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Abstract: The identification and monitoring of buildings from remotely sensed imagery are of
considerable value for urbanization monitoring. Two outstanding issues in the detection of changes
in buildings with composite structures and relief displacements are heterogeneous appearances
and positional inconsistencies. In this paper, a novel patch-based matching approach is developed
using densely connected conditional random field (CRF) optimization to detect building changes
from bi-temporal aerial images. First, the bi-temporal aerial images are combined to obtain change
information using an object-oriented technique, and then semantic segmentation based on a deep
convolutional neural network is used to extract building areas. With the change information and
extracted buildings, a graph-cuts-based segmentation algorithm is applied to generate the bi-temporal
changed building proposals. Next, in the bi-temporal changed building proposals, corner and
edge information are integrated for feature detection through a phase congruency (PC) model,
and the structural feature descriptor, called the histogram of orientated PC, is used to perform
patch-based roof matching. We determined the final change in buildings by gathering matched roof
and bi-temporal changed building proposals using co-refinement based on CRF, which were further
classified as “newly built,” “demolished”, or “changed”. Experiments were conducted with two
typical datasets covering complex urban scenes with diverse building types. The results confirm
the effectiveness and generality of the proposed algorithm, with more than 85% and 90% in overall
accuracy and completeness, respectively.

Keywords: building change detection; patch matching; phase consistency; semantic segmentation;
relief displacement

1. Introduction

Automatic building change detection (BCD) from aerial images is a relevant research area in
the remote sensing field, as the results are required for a range of applications such as urbanization
monitoring, identification of illegal or unauthorized buildings, land use change detection, digital map
updating, and route planning [1]. Information about changes in buildings can be useful for aiding
municipalities with long-term residential area planning. BCD is used to analyze the condition of
damaged buildings after earthquakes and other natural disasters, supporting rescue activities and
reconstruction measures [2]. With the development of remote sensing techniques, an ever-growing
number of remote sensing images need to be processed [3]. As manual processing heavily relies on
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human interpretation and is a labor-intensive and time-consuming work, unsupervised techniques are
required to perform BCD without the availability of ground truth [4].

Many BCD approaches and techniques for handling remote sensing data have been developed,
and newer techniques are still being created. Usually, BCD involves two main procedures: building
change generation (BCG) and segmentation of the building change map. As the core part of BCD,
BCG aims to highlight changes in the buildings, and it directly affects the accuracy. Segmentation is
used to distinguish the changed from unchanged pixels by transforming the building change map into
a binary map, which facilitates the evaluation of the accuracy of the BCD.

A variety of different algorithms have been proposed for the automatic detection of
changes based on bi-temporal or multi-temporal remote sensing images. They vary from
pixel-oriented methods to object-oriented methods, and from spectral-characteristics-based methods
and artificial-intelligence-based methods [5]. Conventional pixel-oriented methods mainly use
techniques based on algebraic operations [6], transformation [7], and classification [8] to recognize
change information. These methods have been confirmed to detect abrupt changes from low- or
medium-resolution images [9]. With the increasing availability of high-resolution remote sensing
images, it is necessary to detect detailed changes occurring at the level of the ground structures,
including buildings. Conventional pixel-based methods may cause many small pseudo changes
because of the increased high-frequency components [10], and another limitation in automatic detection
of changes is that modeling the contextual information is difficult. To address these problems, spatial
dependence among neighboring pixels, e.g., object, textural- or structural-based image description,
have been used in BCD [11]. A set of novel building change indices (BCIs) were proposed that combine
the morphological building index (MBI) and slow feature analysis (SFA) for change detection from
high-resolution imagery [12]. The proposed method does not need any training samples and can
reduce human labor. Tang et al. [13] proposed using geometrical properties, including the interest
points and structural features of buildings, to identify the building changes from multi-temporal
images. The proposed method is insensitive to the geometrical differences of buildings caused by
different imaging conditions in the multi-temporal high-resolution imagery and is able to significantly
reduce false alarms.

Object-oriented methods, evolved from the concept of object-based image analysis [14], not only
employ the spectral, texture, and transformed values, but also exploit extra information about the
shape features and spatial relations of objects using image segmentation techniques. As image
objects are used as the basic units in object-oriented methods, they are more suitable for handling
high-resolution remotely sensed images and can achieve better performance [15–19]. Xiao et al. [17]
presented a co-segmentation-based method for building change detection providing a new solution
to object-based change detection. Their method takes full advantage of multi-temporal information
and produces two spatially-corresponded change detection maps using the association of the change
feature with image features, and the method can reveal the thematic, geometric, and numeric changes
in the objects. A saliency-guided semi-supervised building change detection method was proposed
in Hou et al. [20], which combines pixel-based post-classification with object-based semi-supervised
classification and produced promising results on challenging datasets. Huang et al. [21,22] investigated
urban building change in an object-based environment by integrating MBI, morphological shadow
index (MSI), and spectral and shape conditions from multitemporal high-resolution images.
An enhanced morphological building index was proposed and used for building change detection
with a change vector analysis method in Feng et al. [23]. The index not only removes the noise in the
homogeneous regions but also improves detection accuracy. Liu et al. [24] presented a line-constrained
shape (LCS) feature that more easily distinguishes buildings from other geo-objects. Then, based on
LCS and spectral features, an object-based supervised classification method was used for BCD.

Approaches have been proposed using deep neural networks to solve imagery interpretation
and change detection problems, and have achieved good performance [25–28]. Zhang et al. [29]
proposed and built a model based on Gaussian–Bernoulli deep Boltzmann machines with a label layer
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to learn high-level features, which was trained for determine the change areas. Gong et al. [3] designed
coupled dictionary learning (CDL) to explore the intrinsic differences in multisource data for change
detection in a high-dimension feature space, and proposed an iterative scheme for unsupervised
sample selection to retain the purity of training samples and gradually optimize the current coupled
dictionaries. Although the methods based on deep learning have advantages compared with traditional
vision algorithms in semantic segmentation and object detection for remotely sensed images, they also
have some deficiencies. First, vast amounts of training data are usually required for training and
few annotated building change detection datasets are available that can be used to train supervised
machine learning systems detecting changes in image pairs. Deep neural networks are complicated
models, so powerful computational facilities are usually required for the training process. In addition,
considerable effort is required to adjust some hyper-parameters for a good model, which requires time
and computational power because the model performance depends on accurate parameters [30].

