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Abstract: This paper proposed a plasmonic resonator system, consisting of a metal-insulator-metal
structure and two stubs, and a Fano resonance arose in its transmittance, which resulted from the
coupling between the two stubs. On the basis of the proposed structure, a circle and a ring cavity are
separately added above the stubs to create different coupled plasmonic structures, providing triple
and quadruple Fano resonances, respectively. Additionally, by adjusting the geometric parameters
of the system, multiple Fano Resonances obtained can be tuned. The proposed structure can be
served as a high efficient refractive index sensor, yielding a sensitivity of 2000 nm/RIU and figure of
merit (FOM) of 4.05× 104 and performing better than most of the similar structures. It is believed
that the proposed structure may support substantial applications for on-chip sensors, slow light and
nonlinear devices in highly integrated photonic circuits.
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1. Introduction

Fano resonance arises from the coupling and interference between a discrete state and a continuous
state [1,2]. Due to its sharp asymmetric characteristic in the spectrum and the strong-field enhancement,
Fano resonance is applied widely in sensors [3–5], filters [6] and nonlinear processes [7]. Additionally,
Fano resonance is investigated in metallic nanostructure since the perfect trait of avoiding the
diffraction limit of light [1] owned by Surface plasmon polaritons (SPPs). Consequently, different kinds
of plasmonic structures, such as rectangular cavities [8], plasmonic nanoclusters [9,10], nano-slits [11]
and metal-insulator-metal (MIM) waveguide structures [12–15], have been proposed to gain Fano
resonance. Compared to the other structures, MIM waveguide structures can confine the light of
deep sub-wavelength. Therefore, they are considered as the most promising candidates to develop
highly integrated optical devices or circuits and paid more attention. A large number of devices have
been designed and demonstrated in theory and in experiments, covering filters [16], sensors [8,13],
and demultiplexers [17,18]. Furthermore, due to the development of highly integrated photonic
circuits and the advantage for enhanced biochemical sensing, multicolor spectroscopy and broadband
nonlinear processes [19–21], multiple Fano resonances attract more attention. Recently, different
kinds of structures inducing multiple Fano resonances are proposed and applied to the nanosensor.
For example, Chao Li et al. designed Multiple Fano Resonances based on plasmonic resonator system
with end-coupled cavities for high-performance nanosensor [22] with a sensitivity of 1100 nm/RIU
and a figure of merit (FOM) about 2.73× 104; YY. Zhang et al. proposed a triple Fano resonance
structure [8] and applied to nanosensor with a sensitivity of 800 nm/RIU and maximum FOM about
1.355× 104. Additionally, our previous work [13] proposed a multiple Fano resonances system and
served as a nanosensor, yielding a sensitivity of 2000 nm/RIU and figure of merit (FOM) about 3000.
However, most of the previous works perform either better sensitivity or better FOM, i.e., those works
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rarely own both high sensitivity and FOM. Therefore, there is great demand to explore the on-chip
MIM structures to obtain multiple Fano resonances for nanosensors which show higher performance.

In this work, a plasmonic system consisting of a MIM waveguide and two stubs is firstly designed as
a basic model. The quick change of phase shift caused by two stubs induces a Fano resonance. On the basis
of the proposed model, a circle and a ring cavity are separately added above the stubs to induce multiple
Fano resonances, and successfully, they can give triple and quadruple Fano resonances, respectively.
Because of the different mechanisms, multiple Fano resonances can be adjusted specifically by changing
the parameters of the circle or ring system. Applied to the refractive index sensor, the proposed structure
shows high performance with a sensitivity of 2000 nm/RIU and figure of merit(FOM) of 4.05× 104.
Compared with the previous works [3,4,8,13,22–30], the proposed nanosensor performs better than most
of them. Additionally, the maximum group delay time reaches 1.171 ps, which is promising in slow light
areas. It is believed that the proposed structure may support substantial applications for nano-sensor,
slow light and nonlinear devices in highly integrated photonic circuits.

