 8× 2 SFA nodes working on the outputs of the first
layer and extracting more abstract features than the first layer. The third layer has only one SFA
node that integrates the outputs of all nodes from previous layers, outputting even higher abstract
features. On top of the SFA layers, there exists one ICA node that performs sparse coding on the
raw SFA outputs to produce a more localized representation. The outputs of the 50 units in the final
SFA node of the HD cell network represent the firing activities of 50 HD cells and the 30 units in
the final SFA node of the place cell network represent the firing activities of 30 place cells. We use
50 HD cells outnumbering 30 place cells in order to increase the precision of the direction estimation.
For the software implementation, we use the Modular toolkit for Data processing (MDP) library [57],
which provides a complete implementation of SFA and ICA. For the training data collection, we collect
visual data during the forward movement period to train the HD cell network. Similarly, we collect
data from the robot’s turning movement to train the place cell network. This mechanism is related
to the assumption that learning is modulated by behavior and, more specifically, that transitional
and rotational motion can be differentiated to train different types of cells. This can in principle be
supported by the biological findings where place and HD cells demonstrate the ability of the behavioral
modulation [8,58].
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Figure 1. Training place cell and head-direction cell networks in different phases of the same trajectory.
Layers are trained sequentially from bottom to top.

4.2. Topological Maps Building

The firing activities of these cells demonstrate a strong firing preference to different positions or
directions, where the population activity of place and HD cells encode a certain position and direction,
respectively. However, in our work, the place and HD cells are generated by the unsupervised SFA
algorithm. Different from supervised learning paradigms, these cell activities have no predefined
relationships to a real-world position or direction. To interpret the encoded spatial information,
we adopt the GWR network to learn from the emerged cell activities. The GWR is able to capture the
internal relationships of these activities and to reveal the topology of the input space. For example,
during learning from place cell activities that cover the whole environment, a GWR network can
generate a topological map of the explored areas, where GWR nodes represent the spatial positions and
connections represent connectiveness between positions. During learning, the GWR starts with two
nodes and grows incrementally during exploring the environment. In order to capture the distribution
of the place cell activities, nodes and connections are created or updated dynamically and are also
deleted if needed. After learning, the GWR network consists of a set N of nodes and a set C of
connections that represent the relations between each connected nodes pair in N.

In our previous work [32], we were able to realize robot self-localization and orientation detection
based on the PC-GWR and HD-GWR which are built by learning from the place and HD cell activities,
respectively. Specifically, a robot’s position can be calculated by finding the best matching node
in the PC-GWR network, where its position is represented by an ensemble activity of place cells.
Similarly, the robot’s orientation can be represented by the best matching node in the HD-GWR
network. In this part, we adopt the approaches in our previous work [32] to build topological maps.
The map building process follows the concept of mapping high-dimensional data into low-dimensional
space for practical usages, which has been studied a lot based on both supervised and unsupervised
learning approaches [59–61].

Importantly, the topological map provides a natural hierarchy for implementing HRL, where a
robot’s position in the environment can be represented on two different levels of abstraction. On the
high level, it is represented by the node in the PC-GWR network. On the low level, it is represented by
the ensemble activity of place cells. Each state on the high level covers a sub-area on the low level.
An illustration is presented in Figure 2.
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Figure 2. An illustration of performing orientation detection and self-localization using the built
topological maps. The robot’s orientation is represented by the best matching node (shown in red) in
the HD-GWR. The robot’s current location is represented by the best matching node (shown in red) in
the PC-GWR.

4.3. Hierarchical Reinforcement Learning

For the HRL implementation, we use the deep Q-Learning framework [55] to learn both the
high-level and low-level policies, whose Q-functions QH(s, g; θH) and QL(s, g, a; θL) are approximated
by neural networks with parameters θH and θL, respectively.

• The high-level looks at the state representations (nodes) in the PC-GWR network and learns a
policy πH over these nodes (subgoals) to select the subgoal for the low-level policy to complete.
QH(s, g; θH) measures the maximum total discounted extrinsic reward re received by choosing
subgoal g in state s while following the policy πH . The extrinsic reward re is received from the
environment and is the objective to be maximized by the entire navigation policy.

• The low-level takes in states (in the space of place cell activities) and the current subgoal (one of
the PC-GWR nodes) and produces a policy πL of actions to accomplish the selected subgoal.
QL(s, g, a; θL) measures the maximum total discounted intrinsic reward ri received to achieve a
given subgoal. The low-level policy terminates either when the goal is accomplished or when the
step number in the current goal reaching task reaches the maximum. The intrinsic reward ri is
given based on whether the desired subgoal has been reached and is used to help learning how to
achieve the given subgoal.

Suppose that the PC-GWR network consists of a set N of nodes n = {n0, n1, ..., nN}, a navigation
task consisting of T transitions: τ = {s0, a0, r0, ..., sT}, which covers a sequence of subgoals
g0, g1, g2, ... ∈ N. Consider reaching the subgoal g requires M steps of transitions from t.