Despite some efforts to develop building change detection techniques, spectral variation, relief
displacement, and the composite structure of buildings in the aerial images complicate obtaining highly
accurate results with BCD. The surface of the earth is not smooth and flat. As a consequence, this natural
phenomenon disrupts the true orthogonality of photo image feature. On an aerial photograph,
the displacement of the image due to variation in the terrain relief is known as relief displacement
or height distortion [31]. Figure 1a illustrates the relief displacement caused by differences in the
relative elevation of objects photographed. If the higher object is viewed from infinity, its image is
a point and no relief displacement exists. If it is viewed from a finite altitude, its image appears to
“lay back” on the adjacent terrain, and the displacement vector in the image is aa’. The magnitude of
this displacement vector depends on the height of the object, the flying height, and its location
in the image. Such displacements in the image are always radial from the image of the nadir
point. The nadir point is the point exactly beneath the perspective center. Even if an image is
geometrically corrected (orthorectified) with a digital elevation model (DEM), relief displacement
cannot be completely removed as the height of ground objects is not considered. Especially for
high-rise buildings in high-resolution remote sensing images, their rooftops largely deviate from the
ground, appearing as oblique relief displacements, and huge differences among multi-temporal images
are always observed, as shown in Figure 1b. The use of true-ortho rectification [32] may solve this
displacement problem, but it requires a high-resolution digital surface model (DSM) and additional
processing. Some erroneous results may be caused by spectral variation between bi-temporal images
and an unexpected appearance of heterogeneity due to objects located on building roofs, such as pipes,
occlusions, shanties, etc., leading to low quality and inaccurate change detection.
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Given this context, considering heterogeneous appearances and positional inconsistencies is
necessary, particularly when detecting changes in buildings with composite structures and relief
displacements. Therefore, we propose a novel method based on patch matching and densely connected
CRF optimization for co-refinement to detect building changes from bi-temporal aerial images. In this
approach, we first obtain the bi-temporal changed building estimates using a graph-cuts-based
segmentation algorithm integrating the change information and extracted buildings. Then, a structural
feature descriptor, histogram of orientated phase congruency (HOPC) including corner and edge
information, is used to perform patch-based matching in the proposed bi-temporal changed buildings.
Next, on the basis of co-refinement with CRF gathering matched roof and bi-temporal building features,
we determined the change type of a building: “newly built,” “demolished”, or “changed”. Two typical
datasets of bi-temporal aerial images were used to verify the effectiveness and generality of the
proposed method.

The main contributions of this paper are: (1) in the generation of proposed bi-temporal building
changes. The segmentation procedures are associated with the same change information; they take
full advantage of the extracted building features at each phase in the deep learning based semantic
segmentation. This is a state-of-the-art method producing reliable initial information of building
locations and changes. (2) The corresponding roofs obtained by an effective patch-based matching
approach represent the unchanged area, combining the information of potential changed buildings
in the bi-temporal images, which spontaneously eliminates the matching of inconsistent unchanged
buildings caused by the relief displacement and spectral variation. Additionally, (3) during the process
of co-refinement based on CRF, our method can integrate the matching probability, color contrast,
and spatial distance of bi-temporal images to better determine the changes.

This article is organized as follows: Section 2 presents the proposed method. The experimental
assessment and a discussion of the obtained results are presented in Sections 3 and 4, respectively.
Finally, conclusions from an analysis of the obtained experimental results are presented in Section 5.

2. Methodology

A novel building change detection approach based on patch matching from bi-temporal aerial
images is presented in this work, and the processing work flow is shown in Figure 2. To implement
the entire framework, the proposed method consists of two parts: generation of proposed building
changes (Section 2.1.) and patch-based roof matching (Section 2.2.), and co-refinement for final building
change detection (Section 2.3).

2.1. Generation of Changed Building Proposals

To generate the changed building proposals, the change information is first obtained with the
object-oriented method using iteratively reweighted multivariate alteration detection (IR-MAD) [33].
Then, convolutional neural network (CNN)-based semantic segmentation is adopted to extract
buildings. Finally, segmentation is performed via graph-based energy minimization under the
guidance of the change information, combined with the extracted buildings, directly resulting in
bi-temporal changed building proposals.

2.1.1. Object-Oriented Change Detection Using IR-MAD

For high-resolution remote sensing images, superpixels are considered to be the basic unit against
the scatter of the change information and are the effect of the salt and pepper noise. Several commonly
used algorithms are available for superpixel segmentation, such as simple linear iterative clustering
named SLIC [34], MeanShift [35], watershed [36], etc. The superpixels determined by the SLIC
algorithm have good consistency and compactness, adhere to boundaries, and are straightforward
to extend to superpixel generation [34]. The images to be segmented in this paper involved different
periods of data, and multi-temporal image-object is considered to be the most appropriate analysis
unit for change detection. In multispectral change detection, IR-MAD is proving to be accurate,
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since various alternatives exist in which the weights (no-change probabilities) are calculated during
the iteration procedure. Thus, we designed an object-oriented change detection technique to obtain the
superpixel (i.e., bi-temporal image-object) with the SLIC algorithm and to generate change information
using IR-MAD.
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We first segmented the bi-temporal images together and obtained bi-temporal superpixels (i.e.,
bi-temporal image-object) for comparison and analysis, as shown in Figure 3a–c. The bi-temporal
image-object [37] considers all series of the data simultaneously; thus, it has the distinct advantage
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of maintaining a consistent topology and potentially maintaining key multi-temporal boundaries.
Then, the region property descriptor, corresponding to the homogeneous image-object, is extracted
from the bi-temporal aerial images to build two sets of vectors in feature space. The region property
descriptor depicts an object by its color, texture, and structure information, and includes the means
of red-green-blue (RGB), local binary pattern (LBP) [38], Gabor-filtered [39] values in four directions,
and entropy and energy. Next, multivariate alteration detection (MAD) variates are calculated using
the differences between canonical variates from canonical correlation analysis (CCA) on the two
feature vectors. Finally, an iterative re-weighting scheme is proposed to further enhance the change
information, and a probability density function of chi-square distribution is introduced to obtain
invariant objects. This procedure produces an increasingly better background for no change, against
which change can be measured. More details are provided in Canty et al. [40,41]. To improve the
visibility and clarity of change information, reverse operation and normalization processing are applied
to produce a change confidence index (CCI), as shown in Figure 3d.
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2.1.2. Building Extraction with Semantic Segmentation