2. Basic Model and Theoretical Analysis

The schematic diagram of the basic model is illustrated in Figure 1a, which shows that two stubs
side on the insulator of a MIM waveguide. Stub structures have been provided by some previous
works [15,31,32]. Herein, we proposed the two stubs structure to be the initial model of multiple Fano
resonance structures. Figure 1a is a two-dimensional model, the cross-section (x-y plane) schematic,
and the blue and white parts represent the Ag and Air, respectively. The simulation tool used is
COMSOL Multiphysics based on the finite element method (FEM). Additionally, 2D simulations
are employed in this paper. Therefore, the length in the z-axis is ignored and other parameters are
indicated in Figure 1a. In details, the total length of the proposed structure, corresponding to the x-axis,
is 5 um. Additionally, the height of the structure corresponding to the y-axis is 3 um. In order to block
up higher-order modes, the width of the insulator is set as 50 nm, which is fixed through the paper.
The width w and the height H of the two stubs are both given as 50 nm and 200 nm, respectively.
The coupling distance between the two subs is g1 = 10 nm, which is restricted by the nanofabrication
techniques. Utilizing the COMSOL Multiphysics, the transmission spectrum is numerically calculated
to identify the optical properties of the model. Additionally, the transmission of SPPs is defined by
using the SPPs power flows of the system (containing both the two stubs) to divide by the SPP power
flows without stubs [23–25]. From the Drude model:

εm = ε∞ −ω2
p/
(

ω2 + iωγ
)

(1)

where ε∞ = 3.7, ωp = 9.1 eV, and γ = 0.018 eV [33], we can get the permittivity of Ag.
According to the standing wave theory [34,35], the resonance arises when a resonator cavity

satisfies the condition:
4πRe

(
ne f f

)
Le f f

λ
+ ϕ = 2Nπ, N = 1, 2, 3 . . . (2)

Consequently, the resonant wavelength can be regarded as

λ =
2Re

(
ne f f

)
Le f f

N − ϕ/2π
, N = 1, 2, 3 . . . (3)

where Le f f represents the effective length of the resonator, N is the resonant order, ϕ is the phase shift

caused by the reflection in cavities and Re
(

ne f f

)
is the real part of the effective index ne f f of the SPPs

in the MIM waveguide, which can be obtained from the dispersion equation [36]:

εikm + εmkitanh(−jkiw/2) = 0 (4)



Sensors 2019, 19, 1559 3 of 14

where ki,m =
√

εi,m(2π/λ)2 − β2 shows the transverse propagation constant in air and silver, respectively,
w is the width of the insulator, β represents the propagation constant, which is defined as β = 2πne f f /λ

and εi,m represents the dielectric constants of air and silver, respectively. The optical phase retardation and

the propagation loss coefficient of the plasmonic mode are determined by the real part Re
(

ne f f

)
and the

imaginary part Im
(

ne f f

)
, respectively. Due to the proposed structure is on a nanometer scale, Im

(
ne f f

)
can be ignored and more attention is paid to Re

(
ne f f

)
to obtain the relative phase [26].
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Figure 1. (a) The schematic diagram of the basic model composed of two stubs and a metal-insulator-

metal (MIM) waveguide structure. (b) The red solid line: the transmittance spectrum of the basic 

model (two coupling stubs) with H = 200 nm and g1 = 10 nm; the blue dash line: the transmittance 

spectrum of the MIM waveguide with only one stub, herein, H = 200 nm and g1 = 10 nm. (c) The phase 

shift spectrum of the basic model. (d) The 𝐻𝑧  field intensity distribution at Dip, i.e., λ = 648 nm.  

(e) The 𝐻𝑧 field intensity distribution at the Fano resonance dip, i.e., λ = 1754 nm. (f) The 𝐻𝑧 field 

intensity distribution at the FR, i.e., λ = 1837 nm. 