Following the Q-learning rules, QH(s, g) can be learned by treating subgoals as temporally
extended actions:

Q∗H(s, g) =
M

∑
t′=0

γt+t′re
t + γ max

g′
E
[

Q∗(st+M, g′)|st = s, gt = g, πH

]
(4)

where the expectation is with respect to the transition distribution under policy πH and g′ represents
the possible subgoals in the state st1 . γ ∈ [0, 1] is a discount factor.

Similarly, QL(s, a, g) can be learned as follows:

Q∗L(s, g, a) = ri + γ max
a′

E
[

Q∗(st+1, g, a′)|st = s, gt = g, at = a, πL

]
(5)

where a′ represents the possible subgoals in the state st+1. In this work, the actions are defined to
control the robot’s moving direction and include 8 discrete components as shown in Figure 3a.
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During learning, the high-level and low-level policies use temporal difference learning at different
temporal resolutions. The learning architecture is shown in Figure 3b. A high-level step corresponds to
a state switch in the PC-GWR network and QH learns from the state transitions (st, gt, ∑M

t=0 re
t , st+M).

A low-level step corresponds to a state transition in the space of place cell activities and QL learns
from state transitions (st, gt, at, ri

t, st+1). A high-level time step consists of a number of M consecutive
low-level steps. The combination of high-level and low-level learning enables an agent to accomplish
a complex navigation task as fast as possible, where the learnings are driven by both the extrinsic and
intrinsic rewards.

The objective of Q-learning is to bring the current Q-values of QH(s, g) and QL(s, g, a) to the target
values shown in Equations (4) and (5), respectively. Recently, Van Hasselt et al [62] have proposed
a Double Q-learning framework that demonstrates better performances than DQN in many tasks.
Different from DQN that performs learning using only one set of parameters θ, D-DQN uses two sets
of parameters θ, θ− to separately determine the greedy policy and evaluate the policy value, which
has shown better performance in many tasks. Based on this, θH and θL are optimized according to:

θH ←θH + α(
M

∑
t′=0

γt+t′re
t + γQH(st+M, arg max

g
Q(st+M, g, θH); θ−H)−QH(st, g; θH))∇θH QH(st, g; θH) (6)

θL ← θL + α(ri + γQL(s′, g, arg max
a

Q(s, g, a; θL); θ−L )−QL(s, g, a; θL))∇θL QL(s, g, a; θL) (7)

where θH and θL are the parameters for the online networks and θ−H and θ−L are parameters for the
target networks. γ is the learning rate (see Algorithm 1).

Algorithm 1 Hierarchical Reinforcement Learning

1: Initialize experience replay memories {DH , DL} and the exploration probability εH = 1 and εL = 1
for the high-level and low-level policies, respectively.

2: Initialize parameters θH , θL for the online networks and θ−H , θ−L for the target networks.
3: For i = 1, num_episodes do
4: Initialize the navigation and get the start state s.
5: While s is not teriminal do
6: R← 0
7: s0 ← s
8: With probability εH select a random subgoal g from the PC-GWR nodes
9: Otherwise select g = maxg QH(s, g; θH)

10: while not (s is terminal or goal g is reached) do
11: With probability εL select a random action a
12: Otherwise select a = maxa QL(s, g, a; θL)
13: Execute a and obtain the next state s′ and extrinsic reward re from the environment
14: Obtain the intrinsic reward ri

15: Store transition ({s, g}, a, ri, {s′, g}) in DL
16: Sample random mini-batches from DL
17: Update θL according to Equation (7)
18: R← R + re
19: s← s′

20: end while
21: Store transition (s0, g, R, s′) in DL
22: Sample random mini-batches from DH
23: Update θH according to Equation (6)
24: Every C steps copy θH to θ−H and θL to θ−L
25: end while
26: Anneal εH and εL adaptively
27: end for
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(a) (b)
Figure 3. (a) The primitive actions used in the learning. (b) The HRL learning architecture.

5. Results

5.1. Experiment Setup

To test our proposed navigation system, we use a simulated robot moving in a virtual-reality
environment, RatLab, which is also used to generate images for training place- and HD cell
networks [63]. RatLab is a specialized simulator targeting at establishing place and HD cells based on
the SFA algorithm. It is designed to simulate a virtual rat foraging in a home-like environment and
allows to modify the rat’s movement pattern over the course of exploration. In addition, according to
application purposes, users can modify the environment by defining the simulator shape, changing the
environmental textures, and adding customized obstacles, etc. Due to its convenience and flexibility,
it can also be used to simulate experiments in robotic scenarios. In this work, we test each component
of our navigation system in RatLab. An overview of the simulated rectangle environment is shown
in Figure 4, where an image captured by the virtual robot from a given position with a random head
direction in the environment is also presented in the lower part. The simulated robot has a field of
view (FoV) of 320 degrees in order to simulate a rat’s wide FoV [64].

Figure 4. The top view of the RatLab environment rendered in this work. Below is an image (320× 40)
seen by the robot at the current position (indicated by the red arrow whose direction represents the
robot orientation).