Deep learning techniques have been widely used for image analysis for many years. Most notably,
convolutional neural networks (CNNs) are a family of algorithms that are especially suited for
working with images. Semantic image segmentation has recently witnessed considerable progress
by training deep CNNs. As the dual multi-scale manifold ranking (DMSMR) network [42] estimates
the predicted labels in an end-to-end fashion, and the dilated and non-dilated convolution layers are
jointly optimized by manifold ranking. The network combines dilated, multi-scale strategies with
the single stream manifold ranking optimization method in the deep learning architecture to further
improve the performance without any additional aides. Thus, we adopted the DMSMR network-based
semantic segmentation to label each pixel and segregate them. In this work, the EvLab-SS dataset from
our team, which is designed for the high-resolution pixel-wise classification task on real engineered
scenes in remote sensing areas, is used to train the deep CNN for DMSMR. The dataset is originally
obtained from the Chinese Geographic Condition Survey and Mapping Project, and each image is fully
annotated by the Geographic Conditions Survey standards. The average resolution of the dataset is
approximately 4500× 4500 pixels. The EvLab-SS dataset contains 11 major classes, namely, background,
farmland, garden, woodland, grassland, building, road, structures, digging pile, desert and waters,
and currently includes 60 frames of images captured by different platforms and sensors. We produce
the training dataset by applying the sliding window with a stride of 128 pixels to the training images,
resulting in 48,622 patches with a resolution of 640 × 480 pixels. Similar methods are utilized on
validation images, thus generating 13,539 patches for validation. Figure 4 gives some examples of
the training data for building extraction. In terms of model parameter settings, they are completely
consistent with those in [34], and more details can be seen in Zhang et al. [34]. Other CNN-based
semantic segmentation algorithms for aerial images are also suitable for building detection. Semantic
segmentation using the DMSMR network for bi-temporal images is shown in Figure 5a,b. As this paper
focuses on building change detection, only the category of buildings is labeled 1, and all the other
categories are assigned 0. The result of building extraction with sematic segmentation is called sematic
building label (SBL), and SBLs on bi-temporal aerial images are shown in Figure 5c,d, respectively.
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2.1.3. Segmentation Based on Graph Cuts

Given the work above, both the change information and the extracted buildings at each phase
were combined in a graph-based energy function, and we used the graph cuts [43] that adopt
a max-flow/min-cut algorithm [44] to find the optimal solution by constructing a weight map to
perform segmentation for the generation of bi-temporal changed building proposals. The energy
function of a segmentation based on graph cuts is defined as:

E = Edata + Esmooth (1)

where Edata represents the data term that helps find the potential change region, which is expressed as:

Edata = ∑
p∈P

Dp
(
lp
)

(2)

Dp
(
lp
)
=

{
− ln Cp, i f lp = 1

− ln
(
1− Cp

)
, otherwise

(3)
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where Dp
(
lp
)

represents the cost for assigning pixel p to a label that is either foreground (lp = 1)
or background (lp = 0), P is a set of all the pixels (i.e., nodes in the graph), and Cp indicates the
change probability of pixel p being labeled as building, which is obtained by the operation CCI× SBL.
Hence, the change information not only provides the prior knowledge of building changes, in which
a larger value implies a more probable change, but serves as an association for separate segmentation
procedures to generate the bi-temporal changed building proposals.

Esmooth denotes the smooth term, which is mainly used to penalize the discontinuity between
neighborhood pixels. A segmentation boundary occurs when two neighboring pixels are assigned
different labels. Most nearby pixels are expected to have the same label; therefore, no penalty is
assigned if neighboring pixels have the same label, and a penalty is assigned otherwise. Usually,
this penalty depends on RGB difference between pixels, which is small in regions of high contrast [45].
Thus, we define the smooth term as used in Rother et al. [46]:

Esmooth = ∑
{p,q}∈N

V{p,q}
(
lp, lq

)
(4)

V{p,q}
(
lp, lq

)
=


max(λ, 1), i f Sp = 1 and Sq = 1

exp
(
− ||Ip−Iq ||2

2σ2

)
× 1

d(p,q) × λ, otherwise
(5)

where N is the set of all pixel pairs in the neighborhood (i.e., edges in the graph), p and q are two
neighboring points, Sk denotes the semantic label of the pixel in the SBL, Ik represents the pixel color,
d(p, q) is calculated as the Euclidean distance between pixels p and q, and V{p,q}

(
lp, lq

)
defines the

cost of assigning the labels lp and lq to the pixel pairs p and q, respectively. The weight coefficient
λ > 0 specifies the relative importance between the data term and the smooth term, and σ2 is a scale
parameter, which is set as suggested by Rother et al. [46]:

σ2 = 〈 ||Ip − Iq ||2〉 (6)

where 〈·〉 is the average value over the whole image.
According to the designed energy function, the max-flow/min-cut algorithm is performed to

segment the bi-temporal images into foreground and background, respectively. Figure 6 depicts the
changed building proposals (CBP) in the bi-temporal aerial images.
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2.2. Patch-Based Matching

After generating the bi-temporal changed building proposals, many building changes were
mislabeled, which was caused by heterogeneous appearances and different relief displacements
between the bi-temporal aerial images. Therefore, we needed to further determine the corresponding
relationship of the roofs between the bi-temporal aerial images to impose a constraint on the building
change detection. The basic aim of patch-based roof matching is to estimate the corresponding relation
of the roofs between bi-temporal aerial images, which includes collecting corner and edge information
for feature detection through the PC model and feature matching with the structural HOPC descriptor.
As the buildings are quite similar on a local scale in terms of height, contour shape, and structure,
we used robust filtering strategies for estimating geometric transforms and improving the stability of
the process.