In Figure 1b, the red solid line and the blue dash line show the transmission spectra of the MIM 

waveguide with two stubs and with only one stub, respectively. Obviously, a dip with λ = 648 nm 

and a Fano resonance with λ = 1837 nm arise in the transmission spectrum of the basic system, 

called Dip and FR, respectively. Additionally, the phase responses are displayed in Figure 1c. The 

quick change of the phase shift caused by the coherence between the two stubs can explain the origin 

of the Dip and FR. Compared to Figure 1b, the dips of phase shift in Figure 1c correspond well with 

the resonant wavelengths of Dip and FR, respectively. To further identify the underlying physics of the 
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nm) and FR (λ = 1837 nm) are displayed in Figure 1d,e,f, respectively. Observing Figure 1d,e, it can 

be seen that the 𝐻𝑧 fields in the two stubs are antiphase, which causes destructive interference and 

transmission suppression, yielding the Dip and the dip of FR, respectively. Contrary to Figure 1d,e, 

the 𝐻𝑧  fields in the two stubs are in-phase in Figure 1f, causing instructive interference and 

transmission enhancement and yielding the FR. Additionally, the analysis above is in good 

agreement with the standing wave theory.  

3. A Way to Induce Multiple Fano Resonances 
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Figure 1. (a) The schematic diagram of the basic model composed of two stubs and a
metal-insulator-metal (MIM) waveguide structure. (b) The red solid line: the transmittance spectrum
of the basic model (two coupling stubs) with H = 200 nm and g1 = 10 nm; the blue dash line: the
transmittance spectrum of the MIM waveguide with only one stub, herein, H = 200 nm and g1 = 10 nm.
(c) The phase shift spectrum of the basic model. (d) The Hz field intensity distribution at Dip, i.e.,
λ = 648 nm. (e) The Hz field intensity distribution at the Fano resonance dip, i.e., λ = 1754 nm. (f)
The Hz field intensity distribution at the FR, i.e., λ = 1837 nm.

In Figure 1b, the red solid line and the blue dash line show the transmission spectra of the MIM
waveguide with two stubs and with only one stub, respectively. Obviously, a dip with λ = 648 nm and a
Fano resonance with λ = 1837 nm arise in the transmission spectrum of the basic system, called Dip
and FR, respectively. Additionally, the phase responses are displayed in Figure 1c. The quick change
of the phase shift caused by the coherence between the two stubs can explain the origin of the Dip
and FR. Compared to Figure 1b, the dips of phase shift in Figure 1c correspond well with the resonant
wavelengths of Dip and FR, respectively. To further identify the underlying physics of the Dip and FR
in the basic system, the Hz field distribution at Dip (λ = 648 nm), the dip of FR (λ = 1754 nm) and FR
(λ = 1837 nm) are displayed in Figure 1d,e,f, respectively. Observing Figure 1d,e, it can be seen that the Hz

fields in the two stubs are antiphase, which causes destructive interference and transmission suppression,
yielding the Dip and the dip of FR, respectively. Contrary to Figure 1d,e, the Hz fields in the two stubs are
in-phase in Figure 1f, causing instructive interference and transmission enhancement and yielding the FR.
Additionally, the analysis above is in good agreement with the standing wave theory.

3. A Way to Induce Multiple Fano Resonances

It is generally known that Fano resonance originates from the coupling and interference of the
narrow discrete state and the broad continuum state [13]. Based on the theory, new cavities, easily
exciting the narrow discrete state, are added on the base model to induce multiple Fano resonances.
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3.1. Adding a Circle Cavity to Induce Triple Fano Resonances.