5.2. Generating Place and HD Cells from One Exploration

In this work, considering the size of the simulation environment, we trained 30 place cells, whose
overlapping firing fields cover the whole environment densely, and 50 HD cells whose ensemble
activity encodes the spatial position and direction, respectively. In particular, we model more HD
cells in order to represent the direction with a higher precision since the direction is more important
during movement. For the training, we collected 8000 images from the turning movement to train the
place cell network and 10,000 images from the forward movement to train the HD cell network. Parts of
the training results can be seen in Figure 5. The learned place cells only fire in a certain position in
the environment (Figure 5a) and they have little directional tuning, which means their activities are
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invariant to the direction (Figure 5b). HD cells show little position preference (Figure 5c), but they will
be significantly active when it comes to their preferred direction (Figure 5d).

(a) (b)

(c) (d)
Figure 5. The firing activities of the trained Place and HD cells (9 randomly chosen place cells are
shown in (a,b), and 9 head-direction cells are shown in (c,d)).

In particular, we adopt the concept of entropy [65] to assess the distinguishable firing properties
obtained by these two different cell types. For a set of distributions using these activities as their
probability values. Since place cells have similar probabilities for different directions, their activities
closely approximate a uniform random distribution and thus have a large entropy of direction Hdir.
In contrast, head-direction activities are more peaked since they have large probability values for a
certain direction, thus having a smaller entropy Hdir. The entropies are calculated by:

Hdir = −
dir

∑
θ

aθ ln(aθ); Hpos = −
pos

∑
i

ai ln(ai) (8)

where aθ represents the normalized cell activity at direction θ averaged over positions, while ai
represents the normalized cell activity at position i averaged over directions.

Figure 6b shows that the obtained cell types demonstrate clearly different properties. For comparison,
we also present the training result of the existing model [66] in Figure 6a, where a continuum is between
place and head-direction cells.
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(a) (b)

Figure 6. Entropy analysis: (a) Training results from standard SFA, without knowledge to distinguish
different cell types. (b) With our proposed training method, different cell types form two separate clusters.

5.3. Building Topological Maps Based on GWR

Based on the learned place and HD cells, two topological maps of PC-GWR and HD-GWR are
generated, which are shown in Figure 7. Considering that the inputs to the GWR networks are
high-dimensional activities, for visualization, the multidimensional scaling (MDS) algorithm [67] is
used to project the high-dimensional learning results into the 2D space. For more details on this part,
please refer to our previous work [32].

(a) (b)

Figure 7. Topological maps (visualized by MDS) building based on GWR. (a) The learned PC-GWR
represents the topology of the explored area and the robot’s current position is represented by the best
matching node (the red node). The pink dots represent the positions where place cell activities are
sampled during the PC-GWR learning. (b) Left: the built HD-GWR through learning from HD cell
activities and the robot’s current orientation is represented by the best matching node (the red node).
Right: a bump created based on the current HD-GWR to show the firing activity of each node.

At the beginning of the map building, the PC-GWR is initialized with two nodes. During driving
the robot to explore the environment where each position is represented by an ensemble activity of the
modeled 30 place cells, the activities along the moving trajectories are continually fed to the PC-GWR.
The PC-GWR grows incrementally in order to represent the distribution of the input place cell activities.
This process continues until the exploration ends. The resultant PC-GWR network gives rise to a
topological map of the explored area. As shown in Figure 7a, the PC-GWR represents the environment
at a coarse level and each node automatically segments the positions in the space of place cell activities
into abstractions (clusters). The robot’s real-time location can be represented by the best matching
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node in the PC-GWR. Since our aim is to use the topological map to perform navigation based on HRL,
rather than pure self-localization, we use a PC-GWR with only 14 nodes.

The HD-GWR is built through learning from HD cell activities covering a robot’s entire angle
range of 360◦. As shown in Figure 7b, the learning gives birth to in a ring-shape HD-GWR network
which accords with the circular orientation space. Although the HD cell activities encode no explicit
directions due to the unsupervised SFA learning, the robot’s current orientation can be represented
by the best matching node among the HD-GWR nodes. The HD-GWR has a size of 36 nodes in an
attempt to represent the direction in 10◦ increments.

5.4. Performing Navigation Based on HRL

In this section, we performed the goal-directed navigation by implementing HRL based on the
learned representations described above. Additionally, we compare the performance of the proposed
approach with several baselines: the standard D-DQN and two variations of our proposed approach.

5.4.1. Task Setup and Training Process

The training and navigation are implemented in the RatLab (shown in Figure 4) whose size is m
in pixels. The goal of the navigation task is to let the robot move from any possible start position to
the target position without colliding into obstacles. In this work, we limit the navigation task with
fixed start and target positions, as shown in Figure 8a. The starting position (represented by the black
cross) is in the lower left of the environment and the target (represented by the red star) is in the upper
right of the environment. In Figure 8a, each PC-GWR node is labeled with a particular number, which
corresponds to its one-hot representation during training (described below).

(a) (b)

Figure 8. (a) The navigation task in our work. (b) The network structures of the H_DQN and L_DQN.
Each layer is represented by its layer type, dimension, and activation mode.