2.2.1. Feature Detection

Classical feature detectors generally rely on image intensity or gradient information, which is
spatial domain information, such as Sobel, Canny, and scale-invariant feature transform (SIFT).
In addition, image features can be described using frequency domain information, such as phase
information. By comparison, phase information is more robust to image illumination, scale, contrast,
and other changes. Morrone et al. [47] observed that highly consistent local phase information is usually
present in certain points of the image, causing a strong visual response. Thus, phase congruency (PC)
is important for image perception and using it for feature detection is logical.

Gabor filters are a traditional choice for obtaining localized frequency information. They offer the
best simultaneous localization of spatial and frequency information. However, they have two main
limitations. The maximum bandwidth of a Gabor filter is limited to approximately one octave and
Gabor filters are not optimal if seeking broad spectral information with maximal spatial localization.
An alternative to the Gabor function is the log-Gabor function proposed by Field [48]. Log-Gabor
filters can be constructed with arbitrary bandwidth and the bandwidth can be optimized to produce
a filter with minimal spatial extent. On the linear frequency scale, the log-Gabor function has a transfer
function in the form:

g(w) = exp(− log (ω/ω0)
2)/(2(log (σω/ω0)

2) (7)

where ω0 is the filter’s central frequency and σω is the related width parameter. The corresponding
spatial domain filter of the log-Gabor wavelet can be obtained using inverse Fourier transform. The real
and imaginary parts of the filter are referred to as the log-Gabor even-symmetric and odd-symmetric
wavelets, respectively. Thus, given an input image I(x, y), the response components can be calculated
by convolving I(x, y) with the two wavelets:

[Eso(x, y), Oso(x, y)] =
[

I(x, y) ∗ Leven
so , I(x, y) ∗ Lodd

so

]
(8)

where Eso(x, y) and Oso(x, y) are the responses of the log-Gabor even-symmetric Leven
so and

odd-symmetric Lodd
so wavelets at scale s and orientation o, respectively. Then, the amplitude Aso

and phase φso at scale s and orientation o are obtained by:

Aso(x, y) =
√

Eso(x, y)2 + Oso(x, y)2 (9)

φso(x, y) = arctan(Oso(x, y)/Eso(x, y)) (10)

Considering the noise compensation, the final PC model with all scales and orientations in
Kovesi et al. [49] is defined as:

PC(x, y) = ∑s ∑o Wo(x, y)Aso(x, y)∆Φso(x, y)− T
∑s ∑o Aso(x, y) + ε

(11)
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where Wo(x, y) is a weighting function, ε is a small constant, and the
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operator denotes that the
enclosed quantity is non-negative, meaning the enclosed quantity is equal to zero when its value is
negative. ∆Φso(x, y) is a phase deviation function, whose definition is:

Aso(x, y)∆Φso(x, y) =
(
Eso(x, y)φE(x, y) + Oso(x, y)φO(x, y)

)
−
∣∣Eso(x, y)φO(x, y)−Oso(x, y)φE(x, y)

∣∣ (12)

φE(x, y) = ∑
s

∑
o

Eso(x, y)/C(x, y) (13)

φO(x, y) = ∑
s

∑
o

Oso(x, y)/C(x, y) (14)

C(x, y) =

√√√√(∑
s

∑
o

Oso(x, y)

)2

+

(
∑

s
∑
o

Eso(x, y)

)2

(15)

Although this model produces a PC measure that results in a very good edge map, it ignores
information about the way in which PC varies with orientation at each point in the image. To address
this problem, we first produced an independent PC map PC(θo) for each orientation o using
Equation (15), and the following three intermediate quantities are calculated according to the classical
moment analysis equations [50]:

a = ∑
o
(PC(θo) cos(θo))

2 (16)

b = 2 ∑
o
(PC(θo) cos(θo))(PC(θo) sin(θo)) (17)

c = ∑
o
(PC(θo) sin(θo))

2 (18)

Then, the angle of the principal axis indicating the direction information of the feature, which is
the axis corresponding to the minimum moment, ψ, is given by:

ψ =
1
2

arctan(
b

a− c
) (19)

The minimum and maximum moments, mψ and Mψ, respectively, are obtained by:

mψ =
1
2
(c + a−

√
b2 + (a− c)2) (20)

Mψ =
1
2
(c + a +

√
b2 + (a− c)2) (21)

mψ and Mψ can be used for corner and edge feature detection, respectively. Therefore,
local maxima detection and non-maximal suppression are performed to obtain corners on the minimum
moment map, and features from accelerated segment test (FAST) is selected to detect edge feature points
on Mψ. Following this method, corner and edge features can be integrated for feature matching [51,52].
Considering the location error when generating the building change proposals, we conservatively
expanded the proposals by morphological dilation operation, i.e. the rectangle element of 7 × 7 pixels,
as the valid region. Figure 7 shows the results of feature detection in the valid region.
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(b) t2.

2.2.2. Structural Feature Descriptor for Matching

Upon completion of the above feature points extraction, we needed to build a descriptor to
represent and distinguish the feature points as suitably as possible. Classical feature descriptors
generally use image intensity or gradient distribution to construct feature vectors. However, since both
intensity and gradient are very sensitive to non-linear radiometric differences (NRD), these descriptors
are not suitable for matching task. Intuitively, given the advantage of PC, using PC instead of intensity
or gradient is suitable for feature description. Ye et al. [53] used the amplitude and orientation
of phase congruency to build the HOPC descriptor inspired by the histogram of gradient (HOG).
The HOPC descriptor captures the structural features of images and is more robust to illumination
changes. Since structural properties are relatively independent of intensity distribution patterns in
images, this descriptor can be used to match two images having significant NRD as long as they
both have similar shapes. We first used the novel structural feature descriptor HOPC to perform
matching, and the detailed description can be found in Ye et al. [53]. In terms of feature matching,
the correspondence problem is simplified into interregional matching between related domains.
For a query feature, the search scope is narrowed down to a buffer within 35 meters, which is included
in the valid regions of search image. Within the two feature subsets, we took the normalized correlation
coefficient (NCC) of the HOPC descriptors as the similarity metric HOPCncc for roof matching, which is
defined as [53]:

HOPCncc =
∑n

k=1
(
VA(k)−VA

)(
VB(k)−VB

)√
∑n

k=1
(
VA(k)−VA

)2
∑n

k=1
(
VB(k)−VB

)2
(22)

where VA and VB are HOPC descriptors of the image regions A and region B, respectively, and VA and
VB denote the means of VA and VB, respectively.