Multiple discrete states can be excited in a plasmonic circle cavity. Besides, the circle cavity owns
the characteristics of the high-quality factor, easy fabrication and so on. Therefore, a circle cavity is
added on the two stubs with coupling distance g2 = 10 nm to induce multiple Fano resonances, as is
shown in Figure 2a. Herein, the radius of the circle cavity is 340 nm, and other parameters are the
same as the basic model. To evaluate the optical properties of the extended structure and analyze the
mechanisms of Fano resonances, the transmission spectra of the extended system, the MIM waveguide
with only the circle cavity and the MIM waveguide with only two stubs are numerically calculated and
shown in Figure 2b by the red solid line, the blue dash line and the green dash-dot line, respectively.
The transmission spectra of the extended system in Figure 2b compared to the red line in Figure 1b,
Dip and FR shift slightly and two new Fano resonances arise, which are called NFR1 and NFR2,
respectively. From Figure 2b, it can be found that NFR1 and NFR2 originate from the coupling and
interference of the narrow discrete state, induced by the circle cavity (the blue dash line), and the
broad continuum state, induced by the two stubs (the green dash-dot line). Furthermore, the phase
shift spectrum of the extended structure and the normalized field intensity distribution (|HZ|2) at
the position of Dip(λ = 661 nm), NFR1(λ = 802 nm), NFR2(λ = 1281 nm), FR(λ = 1880 nm)

are displayed in Figure 2c–g, respectively, to explain the mechanisms of the triple Fano resonances.
In comparison between Figure 2b,c, the dips of phase shift spectrum in Figure 2c are coincident with
the resonant wavelengths of Fano resonances in Figure 2b, causing triple Fano resonances. The field
distributions at Dip and FR in Figure 2d,g show that they are still from the coupling of the two stubs,
while the 2nd circle mode and 1st circle mode can be observed in Figure 2e,f, which induce NFR1 and
NFR2, respectively.
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Figure 2. (a) The schematic diagram of the structure added a circular cavity on the two stubs. (b) The 

transmittance spectra of the extend model with H = 200 nm, g1 = g2 = 10 nm and R = 340 nm (the red 
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Figure 2. (a) The schematic diagram of the structure added a circular cavity on the two stubs. (b) The
transmittance spectra of the extend model with H = 200 nm, g1 = g2 = 10 nm and R = 340 nm (the red
solid line), the MIM waveguide with a circle cavity (the blue dash line) and the MIM waveguide with
two stubs (the green dash-dot line). (c) The phase shift spectrum of the extended structure. (d–g) The
normalized field intensity distribution (|HZ|2) at λ = 661 nm (d), λ = 802 nm (e), λ = 1281 nm (f),
and λ = 1880 nm (g).

Additionally, it is found that the transmission spectrum of the extend system can be tuned by
adjusting the parameters of its structures. Herein, the transmission spectra are numerically calculated
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with variable R but the other parameters stay unchanged, as is shown in Figure 3a. Based on Figure 3a,
we gained the resonant wavelengths of Dip, NFR1, NFR2, FR with different R, as is displayed in
Figure 3b. It can be observed that Dip and FR keep fixed through changing R while NFR1 and NFR2
both make a linear redshift. It is consistent with Figure 2d–g, which show that NFR1 and NFR2 come
from the circle cavity modes but Dip and FR arise from the coupling of the two stubs. Additionally,
the coupling distance g2 is adjusted to better control the extend system, which is shown in Figure 3c.
Figure 3c witnessed little changes on the resonant wavelengths of Dip, NFR1, NFR2 and FR. However,
the transmittance of NFR1 and NFR2 decreased gradually with increasing g2 but FR observed the
converse result. This can be explained in Figure 2d–g. The decreasing of NFR1 and NFR2, coming
from the circle cavity modes, is caused by the weakened coupling between stubs and the circle cavity
with increasing g2. However, FR mainly originates from the coupling of the two stubs, therefore,
it is easy-to-understand for the converse change. Based on the adjusting of the structure parameters,
the extended system can be better controlled and tuned.
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Figure 3. (a) The transmission spectra of the extended structure with different R from 300 nm to 360 nm.
(b) The resonant wavelengths of Dip, NFR1, NFR2 and FR with variable R. (c) The transmission spectra
of the extended structure with different g2 from 10 nm to 18 nm.
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3.2. Adding a Ring Cavity to Induce Quadruple Fano Resonances.