During learning, the robot is trained to solve the navigation task by only using its visual system.
Related training settings are described as follows:

The robot’s states are represented by the place cell activities which encode locations in the
environment and are calculated by inputting the image at the current position to the trained PC
network. At the same time, the robot’s position is also represented by the best matching node in the
PC-GWR. The PC-GWR provides a high-level representation of the environment and its nodes are the
potential subgoals for the robot to choose from. The subgoal is represented by a one-hot vector whose
length equals the number of nodes in the PC-GWR. Each element of the one-hot vector corresponds to
a particular node in the PC-GWR.

The robot moves at a constant speed (0.2 pixels/s) and selects one of the possible actions that
correspond to the eight compass directions as shown in Figure 3a.

The extrinsic and intrinsic rewards are defined as follows:
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• During an episode, the agent receives an extrinsic reward of 2 when it reaches the target and
−1 when a collision is detected, where both situations will immediately terminate the episode.
To avoid unnecessary subgoal switches and encourage short trajectories to the goal, the agent
receives an extrinsic reward of −0.05 for each state change on the high level.

• During the subgoal reaching, the agent receives an intrinsic reward of 0.2 when the subgoal
is reached, or −1 when a collision is detected. If the moving step reaches the maximum
number of steps (100 steps in our experiments), the episode terminates without a positive reward.
This encourages the high-level policy to always select the nearby subgoals. In addition, for a
faster subgoal reaching, the agent receives an intrinsic reward of −0.01 for each moving step.

During the HRL learning, for each episode, the robot starts with a random position and orientation
in the simulator and ends either when the target is reached or when the robot collides with objects
in the environment. The maximum moving steps in an episode are 1000 steps. The robot interacts
with the simulator episodes by episodes and obtains a large number of experiences, which include
both the state transitions in the space of place cell activities and the node transitions in the PC-GWR.
Through learning from these experiences, the parameters of the HRL model are continuously updated
until the optimal action policy to the target is obtained. The network architectures of the H_DQN and
L_DQN are presented in Figure 8b. The input to the H_DQN is the ensemble activity of 30 place cells
and the 14 outputs refer to the possible 14 subgoals. The input to the L_DQN is the ensemble activity
of 30 place cells together with the one-hot subgoal representation and its eight outputs represent the
Q-values with respect to the eight primitive actions. To train the network, we use the Adam optimizer
and the learning rate θH and θL are set to be 0.0005 and 0.0001, respectively, both with a discount rate
of 0.99. The subgoal/action selection policy is based on the ε-greedy with ε annealed from 1 to 0.1
over the duration of training. The sizes of the experience memories DH and DL are set to be 3000
and 8000, respectively, and mini-batches of 32 are used to select randomly retrieve experiences from
these memories for learning and updating the neural network parameters. Additionally, we adopt the
two-phase training procedure described in [42]. (1) In the first phase, the exploration parameter εH
of the high-level policy is set to 1 and only the low-level policy is trained. Particularly, we limit the
moving steps of the low-level policy to avoid challenging long-distance subgoal reachings. This results
in a pre-trained low-level policy that is able to effectively solve a subset of subgoals that are within a
certain range of the current position. (2) In the second phase, the high-level and low-level policies are
jointly trained.

5.4.2. Simulation Results and Comparision

In this part, we let the robot act according to the policies derived from the training in order to test
the learned subgoal- and action-selection policies. For comparison, we also present the learning results
of three baseline systems. For the same navigation task, the first baseline system uses a standard RL
approach, D-DQN, which learns action policy using extrinsic rewards only. The second and third
baseline systems are almost the same as the one described above except that they use topological maps
of different size, which consists of six and 30 PC-GWR nodes, respectively. These baseline systems
adopt the same training procedures and parameters described above, where the first baseline can be
regarded as an ablation study.

Figure 9 shows the learning curves of different learning paradigms over the learning process.
The curves demonstrate the total reward that the robot would receive under the policy learned at that
point of the learning process and are all averaged over ten learning runs. We only show the learning
curves up to the 44,000 episodes in order to compare the learning speed of different learning paradigms.
As we can see, after about 40,000 episodes, the action policy learned by the standard RL still does
not show good performance, while the policies learned using subgoals have all already converged.
Note that the policy learned by the standard RL also converges to the same overall performance after
about 75,000 learning episodes (not shown). This demonstrates the advantage of using the proposed
HRL approach in solving navigation task in a large environment with sparse rewards.
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Figure 9. Learning curves of the robot under different learning paradigms, as functions of learning episodes.

Table 1 reports the evolution of the subgoals predicted by the H_DQN during the learning process.
After about 30K learning episodes, we can see that the H_DQN is able to predict the correct subgoals
for the robot to reach. This can be considered as the high-level planning on the PC-GWR.

Table 1. The subgoal predicted by the H_DQN at each state during the learning process.