After putative matches are found between the bi-temporal changed building proposals,
the matches are combined with robust filtering strategies, including ratio test and random sample
consensus (RANSAC), to finally produce geometrically-consistent matches. HOPCncc successfully
matches the bi-temporal aerial image pairs, as shown in Figure 8. In the matching processing, template
windows of different sizes (sw × sw) have an effect on the correct matching ratio, and the template
window is constructed using blocks having an α degree of overlap. Each block consists of (m×m) cells
containing n× n pixels, and each cell is divided into β orientation bins. Thus, sw, α, m, n, and β are the
parameters to be tuned. Their influences, which are set to 60, 1/2, 3, 4, and 8 in this study, respectively,
were tested by Ye et al. [53].
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Figure 8. Results of patch-based matching using HOPC.

2.3. Co-Refinement for Final Building Change Detection

Through the process of patch-based matching, the corresponding relationship of the roofs between
the bi-temporal aerial images was determined. It is natural to think that the matching inconsistent
unchanged buildings can be removed with the assistance of the bi-temporal changed building
proposals. Meanwhile, considering when the separate and independent strategy is performed on the
bi-temporal images, respectively, will result in duplicate work and the inadequate use of information.
Therefore, in this paper, in order to eliminate mislabeled building changes in the bi-temporal aerial
images simultaneously and provide high quality information, we employed a densely connected
CRF model, integrating changed building proposals, matched rooftops, and appearance similarity of
bi-temporal images for co-refinement. In this way, all building change information in the bi-temporal
aerial images was gathered to form the detection result. Moreover, the spatial correspondence
was inherently yielded between changed objects with the association of the bi-temporal changed
building proposals, which can apparently be used to reveal the object-to-object changes for further
type identification.

2.3.1. Co-Refinement with CRF

A CRF is a form of a Markov Random Field (MRF) that directly defines the posterior probability,
i.e., the probability of the output variables given the input data. The CRF is defined over the random
variables L =

{
l1, l2, · · · , lp

}
, where each lp ∈ {0, 1}, 0 for background and 1 for foreground, represents

a binary label of the pixel p ∈ N = {0, 1, · · · , n} such that each random variable corresponds to a pixel.
x denotes a joint configuration of these random variables, and I denotes the observed image data.
Based on the general formulation in Krähenbühl et al. [54], a fully connected binary label CRF can be
defined as:

E(x) = ∑
p∈N

ψp
(
lp
)
+ ∑

p<q
ψpq
(
lp, lq

)
(23)

where lp is the label taken by pixel p, N represents the set of all image pixels, and ψp and ψpq denote
the unary and pairwise potentials, respectively.

The unary term ψp
(
lp
)

measures the cost of assigning a binary label lp to the pixel p. In this
study, ψp

(
lp
)

is calculated for each pixel by the fusion of the appearance potential and the estimated
matching between the bi-temporal changed building proposals:

ψp
(
lp
)
=


− log

(
max

(
P
(

lt1
p

)
, P
(

lt2
p

))
·Mp

)
, i f lp = 1

− log
(

max
(

P
(

lt1
p

)
, P
(

lt2
p

))
·
(
1−Mp

))
, otherwise

(24)
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P
(

lt
p

)
=

P
(

Θt
lp

, It
p

)
P
(

Θt
0, It

p

)
+ P

(
Θt

1, It
p

) (25)

where P
(

lt
p

)
is the probability of assigning a binary label lp to the pixel p in the tth period, which can

be computed independently for each pixel by a classier that produces a distribution over the label
assignment xi deduced from the initial SBL; P

(
Θt

0, It
p

)
, P
(

Θt
1, It

p

)
∈ (0, ∞) represents the probability

density value of a pixel color Ip belonging to the background color model Θ0 and the foreground color
model Θ1 at the tth period, respectively. We used Gaussian Mixture Models (GMMs) and followed
the implementation details in Cheng et al. [55] to estimate the probability density values according
to the initial SBL. We used a distance transform function to evaluate the unchanged portions in each
connected region of the bi-temporal changed building proposals where the matched points reside and
take this as Mp, which is defined as:

Mp =


d(p, q)/Dmax, i f d(p, q) < Dmax and p ∈ Γq

0, else i f CBPt1
p = CBPt2

p = 1 and p ∈ Γq

max
(

CBPt1
p , CBPt2

p

)
, otherwise

(26)

where d(p, q) is the distance of the arbitrary pixel p to the nearest matched pixel q, Dmax is the
maximum distance (i.e. 5.0 m), Γq denotes the connected region which contains the matched point
q, and CBPt1

p , CBPt2
p represent the value of pixel p in the changed building proposals at time t1 and

t2, respectively.
The pairwise term ψpq

(
xp, xq

)
encourages similar and nearby pixels to take consistent labels.

We used a contrast-sensitive two kernel potential:

ψpq = g(p, q)
[
lp 6= lq

]
(27)

g(p, q) = w1g1(p, q) + w2g2(p, q) (28)

where the Iverson bracket [·] is 1 for a true condition and 0 otherwise, w1 and w2 are the weight
coefficients controlling the impacts of color and spatial configuration, which are defined in terms of
color vectors It

p, It
q and position coordinates cp, cq, respectively:

g1(p, q) = exp (−
max

(
||It1

p − It1
q ||2, ||It2

p − It2
q ||2

)
θ2

α
−
||cp − cq ||2

θ2
β

) (29)

g2(p, q) = exp (−
||cp − cq ||2

θ2
µ

) (30)

where g1(p, q) models the appearance similarity and encourages nearby pixels with similar color
to have the same binary label and g2(p, q) encourages smoothness and helps remove small isolated
regions. The degree of similarity, nearness, and smoothness are controlled by θα, θβ, and θµ, respectively.
Intuitively, θβ � θµ should be satisfied if the color configuration manages the long-range connections
and the spatial configuration measures the local smoothness.