Similarly, the ring cavity can also produce multiple discrete states and owns the characteristics of
the high-quality factor and easy fabrication, which is added on the two stubs to induce multiple Fano
resonances. As is shown in Figure 4a, the coupling distance is set as g2 = 10 nm and the outer radius
(R1) and inner radius of (R2) the ring is 340 nm and 290 nm, respectively. Herein, the other parameters
keep the same with the basic model. Figure 4b indicates the transmission spectrum of the extended
structure (the red solid line in Figure 4b), the MIM waveguide with only the ring cavity (the black dash
line in Figure 4b) and the MIM waveguide with only two stubs (the green dash-dot line in Figure 4b).
In the comparison between the red line in Figure 4b and the green dash-dot line Figure 4b, we can
see that Dip and FR shift slightly and also that the three new Fano resonance line-shapes arise in
Figure 4b, which are called NFR3, NFR4 and NFR5 from left to right. Observing Figure 4b, it can be
found that NFR1 and NFR2 are derived from the coupling and interference of the narrow discrete
state, induced by the ring cavity (the black dash line) and the broad continuum state, induced by
the two stubs (the green dash-dot line). In order to further identify the derivation of the quadruple
Fano resonances, the phase spectrum of the extended structure and the normalized field intensity
distribution (|HZ|2) at the position of Dip(λ = 662 nm), NFR3(λ = 714 nm), NFR4(λ = 932 nm),
NFR5(λ = 1376 nm) FR(λ = 1882 nm) are displayed in Figure 4c–h, respectively. Compared to the
resonant wavelengths of the quadruple Fano resonances in Figure 4b, the dips of phase shift spectrum
in Figure 4c are coincident with them, which induces the quadruple Fano resonances. Additionally,
it can be explained by the field distributions displayed in Figure 4d–h. Obviously, Figure 4d,h are the
same as Figure 2d,g, respectively, meaning the same generation mechanism. From Figure 4e–g, it can
be observed that the NFR3 originates from the 8th ring mode, NFR4 comes from the 6th ring mode
and NFR5 is induced by the 4th ring mode coupling with the basic system.
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Figure 4. (a) The schematic diagram of the structure added a ring cavity on the two stubs. (b) The
transmittance spectra of the extend model with H = 200 nm, g1 = g2 = 10 nm, R1 = 290 nm and
R2 = 340 nm (the red solid line), the MIM waveguide with a ring cavity (the black dash line) and the
MIM waveguide with two stubs (the green dash-dot line). (c) The phase shift spectrum of the extended
structure. (d–g) The normalized field intensity distribution (|HZ|2) at λ = 662 nm (d), λ = 714 nm
(e), λ = 932 nm (f), λ = 1376 nm (g) and λ = 1882 nm (h).
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To further observe the tuning of the quadruple Fano resonances, the parameter of the ring and
the coupling distance are changed. Herein, the value of R1-R2 is fixed at 50 nm and R0 is defined as
R0 = R1+R2

2 . Figure 5a illustrates the transmission spectra of variable R0 with the other parameters
fixed. It can be seen that the Dip and FR have little change while NFR3, NFR4 and NFR5 all have a
redshift. Figure 5b shows the relationship between R0 and the resonant wavelengths of the Dip, NFR3,
NFR4, NFR5 and FR more clearly. Obvious linear redshifts arise in Figure 5b when it comes to NFR3,
NFR4 and NFR5, however, the resonant wavelengths of Dip and FR always stay the same. This turns
out to be tuning of NFR3, NFR4 and NFR5 with different R0, which is consistent with Figure 4e–g.
Figure 5c shows the transmission spectra of the extended structure with different g2 from 10 nm to
18 nm. Similar results can be observed with Figure 3c and this is consistent with Figure 4e–g.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 14 