PC-GWR Node
Subgoal Choice

Episode 0.2K Episode 3K Episode 10K Episode 20K Episode 30K Episode 40K

1 4 2 2 4 4 4
2 12 3 1 5 5 5
3 8 2 1 2 5 5
4 8 1 8 1 6 6
5 6 7 2 3 7 7
6 7 4 8 7 9 9
7 3 10 9 5 10 10
8 11 5 9 6 12 12
9 5 6 7 11 11 11
10 14 7 14 14 14 14
11 2 12 12 13 13 13
12 9 11 8 8 13 13
13 4 14 14 11 14 14
14 3 12 14 14 14 14

Furthermore, we also compare the performance of learning using different numbers of subgoals
(PC-GWR nodes) in the HRL paradigm. As shown in Figure 9, increasing the subgoal number from six
to 14 increases the learning speed. However, increasing this number to 30 greatly decreases the learning
speed. A PC-GWR with more nodes means a less sparse topological map which can represent the
environment at a more fine-grained level. Although this could result in an easier subgoal reaching since
the distance is relatively shorter, this makes the planning on the high level become much more complex.
Meanwhile, it also means that the input space to the L_DQN is bigger, as shown in Figure 8b, which
increases the training difficulty. This is the reason why keeping increasing the number of subgoals
will not consistently increase the learning speed. Thus, in our learning approach, representing the
environment with an appropriate abstraction level, i.e., using the PC-GWR with an appropriate size,
is an important factor for efficient learning. Table 2 summarizes the final navigation performances of
different learning paradigms.
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Table 2. Performance of the learned policies in different learning paradigms.

Paradigm Subgoal Number Convergence Episodes Reward Avg. Trajectory Length

Paradigm 1 6 34.7k 1.85 450.3
Paradigm 2 14 27.6k 1.7 426.7
Paradigm 3 30 39.2k 1.4 510.8

D-DQN (44K) 0 – −0.1 875.3
D-DQN (Converged) 0 75.0k 2.0 370.6

Figure 10 presents the moving trajectory when the robot acts according to the learned policies
during the navigation. The robot’s current position is represented by the red node in the PC-GWR and
its current subgoal is represented by the blue node in the PC-GWR. For example, during the starting
phase, the robot’s position is represented by node 1 in the PC-GWR and its current subgoal is node 4.
During navigation, the robot moves towards the current subgoal step by step. Upon reaching the
current subgoal (represented in the PC-GWR), the robot’s current state representation in the PC-GWR
changes and a new subgoal is generated. This process repeats until the robot reaches the target location,
during which nodes {4, 6, 9, 11, 13, 14} are sequentially selected to be the subgoal. Notice that the robot
always changes its subgoal before reaching the exact position of the subgoal. This is due to that each
node in the PC-GWR represents an area rather than a single position. Thus, when moving towards a
subgoal, the robot will consider itself already reaching the subgoal before reaching the exact position
of the subgoal. However, the final navigation performance of our system is not affected by these
localization errors. The program is running on a low-performance PC with an Intel Core i5-6200U
CPU and the process time from receiving an image to generating an action command is about 0.75 s on
average, which is sufficient for the real-time application.

(a) (b) (c)

Figure 10. The navigation trajectory under the action policy after learning. (a) starting phase; (b) middle
phase; and (c) ending phase. The robot’s current position is represented by the red node in the PC-GWR
and its current subgoal is represented by the blue node. The red solid line represents the robot’s moving
trajectory and the color of the passed PC-GWR nodes by the current time is changed into green.

6. Discussion

The proposed navigation system enables a robot to perform the goal-directed navigation based
on learned place and HD cells. Compared with our previously proposed systems, the system present
in this paper requires neither human efforts nor an accurate world model to perform planning.
The navigational behaviors are learned automatically during interacting with the environment. Despite
its success and efficiency, there are still several improvements can be made to the current system.

The SFA model is able to enable the self-organization of certain hippocampal cell types through
learning from visual stimuli, in an attempt to reveal their formation mechanism from a computational
perspective. However, it is a feed-forward model without any memory mechanisms, which means that
it is certainly not sufficient to explain all the characteristics found in the hippocampus. For example,
place cells have clearly demonstrated their essential roles in some memory-related tasks [68,69].
Also, our SFA model contains no recurrent connectivity [70] and path integration [71] mechanisms
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that are usually considered in theoretical hippocampal modelings. However, from a practical point
of view, this simplicity also makes it outperform many other models in the way that it is convenient
to model feature responses akin to those of hippocampal cell types in a real robotic context. And the
type of learned cells solely depends on the relevant input statistics, which provides a big convenience
for purposed learning. In this work, we aim to solve practical robotic tasks based on the learning
representations from the SFA model, rather than elaborating the exact formation mechanisms of the
hippocampal cells in animals’ brain.

Considering that the proposed system uses only a robot’s own onboard camera, it will be very
easy to implement this system on a robot platform. Although the simulated robot uses a wide field of
view (FOV) of about 320◦ to simulate a rat’s FOV [64], it has been claimed that small FOVs down to
60◦ could also produce the same place and HD cells [19]. We need to further test this considering the
complexities of the real world such as changing lighting conditions and noisy sensory information.
Besides, the simplicity of using only an RGB camera is also a big challenge to keep the accuracy and
robustness of the system, which might lead to failures in the real world. To solve this, a promising
solution is to resort to other sensors, like Lidar, depth camera, etc., to compensate for the limits of
using only a camera. It will improve the completeness of our navigation system by integrating it with
other sensory information.

