
sensors

Article

One-Stage Multi-Sensor Data Fusion Convolutional
Neural Network for 3D Object Detection

Minle Li 1,* , Yihua Hu 1,2,*, Nanxiang Zhao 1,2 and Qishu Qian 1

1 State Key Laboratory of Pulsed Power Laser Technology, College of Electronic
Engineering (National University of Defence Technology), Hefei 230037, China; southfly@163.com (N.Z.);
creamy777@163.com (Q.Q.)

2 Anhui Province Key Laboratory of Electronic Restriction Technology, Hefei 230037, China
* Correspondence: 15555483329@163.com (M.L.); skl_hyh@163.com (Y.H.)

Received: 21 February 2019; Accepted: 20 March 2019; Published: 23 March 2019
����������
�������

Abstract: Three-dimensional (3D) object detection has important applications in robotics, automatic
loading, automatic driving and other scenarios. With the improvement of devices, people can collect
multi-sensor/multimodal data from a variety of sensors such as Lidar and cameras. In order to
make full use of various information advantages and improve the performance of object detection,
we proposed a Complex-Retina network, a convolution neural network for 3D object detection based
on multi-sensor data fusion. Firstly, a unified architecture with two feature extraction networks
was designed, and the feature extraction of point clouds and images from different sensors realized
synchronously. Then, we set a series of 3D anchors and projected them to the feature maps, which
were cropped into 2D anchors with the same size and fused together. Finally, the object classification
and 3D bounding box regression were carried out on the multipath of fully connected layers. The
proposed network is a one-stage convolution neural network, which achieves the balance between the
accuracy and speed of object detection. The experiments on KITTI datasets show that the proposed
network is superior to the contrast algorithms in average precision (AP) and time consumption,
which shows the effectiveness of the proposed network.

Keywords: multi-sensor; object detection; convolutional neural network; point cloud

1. Introduction

In the field of object detection, the existing methods mostly use a camera with CCD or CMOS
sensors to acquire images for two-dimensional (2D) object detection [1,2]. This part of the research
has a long history. With the rapid development of deep learning, these methods based on deep neural
networks have made great progress both in detection accuracy and real-time capability and have been
achieving important applications in many fields such as medicine, commerce and engineering [3–5].
However, in many practical applications such as robotics, automatic loading and autonomous driving,
more attention is paid to the three-dimensional (3D) position information of objects. Therefore, it is
necessary to develop 3D object detection methods [6]. Lidar has the advantages of not being affected
by external illumination and having a high accuracy, but its resolution is far lower than the camera.
Fusing the data from Lidar and cameras for 3D object detection can achieve the effect of complementary
advantages, so it has attracted the attention of researchers.

At present, 2D object detection methods in the field of imaging mainly focus on deep learning
and have achieved desirable results. Generally speaking, those methods can be divided into two-stage
and one-stage networks. Since R-CNN [7] first introduced convolutional neural networks into object
detection, a two-stage detection framework has been established, and with the proposals of Fast
R-CNN [8], Faster-RCNN [9], RFCN [10] and other networks, this series of networks has been

Sensors 2019, 19, 1434; doi:10.3390/s19061434 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9226-0261
http://www.mdpi.com/1424-8220/19/6/1434?type=check_update&version=1
http://dx.doi.org/10.3390/s19061434
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 1434 2 of 18