 

To further observe the tuning of the quadruple Fano resonances, the parameter of the ring and 

the coupling distance are changed. Herein, the value of R1-R2 is fixed at 50 nm and R0 is defined as 

R0 =
𝑅1+𝑅2

2
. Figure 5a illustrates the transmission spectra of variable R0 with the other parameters 

fixed. It can be seen that the Dip and FR have little change while NFR3, NFR4 and NFR5 all have a 

redshift. Figure 5b shows the relationship between R0 and the resonant wavelengths of the Dip, NFR3, 

NFR4, NFR5 and FR more clearly. Obvious linear redshifts arise in Figure 5b when it comes to NFR3, 

NFR4 and NFR5, however, the resonant wavelengths of Dip and FR always stay the same. This turns 

out to be tuning of NFR3, NFR4 and NFR5 with different R0, which is consistent with Figure 4e–g. 

Figure 5c shows the transmission spectra of the extended structure with different g2 from 10 nm to 

18 nm. Similar results can be observed with Figure 3c and this is consistent with Figure 4e–g. 

600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

n
s

m
it

ta
n

c
e

Wavelength (nm)

 R0=315 nm

 R0=325 nm

 R0=335 nm

 R0=345 nm

(a)

 

     

315 320 325 330 335 340 345

600

800

1000

1200

1400

1600

1800

2000

R
e

s
o

n
a

n
t 

 w
a

v
e

le
n

g
th

 (
n

m
)

R0 (nm)

 Dip

 NFR3

 NFR4

 NFR5

 FR

(b)

 
Figure 5. Content. 

Figure 5. Cont.



Sensors 2019, 19, 1559 8 of 14

Sensors 2019, 19, x FOR PEER REVIEW 8 of 14 

 

600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

n
s
m

it
ta

n
c
e

wavelength(nm)

 g=10 nm

 g=14 nm

 g=18 nm

(c)

 

Figure 5. (a) The transmission spectra of the extended structure with different R0 from 315 nm to 345 

nm. (b) The resonant wavelengths of Dip, NFR3, NFR4, NFR5 and FR with variable R0. (c) The 

transmission spectra of the extended structure with different g2 from 10 nm to 18 nm. 

4. Potential Applications of the Proposed Multiple Fano Resonances Structures 

4.1. Refractive Index Sensing Based on the Multiple Fano Resonances 

Due to the extremely sharp line-shape, a high sensitivity of the spectral response can be given 

by the Fano resonance with changing the index of the surrounding medium for the structure [37]. 

Thus, the medium is changed into a different refractive index to study the spectrum response. The 

sensitivity of a sensor (nm/RIU) can be defined as the shift in the resonance wavelength per unit 

change of the refractive index [38,39,40]. Figure 6a illustrates transmission spectra for the changed 

refractive index. An obvious linear relationship can be observed with changing n from 1 to 1.04 in 

Figure 6b. From Figure 6b, we can gain the sensitivity of the triple Fano resonances model from about 

600 nm/RIU for Dip, 800 nm/RIU for NFR1, 1300 nm/RIU for NFR2 and 2000 nm/RIU for FR.  

A sensor performance can be described by another key parameter, Figure of Merit (FOM). 

Different from the sensitivity defined by the spectral shift, it is based on the intensity variation and 

defined as 

                                FOM = ∆𝑇 𝑇∆𝑛⁄                                  (5) 

where T denotes the transmittance in the proposed structures and ΔT/Δn denotes the transmission 

change at the fixed wavelength induced by a refractive index change [13]. Figure 6a shows the FOM 

of the triple Fano resonances model with different wavelengths, calculated as 

FOM = (|𝑇𝑛=1.02 − 𝑇𝑛=1.0|) (𝑇𝑛=1.0∆𝑛⁄ )                        (6) 

According to Figure 6c, the maximum 4.05 × 104 of FOM, corresponding to NFR2 is obtained, 

which is significantly greater than most other proposed sensors. Additionally, the FOMs of NFR1 

and FR are 1.53 × 104 and 71, respectively.   