In the current HRL paradigm, the low-level policy can be extended to work with a continuous
action space, which is more natural and flexible in performing state transitions. Therefore, learning
algorithms for continuous action spaces should be considered, such as Deep Deterministic Policy
Gradient (DDPG) [27] and Asynchronous Advantage Actor-Critic (A3C) [72]. In addition, the current
system can be extended to perform navigations in dynamic environments. Like many RL-based
approaches, an open question to our current system is how to transfer the learned action policies from
the simulation into the real world. Many works [73,74] solve this by training in extremely realistic,
higher-fidelity simulated environments. However, our system works based on the SFA learning
representations which are mainly related to the temporal feature among video sequences, rather the
contextual information of a single image. This might have a loss requirement on the fidelity of the
simulator. We will focus on this part in our future work.

7. Conclusions

In this paper, we have proposed a navigation system that enables a robot to navigate to the target
position based on learning representations from its visual system only. It is a bio-inspired navigation
system that involves modeling place and HD cells from the vision in an unsupervised fashion and
performing navigation by implementing HRL on top of these cells’ activities. Specifically, we extend
the traditional SFA model for purposeful learning of place and HD cells, by restricting the learning
to separate movement phases. This enables to learn two distinct clusters of place cells and HD cells
simultaneously through directly learning from visual inputs within just one exploration. Based on
the learned different cell types, we build two topological maps using two GWR networks to learn
separately from their activities, which enables the robot to perform localization and orientation
detection. Furthermore, to accomplish the functional role of these hippocampal cells in spatial
navigation, HRL is performed to learn action policies toward the target position, where the spatial state
is represented by the ensemble activity of place cells and the hierarchy is provided by the topological
map which is built in a self-organizing way. The HRL consists of a high-level policy working in
the topological map to select subgoals and a low-level policy working in the space of the place cell
activities to complete the selected subgoals. Experimental results have demonstrated the validity
and efficiency of the proposed system in navigating a robot to the target position using just its visual
system. Comparisons with baselines systems, e.g., RL, have shown the efficiency of the HRL in solving
our navigation tasks. In future work, we will validate the proposed navigation system in the real
world, which involves two challenging tasks: (1) modeling place and HD cells on a real robot using its
camera; (2) transferring the learned policies in the simulation to the real world.



Sensors 2019, 19, 1576 20 of 23

Author Contributions: Conceptualization, X.Z.; Methodology, X.Z. and T.B.; Software, X.Z. and Y.H.; Validation,
X.Z. and T.B.; Funding acquisition, Y.G.; Supervision, Y.G.; Project administration, Y.G. and Y.H.; Writing—original
draft preparation, X.Z.; Writing—review and editing, Y.G., Y.H. and T.B.

Acknowledgments: This work was partially supported by the National Natural Science Foundation of China
(NSFC) under Grant 51309058 and the Science Foundation of Heilongjiang Province under Grant E2017015.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tolman, E.C. Cognitive maps in rats and men. Psychol. Rev. 1948, 55, 189. [CrossRef]
2. Gallistel, C.R. Animal cognition: The representation of space, time and number. Annu. Rev. Psychol. 1989,

40, 155–189. [CrossRef]
3. Breathnach, C. The hippocampus as a cognitive map. Philos. Stud. 1980, 27, 263–267. [CrossRef]
4. McNaughton, B.L.; Battaglia, F.P.; Jensen, O.; Moser, E.I.; Moser, M.B. Path integration and the neural basis

of the ‘cognitive map’. Nat. Rev. Neurosci. 2006, 7, 663. [CrossRef] [PubMed]
5. O’Keefe, J.; Dostrovsky, J. The hippocampus as a spatial map: Preliminary evidence from unit activity in

the freely-moving rat. Brain Res. 1971, 34, 171–175. [CrossRef]
6. Taube, J.S.; Muller, R.U.; Ranck, J.B. Head-direction cells recorded from the postsubiculum in freely moving

rats. I. Description and quantitative analysis. J. Neurosci. 1990, 10, 420–435. [CrossRef]
7. Markus, E.J.; Qin, Y.L.; Leonard, B.; Skaggs, W.E.; McNaughton, B.L.; Barnes, C.A. Interactions between location

and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 1995, 15, 7079–7094.
[CrossRef]

8. Chen, L.L.; Lin, L.H.; Green, E.J.; Barnes, C.A.; McNaughton, B.L. Head-direction cells in the rat posterior
cortex. Exp. Brain Res. 1994, 101, 8–23. [CrossRef] [PubMed]

9. Stackman, R.W.; Taube, J.S. Firing properties of rat lateral mammillary single units: Head direction, head
pitch, and angular head velocity. J. Neurosci. 1998, 18, 9020–9037. [CrossRef]