As shown in Figure 9, we integrated bi-temporal changed building proposals and the matched
points (Figure 9a,b) to calculate Mp (Figure 9c) for the unary term, and the converged appearance
similarity (Figure 9d) was obtained for the pairwise term by picking up the maximal color contrast
of the bi-temporal images. By gathering unary and pairwise terms, co-refinement is performed in
a densely connected CRF for high quality building change detection. On the basis of all changed
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building proposals in the bi-temporal images (Figure 9e), we divided the images into foreground and
background segments representing the final building changes and others, respectively (Figure 9f).Sensors 2019, 19, 1557 15 of 29 
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Figure 9. Co-refinement with CRF. (a) The buffers of the matched points on the roofs of images at 
times t1 and (b) t2; (c) the unchanged portions in each connected region 𝑀 ; (d) the converged 
appearance similarity of the bi-temporal images; (e) all changed building proposals in the bi-temporal 
images and (f) the final building change result 

The proposed fully connected model improves two aspects of the detection quality. First, the 
pairwise potential is defined over all pairs of pixels, which allows the model to capture long-range 
interactions; thus, the segmentation of objects associated with long-range context is augmented. 
Second, unlike the commonly used pairwise potential where only color contrast is considered, the 

Figure 9. Co-refinement with CRF. (a) The buffers of the matched points on the roofs of images at times
t1 and (b) t2; (c) the unchanged portions in each connected region Mp; (d) the converged appearance
similarity of the bi-temporal images; (e) all changed building proposals in the bi-temporal images and
(f) the final building change result.
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The proposed fully connected model improves two aspects of the detection quality. First,
the pairwise potential is defined over all pairs of pixels, which allows the model to capture long-range
interactions; thus, the segmentation of objects associated with long-range context is augmented. Second,
unlike the commonly used pairwise potential where only color contrast is considered, the proposed
pairwise term incorporates both color contrast of bi-temporal images and spatial distance. Therefore,
the proposed model is able to generate more accurate segmentation of objects with noise caused by
sampling and proximity to other objects.

2.3.2. Type Identification of Changed Buildings

After obtaining the bi-temporal changed buildings using the above processing, we used the spatial
correspondence analysis to further classify them as “newly built”, “demolished”, and “changed”.
We performed overlay analyses between the final detection result and changed building proposals at
each period to delete the non-overlapping objects, which are generally false alarms, such as image
noise, obstruction, and isolated pixels. We conducted a union operation on the two generated maps
and assigned a change type to each object. Figure 10 shows the step of determining change type,
and the rules are summarized in Table 1.
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Table 1. Change type determination with the guidance of a priori knowledge.

Time t1/Time t2 Changed Building No Building Change

Changed Building Changed Demolished
No building change Newly built No building change

3. Experimental Results

To verify the effectiveness and generality of the proposed algorithm, two datasets of bi-temporal
aerial images were collected for experiments. In this work, bi-temporal datasets were georeferenced
and registered. However, the relief displacements of the buildings usually vary considerably with
location and cannot be eliminated by geo-rectification in the images produced. After a brief description
of the datasets and accuracy assessment measurements, the experimental results of the proposed
method are provided below.
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3.1. Study Site and Dataset Description

Dataset 1 is located in the urban area of Chongqing, China, with a valid area of approximately
6.3 km2 (~6,315,533 m2). The aerial images (7464 × 7629 pixels) were acquired in 2012 and 2013,
with three multispectral bands and a resolution of 0.5 m. An overview of the dataset and its enlarged
subsets are shown in Figure 11. This area covered a typical urban environment with sparse housing,
high-rise buildings, commercial districts, and industrial areas. The buildings are differently distributed
and vary in size and structure, and a few buildings are surrounded by trees.
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Figure 11. Overview of Dataset 1: the aerial image at (a) time t1 and (b) at time t2.

The second dataset, Dataset 2, is situated in Ningbo, Zhejiang Province, China, with 2756 × 2744
pixels. This area is a complex suburban scene including a residential area with scattered high-rise
buildings, an industrial area with dense large buildings, and some small buildings densely aligned
along the street, as shown in Figure 12. The aerial images include three visible bands (RGB) with 0.5 m
ground sample distance (GSD), and were acquired in 2015 and 2017.
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Figure 12. Overview of Dataset 2: aerial images at time (a) t1 and (b) t2.

3.2. Building Change Detection Results

In this study, after generating the changed building proposals, we implemented patch-based
matching and the co-refinement with CRF to detect building changes. The building change truths
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were prepared in advance by manually interpreted delineation and then used to evaluate the accuracy.
During the experiment, the parameters of the two datasets were the same as follows: the parameter
of changed building proposal generation λ = 1.0 and parameters for the fully connected CRF model
are

(
w1, w2, θα, θβ, θµ

)
= (6.0, 10.0, 32.0, 20.0, 3.0). Meanwhile, in order to keep the buildings in the

local scale, we performed patch-based roof matching by dividing the full image into many blocks.
In addition, considering that there may be some differences among the buildings caused by the random
division, we further determined the corresponding relationship of the remaining roofs on the basis of
the previous matching by overlapping sliding windows. Figures 13 and 14 show the change truths of
buildings and the detected results of the proposed method in Datasets 1 and 2, respectively. In these
changes, red implies the “newly built”, green represents “demolished”, and green denotes “changed”.
The detected results are essentially consistent with the ground truth, proving that the proposed method
is effective.
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To observe the results in much more detail, Figure 15 shows the change detection results of
six enlarged sub-regions with different types of buildings and scenes. The detailed subareas in
Figure 15A–D and Figure 15E,F correspond to Datasets 1 and 2, respectively. The two columns on the
left show the bi-temporal aerial images, the third column depicts the results of the proposed method,
and the last column provides the building change truths.
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Figure 15. Amplified details of six typical regions: (a) Enlarged image subareas at time t1, (b) enlarged
images at Time t2, (c) results of the proposed method, and (d) ground truth.
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Subset A is an industrial area mainly composed of low-rise buildings with uneven distribution
that vary in size and structure, with some makeshift shanties for carpenters constructing new
buildings. In this area, the bi-temporal buildings have low relief displacements, and their rooftops
are homogeneous. Sub-region B is a residential area with three communities, where some temporary
low-rise sheds disappear with the completion of some building projects. In each community,
the buildings are uniformly distributed and are quite similar, with certain differences between them.
In this subarea, although the bi-temporal buildings have different relief displacements for each
community, their appearance and geometric displacements are consistent. In the two regions in
sub-regions C and D, the buildings are also uniformly distributed and have a certain resemblance
to the periphery. For subarea C, most buildings in the bi-temporal aerial images are high-rise with
large relief displacements and their rooftops are homogeneous, but the geometric displacements are
partly inconsistent due to the influence of image splicing at time t2. There are various types of building
changes as the buildings under construction are completed. Both low-rise buildings with minimal
relief displacement and high-rise buildings with large relief displacements are present in subarea D.
The rooftop of each building varies but the geometric displacements are relatively consistent with
the surroundings. Subsets E and F include residential areas with scattered high-rise buildings and
industrial districts with dense large buildings in a complex suburban scene, where buildings are
mostly complex and different in size, structure, and distribution. In the two regions, both new added
buildings and demolished buildings exist.