Similarly, Figure 7a,c represent the transmission spectra for different refractive index and FOM 

of the quadruple Fano resonances structure, respectively. Also, the linear relationships are displayed 

in Fig 7b. The sensitivities related to Dip, NFR3, NFR4, NFR5 and FR can be easily obtained from 

Figure 7b, reaching 600 nm/RIU, 650 nm/RIU, 900 nm/RIU, 1350 nm/RIU and 2000 nm/RIU, 

respectively. Additionally, the values of FOM are 860 for NFR3, 2169 for NFR4, 4452 for NFR5 and 

70 for FR. 

Figure 5. (a) The transmission spectra of the extended structure with different R0 from 315 nm to
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transmission spectra of the extended structure with different g2 from 10 nm to 18 nm.

4. Potential Applications of the Proposed Multiple Fano Resonances Structures

4.1. Refractive Index Sensing Based on the Multiple Fano Resonances

Due to the extremely sharp line-shape, a high sensitivity of the spectral response can be given
by the Fano resonance with changing the index of the surrounding medium for the structure [37].
Thus, the medium is changed into a different refractive index to study the spectrum response.
The sensitivity of a sensor (nm/RIU) can be defined as the shift in the resonance wavelength per
unit change of the refractive index [38–40]. Figure 6a illustrates transmission spectra for the changed
refractive index. An obvious linear relationship can be observed with changing n from 1 to 1.04 in
Figure 6b. From Figure 6b, we can gain the sensitivity of the triple Fano resonances model from about
600 nm/RIU for Dip, 800 nm/RIU for NFR1, 1300 nm/RIU for NFR2 and 2000 nm/RIU for FR.

A sensor performance can be described by another key parameter, Figure of Merit (FOM). Different
from the sensitivity defined by the spectral shift, it is based on the intensity variation and defined as

FOM = ∆T/T∆n (5)

where T denotes the transmittance in the proposed structures and ∆T/∆n denotes the transmission
change at the fixed wavelength induced by a refractive index change [13]. Figure 6a shows the FOM of
the triple Fano resonances model with different wavelengths, calculated as

FOM = (|Tn = 1.02 − Tn = 1.0|)/(Tn = 1.0∆n) (6)

According to Figure 6c, the maximum 4.05× 104 of FOM, corresponding to NFR2 is obtained,
which is significantly greater than most other proposed sensors. Additionally, the FOMs of NFR1 and
FR are 1.53× 104 and 71, respectively.

Similarly, Figure 7a,c represent the transmission spectra for different refractive index and FOM
of the quadruple Fano resonances structure, respectively. Also, the linear relationships are displayed
in Figure 7b. The sensitivities related to Dip, NFR3, NFR4, NFR5 and FR can be easily obtained
from Figure 7b, reaching 600 nm/RIU, 650 nm/RIU, 900 nm/RIU, 1350 nm/RIU and 2000 nm/RIU,
respectively. Additionally, the values of FOM are 860 for NFR3, 2169 for NFR4, 4452 for NFR5 and 70
for FR.
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Figure 6. (a) The transmission spectra of the triple Fano resonances structure with variable n from
1.0 to 1.04. (b) The resonant wavelengths of Dip, NFR1, NFR2 and FR with variable n. (c) The figure of
merit (FOM) with different wavelengths of the triple Fano resonances structure.
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Figure 7. (a) The transmission spectra of the quadruple Fano resonances structure with variable n from
1.0 to 1.04. (b) The resonant wavelengths of Dip, NFR3, NFR4, NFR5 and FR with different n. (c) The
FOM with different wavelengths of the quadruple Fano resonances structure.