10. Sharp, P.E.; Blair, H.T.; Cho, J. The anatomical and computational basis of the rat head-direction cell signal.
Trends Neurosci. 2001, 24, 289–294. [CrossRef]

11. Moser, E.I.; Kropff, E.; Moser, M.B. Place cells, grid cells, and the brain’s spatial representation system.
Annu. Rev. Neurosci. 2008, 31, 69–89. [CrossRef]

12. Solstad, T.; Boccara, C.N.; Kropff, E.; Moser, M.B.; Moser, E.I. Representation of geometric borders in the
entorhinal cortex. Science 2008, 322, 1865–1868. [CrossRef]

13. Arleo, A.; Gerstner, W. Spatial cognition and neuro-mimetic navigation: A model of hippocampal place
cell activity. Biol. Cybern. 2000, 83, 287–299. [CrossRef]

14. Sheynikhovich, D.; Chavarriaga, R.; Strösslin, T.; Gerstner, W. Spatial representation and navigation
in a bio-inspired robot. In Biomimetic Neural Learning for Intelligent Robots; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 245–264.

15. Chokshi, K.; Wermter, S.; Weber, C. Learning localisation based on landmarks using self-organisation.
In Artificial Neural Networks and Neural Information Processing—ICANN/ICONIP 2003; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 504–511.

16. Hartley, T.; Burgess, N.; Lever, C.; Cacucci, F.; O’Keefe, J. Modeling place fields in terms of the cortical
inputs to the hippocampus. Hippocampus 2000, 10, 369–379. [CrossRef]

17. Cuperlier, N.; Quoy, M.; Gaussier, P. Neurobiologically inspired mobile robot navigation and planning.
Front. Neurorobot. 2007, 1, 3. [CrossRef]

18. Wiskott, L.; Sejnowski, T.J. Slow feature analysis: Unsupervised learning of invariances. Neural Comput.
2002, 14, 715–770. [CrossRef]

19. Franzius, M.; Sprekeler, H.; Wiskott, L. Slowness and sparseness lead to place, head-direction, and
spatial-view cells. PLoS Comput. Biol. 2007, 3, e166. [CrossRef]

20. Schönfeld, F.; Wiskott, L. Modeling place field activity with hierarchical slow feature analysis. Front.
Comput. Neurosci. 2015, 9, 51.

21. Brown, E.N.; Frank, L.M.; Tang, D.; Quirk, M.C.; Wilson, M.A. A statistical paradigm for neural spike
train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells.
J. Neurosci. 1998, 18, 7411–7425. [CrossRef]

http://dx.doi.org/10.1037/h0061626
http://dx.doi.org/10.1146/annurev.ps.40.020189.001103
http://dx.doi.org/10.5840/philstudies19802725
http://dx.doi.org/10.1038/nrn1932
http://www.ncbi.nlm.nih.gov/pubmed/16858394
http://dx.doi.org/10.1016/0006-8993(71)90358-1
http://dx.doi.org/10.1523/JNEUROSCI.10-02-00420.1990
http://dx.doi.org/10.1523/JNEUROSCI.15-11-07079.1995
http://dx.doi.org/10.1007/BF00243212
http://www.ncbi.nlm.nih.gov/pubmed/7843305
http://dx.doi.org/10.1523/JNEUROSCI.18-21-09020.1998
http://dx.doi.org/10.1016/S0166-2236(00)01797-5
http://dx.doi.org/10.1146/annurev.neuro.31.061307.090723
http://dx.doi.org/10.1126/science.1166466
http://dx.doi.org/10.1007/s004220000171
http://dx.doi.org/10.1002/1098-1063(2000)10:4<369::AID-HIPO3>3.0.CO;2-0
http://dx.doi.org/10.3389/neuro.12.003.2007
http://dx.doi.org/10.1162/089976602317318938
http://dx.doi.org/10.1371/journal.pcbi.0030166
http://dx.doi.org/10.1523/JNEUROSCI.18-18-07411.1998


Sensors 2019, 19, 1576 21 of 23

22. Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell
ensemble: A theory. J. Neurosci. 1996, 16, 2112–2126. [CrossRef]

23. Robitsek, R.J.; White, J.A.; Eichenbaum, H. Place cell activation predicts subsequent memory. Behav. Brain Res.
2013, 254, 65–72. [CrossRef]

24. Pfeiffer, B.E.; Foster, D.J. Hippocampal place-cell sequences depict future paths to remembered goals.
Nature 2013, 497, 74. [CrossRef]

25. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press Cambridge: Cambridge, MA,
USA, 1998; Volume 135.

26. Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013,
32, 1238–1274. [CrossRef]

27. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control
with deep reinforcement learning. arXiv 2015, arXiv:1509.02971.

28. Li, J.; Monroe, W.; Ritter, A.; Galley, M.; Gao, J.; Jurafsky, D. Deep reinforcement learning for dialogue
generation. arXiv 2016, arXiv:1606.01541.