Notably, the chosen regions are representative scenes that are complex and highly challenging for
building monitoring, and the results indicate that the presented approach is highly robust and suitable.
Most changed buildings are successfully detected, and their positions are accurate. These findings
were also verified by the following quality assessments.

3.3. Quality Assessments

In addition to visual illustration for the quality assessment of building change detection,
we evaluated the object-level performance by counting the truly (TD), falsely (FD), and missing
(MD) detections, and then calculated the correctness (Corr), completeness (Comp), and F-score (F1)
measures [56], which are respectively defined as:

Corr =
TD

TD + FD
(31)

Comp =
TD

TD + MD
(32)

F1 =
2Corr·Comp
Corr + Comp

(33)

Under the prerequisite of change type being guaranteed to be consistent, we used an overlapping
threshold of 70% to determine the number of TD and MD, as previously described in Ok et al. [57].
The overlap ratio was computed in terms of the number of pixels and a detected building was labeled
as TD if at least 70% of the building overlapped with a reference building. Thus, TD represents true
positives and corresponds to the number of changed buildings correctly classified in both ground
truth and the detection result. FD represents false positives and corresponds to the total of buildings
mislabeled as a change and changed buildings misclassified. MD represents false negatives and
corresponds to the number of buildings mislabeled as no change. F1 measures the overall performance
through the weighted harmonic of completeness and correctness. Figure 16 shows the corresponding
results evaluation between the proposed method and ground truth in two datasets, in which TD,
FD and MD are displayed in yellow, pink, and cyan, respectively. The detailed evaluation results are
depicted in Tables 2 and 3.
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Figure 16. Corresponding results evaluations of the two datasets and enlarged subsets for (a) Dataset 1
and (b) Dataset 2.

Table 2. Confusion matrix of the building change detection.

Analyzed
Dataset Proposed/Ground Truth No. Building

Change Newly Built Demolished Changed

Dataset 1

No Building Change 0 13 9 2
Newly Built 24 212 1 7
Demolished 6 0 82 2

Changed 8 4 2 5

Dataset 2

No Building Change 0 6 4 1
Newly Built 8 71 0 3
Demolished 5 0 47 2

Changed 4 2 3 9
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Table 3. The object-level performance of building change detection.

Analyzed Dataset
No. of Correctly

Detected Buildings
No. of Wrongly

Detected Buildings Corr
(%)

Comp
(%)

F1
(%)

TD FD MD

Dataset 1 299 54 24 84.70 92.57 88.46

Dataset 2 127 27 11 82.46 92.03 86.98

Tables 2 and 3 show that the proposed method performs well in the two datasets, and is applicable
for suburban areas and complex urban scenes including dense scattered building areas (i.e., villages in
the city) and narrow streets. This result is mainly attributed to the semantic segmentation used in our
method, which accurately extracts the building area, and the patch-based match effectively eliminates
the inconsistent unchanged buildings.

In Dataset 1, there were 299 correct detections, 24 missed detections, 16 detections misclassified
by wrong change type, and 38 false detections. Correctness, completeness, and overall accuracy
were 84.7%, 92.57%, and 88.46%, respectively. The missing changes were caused by imperfect change
information (5/24), ineffective semantic segmentation for the buildings under construction (11/24),
serious shelter of small buildings in the peripheral environment (1/24), and improper filtering on the
shanties with a few pixels (7/24), as shown in Figure 17. The 16 misclassified building changes mainly
resulted from the following aspects: interference of change occurring in the surrounding buildings
and wrong semantic segmentation, as shown in Figure 18a,b. The main reason for buildings being
wrongly labelled as changes is the errors in CD resulting from the renovated buildings and failed
matches caused by the different relief displacements, as shown in Figure 18c,d.
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Figure 17. Examples of missing changes in Dataset 1: (a) missed detection caused by imperfect change
information, (b) missed detection caused by ineffective semantic segmentation for the buildings under
construction, (c) missed detection caused by serious sheltering of small buildings in the peripheral
environment, and (d) missed detection caused by improper filtering of the shanties with a few pixels.
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Figure 18. Examples of false detections in Dataset 1: (a) misclassified detection resulting from 
interference of change occurring in the surrounding buildings and (b) wrong semantic segmentation. 
(c) Wrong detection caused by the errors in CD resulting from the renovated buildings and (d) failed 
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Figure 18. Examples of false detections in Dataset 1: (a) misclassified detection resulting from
interference of change occurring in the surrounding buildings and (b) wrong semantic segmentation.
(c) Wrong detection caused by the errors in CD resulting from the renovated buildings and (d) failed
matching resulting from the different relief displacements.
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Because of the complexity Dataset 2, a little decrease in the correctness and the overall performance
occurred, but the completeness was still maintained. A total of 127 changes were detected correctly
out of 138, resulting in a completeness of 92.03%. For 27 false detections, besides the above reasons,
another factor was the interference of suspected building objects (i.e., regular surface, sunshade),
as shown in Figure 19a. A few missed detections and misclassified detections occurred for Dataset 2.
The main reasons for these were as follows: confused changed buildings and broken roofs composed
of several small roofs, as shown in Figure 19b,c.
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Figure 19. Limitations to the proposed method for Dataset 2: (a) wrong detection caused by the
interference of suspected building objects, (b) missed detection caused by confused changed buildings,
and (c) misclassified detection caused by broken roofs.