Table 1 shows the sensing performance parameters of some similar structures, where type specifies
the number of Fano resonances supported by a structure. The sensor of the proposed triple Fano
resonances structure owns not only comparable FOMs but also an impressive sensitivity which is
obviously superior to other solutions [3,4,8,13,22–30]. In terms of the sensor based on quadruple Fano
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resonances, the sensitivity and the maximal value of FOM both outperform the previous work we did
in Reference [13]. Namely, whilst the sensor has just general performance in FOMs, the sensitivity
overmatches the published works [22,29]. Meanwhile, the on-chip sensor based on the quadruple
Fano resonances can support multiple sensing check-points and is not enough to be designed and
demonstrated in previous works. Therefore, the proposed sensors obviously demonstrate high
sensing potential.

Table 1. The comparison of the proposed sensors and other recent similar structures in the references.

Reference Type Sensitivity (nm/RIU) FOM

[3] single 820 3.2× 105

[4] dual 760/1320 815/760
[7] triple 800/800/800 Max 1.355× 104

[13] quad 200/600/600/2000 3000/500/1500/200
[22] triple 650/750/1000 Max 8984

quad 650/750/950/1100 Max 2.73× 104

[23] single 1260 2.3× 104

[24] dual 800/1450 max3.5× 104

[25] single 1300 6838
[26] dual 640/950 2.22× 103/5.26× 104

[27] triple 600/500/500 3803/816/2947
[28] triple 1700/2000/1000 7100/8600/7500
[29] quad 700/800/1900/1600 Max 38000
[30] triple 850/750/950 100/100/100

This work triple 800/1300/2000 1.53× 104/4.05× 104/71
quad 650/900/1350/2000 860/2169/4452/70

4.2. Slow Light Effects of the Multiple Fano Resonances

As is shown in Figures 1e, 2c and 4c, the Fano resonance arises along with rapid phase changing,
which is required for the slow light applications. The group delay can be described as

τ(λ) =
−λ2

2πc
dθ

dλ
(7)

where θ is the phase shift and c is the light speed. The blue lines in Figure 8a,b represent the group delay
curves corresponding to circular extended model and ring extended model, respectively. Additionally,
the red lines are the phase shift curves of the circular extended model and ring extended model added
in Figure 8a,b, separately, to make an explicit comparison. Obviously, there are large group delays
around the Fano resonances. In details, the values of 0.610 ps, 0.300 ps and 0.073 ps are achieved about
the NFR1, NFR2 and FR, respectively. Particularly, the maximum value (0.61 ps) at 787 nm is more
than twice larger, compared to Reference [26]. Similarly, according to Figure 8b, the values of 1.171 ps,
0.265 ps, 0.203 ps and 0.072 ps are gained around NFR3, NFR4, NFR5 and FR, respectively. Especially,
the maximum value of 1.17 ps is nearly twice larger than that gained in the circle structure, which is
very promising for the integrated slow light applications.
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5. Conclusions

In summary, by utilizing the FEM method, the transmission traits of the basic structure consisting
of a MIM waveguide and two stub cavities are analyzed and discussed. Simulation results show
that a Fano resonance arises, originating from the interaction between the two stubs. Based on the
fundamental model, triple and quadruple Fano resonances are gained by adding a circle cavity and
a ring cavity, respectively. Because of the different mechanisms, multiple Fano resonances can be
adjusted specifically by changing the parameters of the systems. Applied to the refractive index sensor,
the proposed structure shows high performances with a sensitivity of 2000 nm/RIU and figure of
merit (FOM) of 4.05× 104, which is better than most of them. Additionally, a maximum group delay
about 1.171 ps is obtained due to the sharp Fano resonance, which is very promising for on-chip slow
light applications. It is believed that the proposed structure may support substantial applications for
the nano-sensor, slow light and nonlinear devices in highly integrated photonic circuits.
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