29. Barto, A.G.; Mahadevan, S. Recent advances in hierarchical reinforcement learning. Discret. Event Dyn. Syst.
2003, 13, 41–77. [CrossRef]

30. Dietterich, T.G. Hierarchical reinforcement learning with the MAXQ value function decomposition. J. Artif.
Intell. Res. 2000, 13, 227–303. [CrossRef]

31. Zhou, X.; Weber, C.; Wermter, S. Robot localization and orientation detection based on place cells and
head-direction cells. In International Conference on Artificial Neural Networks; Springer: Cham, Switzerland,
2017; pp. 137–145.

32. Zhou, X.; Weber, C.; Wermter, S. A Self-organizing Method for Robot Navigation based on Learned Place
and Head-direction cells. In Proceedings of the 2018 International Joint Conference on Neural Networks
(IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.

33. Rolls, E. The mechanisms for pattern completion and pattern separation in the hippocampus.
Front. Syst. Neurosci. 2013, 7, 74. [CrossRef] [PubMed]

34. Rolls, E.T.; Stringer, S.M.; Elliot, T. Entorhinal cortex grid cells can map to hippocampal place cells by
competitive learning. Netw. Comput. Neural Syst. 2006, 17, 447–465. [CrossRef]

35. Solstad, T.; Moser, E.I.; Einevoll, G.T. From grid cells to place cells: A mathematical model. Hippocampus
2006, 16, 1026–1031. [CrossRef]

36. Milford, M.; Wyeth, G. Persistent navigation and mapping using a biologically inspired SLAM system.
Int. J. Robot. Res. 2010, 29, 1131–1153. [CrossRef]

37. Tejera, G.; Barrera, A.; Llofriu, M.; Weitzenfeld, A. Solving uncertainty during robot navigation by
integrating grid cell and place cell firing based on rat spatial cognition studies. In Proceedings of the 2013
16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, 25–29 November
2013; pp. 1–6.

38. Giovannangeli, C.; Gaussier, P. Autonomous vision-based navigation: Goal-oriented action planning
by transient states prediction, cognitive map building, and sensory-motor learning. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, Nice, France,
22–26 September 2008; pp. 676–683.

39. Strösslin, T.; Sheynikhovich, D.; Chavarriaga, R.; Gerstner, W. Robust self-localisation and navigation
based on hippocampal place cells. Neural Netw. 2005, 18, 1125–1140. [CrossRef]

40. Erdem, U.M.; Hasselmo, M. A goal-directed spatial navigation model using forward trajectory planning
based on grid cells. Eur. J. Neurosci. 2012, 35, 916–931. [CrossRef]

41. Zhou, X.; Weber, C.; Bothe, C.; Wermter, S. A Hybrid Planning Strategy Through Learning from Vision
for Target-Directed Navigation. In International Conference on Artificial Neural Networks; Springer: Cham,
Switzerland, 2018; pp. 304–311.

42. Kulkarni, T.D.; Narasimhan, K.; Saeedi, A.; Tenenbaum, J. Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motivation. In Proceedings of the Advances in Neural
Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 3675–3683.

43. Tang, D.; Li, X.; Gao, J.; Wang, C.; Li, L.; Jebara, T. Subgoal Discovery for Hierarchical Dialogue Policy
Learning. arXiv 2018, arXiv:1804.07855.

http://dx.doi.org/10.1523/JNEUROSCI.16-06-02112.1996
http://dx.doi.org/10.1016/j.bbr.2012.12.034
http://dx.doi.org/10.1038/nature12112
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1023/A:1022140919877
http://dx.doi.org/10.1613/jair.639
http://dx.doi.org/10.3389/fnsys.2013.00074
http://www.ncbi.nlm.nih.gov/pubmed/24198767
http://dx.doi.org/10.1080/09548980601064846
http://dx.doi.org/10.1002/hipo.20244
http://dx.doi.org/10.1177/0278364909340592
http://dx.doi.org/10.1016/j.neunet.2005.08.012
http://dx.doi.org/10.1111/j.1460-9568.2012.08015.x


Sensors 2019, 19, 1576 22 of 23

44. Peng, B.; Li, X.; Li, L.; Gao, J.; Celikyilmaz, A.; Lee, S.; Wong, K.F. Composite task-completion dialogue
policy learning via hierarchical deep reinforcement learning. arXiv 2017, arXiv:1704.03084.

45. Sutton, R.S.; Precup, D.; Singh, S. Between MDPs and semi-MDPs: A framework for temporal abstraction
in reinforcement learning. Artif. Intell. 1999, 112, 181–211. [CrossRef]

46. Sorg, J.; Singh, S. Linear options. In Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: Volume 1. International Foundation for Autonomous Agents and
Multiagent Systems, Toronto, ON, Canada, 10–14 May 2010; pp. 31–38.

47. Szepesvari, C.; Sutton, R.S.; Modayil, J.; Bhatnagar, S. Universal option models. In Proceedings of
the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014;
pp. 990–998.

48. Goel, S.; Huber, M. Subgoal discovery for hierarchical reinforcement learning using learned policies.
In Proceedings of the FLAIRS Conference, St. Augustine, FL, USA, 12–14 May 2003; pp. 346–350.
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