4. Discussion

4.1. Parameter Selection

The proposed method mainly involves the following parameters: λ for proposal generation,
and parameters for the fully connected CRF model. With Dataset 1 as an example, we fixed several
other items and changed the item to be evaluated. The object-based statistics are shown in Figure 20.

λ in Equation (5) is a weight coefficient that measures the relative importance of the change
information versus the image feature in the energy function of a segmentation based on graph cuts.
The larger the value of λ, the greater the consideration of the image feature; and the smaller the λ,
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the more the focus on the change information in the process of proposal generation. The influence of λ

on the Corr, Comp, and F1 in building change detection is shown in Figure 20a, and the experimental
results reveal that λ has relatively little impact on the final result. This observation can be explained by
SBL being introduced to impose a constraint on the energy function, and we set λ to 1.0 in this paper.
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of building change detection with
(

λ, w2, θα, θβ, θµ

)
= (1.0, 10.0, 32.0, 20.0, 3.0) and w1 ranging

from 2 to 20; (d) object-based statistics of building change detection with
(

λ, w1, θα, θβ, θµ

)
=

(1.0, 6.0, 32.0, 20.0, 3.0) and w2 ranging from 2 to 20; (e) object-based statistics of building change

detection with
(

λ, w1, w2, θβ, θµ

)
= (1.0, 6.0, 10.0, 20.0, 3.0) and θα ranging from 4 to 40; (f) object-based

statistics of building change detection with
(
λ, w1, w2, θα, θµ

)
= (1.0, 6.0, 10.0, 32.0, 3.0) and θβ ranging

from 4 to 40.

For the parameters used to calculate the pairwise potential in the fully connected CRF model,
we initialized the parameters following the guidelines in Krähenbühl et al. [54] and then varied the
parameters to search for the optimal settings on our own dataset. The experimental results revealed
that θµ has relatively little impact on the accuracy of the final result, as shown in Figure 20b, which was
indicated in Krähenbühl et al. [54]. Thus, we set θµ = 3, the same as suggested in Cheng et al. [55].
For w1, w2, θα, and θβ, the effects of parameter variation are shown in Figure 20c–f, respectively. w1 and
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w2 weight the impact of color and spatial configuration. Large values of w1 lead to overemphasis
on the color difference between adjacent pixels, which slightly improves the completeness, but at
the cost of a drop in correctness, as shown in Figure 20c. Conversely, small values of w2 neglect the
spatial relationship between neighboring pixels, resulting in low correctness and high completeness,
as shown in Figure 20d. θα controls the color contrast of pairwise interaction. There is little change in
accuracy when θα ≤ 32, but when θα is too high, some internal components that vary in color with
the changed buildings would be retained, therefore producing more false positives and decreases in
overall accuracy, as shown in Figure 20e. θβ modulates the effects of spatial range. Accuracy increases
as θβ grows from 0 to 20, since the spatial smoothness helps to remove pixel-level noise in the local
range of unchanged building. As a result, correctness increases substantially, as shown in Figure 20f.
However, as θβ continues to grow, accuracy tends to be stable.

4.2. Advantages and Disadvantages of the Proposed Algorithm

The results of this work are promising for building detection in challenging regions with complex
scenes, indicating that the proposed method has several advantages. The proposed approach is
suited for heterogeneous appearances due to complex structures, since it is associated with the same
change information and takes full advantage of the extracted buildings of each phase on the basis of
semantic segmentation in the process of generating the changed building proposals. As most building
change detection approaches produce many inconsistent matches of unchanged buildings caused by
the relief displacement and spectral variation, we employed patch-based feature matching with the
structural HOPC descriptor to determine the corresponding roofs and identify the relevant buildings.
Our proposed method can distinguish the type of change while quickly and accurately providing the
change information on buildings.

Given its many benefits, our approach also has some limitations that must be minimized
or overcome. In the determination of bi-temporal changed buildings, since the segmentation
procedures depend on the change information and the building areas extracted by CNN-based semantic
segmentation, some detections are missed when the changed building identifications are incomplete.
During the process of co-refinement based on CRF, although the corresponding roofs representing
the unchanged areas are obtained using an effective patch-based matching approach, matching the
roofs lacking structure information is fairly difficult and may result in poor performance and even
pseudo changes.

5. Conclusions

In this study, a novel patch-based matching approach was developed to perform building change
detection with co-refinement based on CRF. The potential building changes at each time point are first
obtained by a graph-cuts-based segmentation and integrating the change information and building
areas using deep learning. These proposals are resistant to the heterogeneous appearances resulting
from complex structures and reveal the spatially relevant changes. Then, patch-based feature matching
with the structural HOPC descriptor is used to estimate the corresponding relation of the bi-temporal
roofs in the interregional form. The advantage of interregional matching is that the number of
reliable inlier correspondences increases because after shrinking the search range in scale space,
more inlier correspondences are retained due to the distinctiveness relaxation, i.e., the constraint of
feature distinctiveness is relaxed only inside the search scope. During the process of co-refinement
based on CRF, the combination of the corresponding roofs and the information on potential building
changes eliminates the matching of inconsistent unchanged buildings caused by the relief displacement
and spectral variation. In addition, our method can distinguish the type of change while quickly
and accurately providing the information on buildings that have changed. Extensive experiments
showed that the proposed method is effective and robust for the change detection of buildings using
aerial images with complex urban scenes. However, the proposed algorithm is sensitive to building
extraction with semantic segmentation and CD technology. The missed detections caused by semantic
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segmentation and CD cannot be recovered in the subsequent optimization, and patch-based matching
does not eliminate the false-positive buildings that are completely or seriously occluded by trees or
shade due to the limited structure of the relevant buildings.

In future studies, the following approaches could be considered: an assistant dense matching
for whole roof localization, and using three-dimensional building change detection approaches,
end-to-end BCD based on deep learning, and applying an algorithm for shadow elimination in
an image enhancement step.
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