continuously improved. Those networks have two stages: in the first stage, a Region Proposal
Network (RPN) is trained to extract a certain number of candidate bounding boxes, and then in
the second stage, classification and regression of candidate bounding boxes are carried out more
carefully to increase detection precision. In addition, new ideas about two-stage networks have been
generated: Cascaded RCNN [11] cascaded several detection networks based on positive and negative
samples determined by different IoU (Intersection over Union) thresholds to continuously optimize the
prediction results. In reference [12], Relation Networks proposes an object relation module to describe
the relationship between objects. It optimizes the detection effect by utilizing the relationship between
objects in an image, or image context. SNIP [13] proposes a new training model: when the gradient
returns, only the gradient of ROI (Region of Interest) corresponding to the size of training data used by
the pre-training model is retrieved, which reduces the domain-shift between the ImageNet [14] dataset
and the COCO [1] dataset. Generally speaking, two-stage networks have attracted wide attention
from all walks of life. In contrast, one-stage networks do not need the rough extraction of RPN,
but directly complete the classification and regression of the object bounding boxes from the image,
so the one-stage networks often have higher real-time performance. Since YOLO [15] and SSD [16]
networks were proposed, this framework has also received attention. After that, improved versions
such as YOLOv2 [17], YOLOv3 [18], DSSD [19] appeared, and performance continued to improve.
In reference [20], Detection with Enriched Semantics (DES) is mainly based on SSD to improve the
semantic information of feature maps of each level by introducing a segmentation module and global
activation module, thus improving the detection effect of small objects. RetinaNet [21] proposes a new
loss function, Focal Loss, which greatly improves the detection performance of one-stage networks.
Scale-Transferrable Detection Network (STDN) [22] introduces a scale-transfer layer to generate feature
maps of a large size without increasing the number of parameters and computation. RefineDet [23]
combines an SSD algorithm with an RPN network and Feature Pyramid Network (FPN) [24] algorithm
to improve the detection effect while maintaining the efficiency of SSD.

Similarly, 3D point cloud object detection can be divided into two-stage and one-stage network
structures. At present, the most accurate detection methods are based on two-stage architecture, such
as MV3D [25], AVOD [26] and VoxelNet [27]. MV3D was the first network to extend RPN to 3D point
clouds. It designed unified network architecture to fuse images and point clouds and the main idea
was to extract some features to express the point cloud into the form of front view and bird’s-eye view
(BEV) with 3D information, achieving a good detection effect. AVOD improved MV3D with some
corrections, in which only point cloud BEV and image data were used for input and the backbone
network was changed to FPN architecture, which improves the feature map size and is more conducive
to small object detection, thus improving the detection precision. VoxelNet first divided the point
cloud into voxels and extracted the features of the voxels using the cascaded VFE layer, and then used
the RPN network for object detection. F-PointNet [28] first uses image to detect, and then projects the
2D detection results into point cloud to form frustum, which is segmented by PointNet [29]. Then
the 3D bounding boxes of the object are calculated. This network has achieved better results in the
detection of bicycles and pedestrians, but it cannot run end-to-end. Because all the above methods
need RPN network to select candidate bounding boxes with high probability of object from a large
number of unknown boxes, and then conduct more detailed classification and regression, it is difficult
to meet the actual real-time needs.

Since the one-stage detector has the advantage of fast speed, in order to solve the above problem,
both Complex-YOLO [30] and YOLO3D [31] networks extend YOLO to 3D point cloud object detection,
which achieves good real-time performance, but the AP is low. PIXOR [32] is proposed also as a
one-stage network structure. This network does not need RPN operation. It directly performs box
regression and classification operations from feature maps, which meets the real-time requirements.
However, the network can only detect 2D bounding boxes in the BEV of point clouds but cannot
output 3D bounding boxes. In addition, the network does not use anchors, which is also a reason for
poor performance.

Sensors 2019, 19, 1434 3 of 18

In this paper, a one-stage convolutional neural network, Complex-Retina, is proposed for 3D
object detection. We divide the network into two parts: backbone network and functional network.
The former performs feature extraction and effective fusion for multi-sensor data i.e., point clouds and
images, and the latter is used for the classification and regression of 3D bounding boxes. We draw
lessons from RetinaNet, which is a one-stage 2D detection network and has achieved good results with
images, and we also modify the network to some extent. The backbone network is combined with
two paths of FPN for the feature extraction of point clouds and images. For the sake of facilitating the
fusion of multi-sensor data, we set a series of 3D anchors and implemented ROI pooling and fusion
on the feature maps of those two kinds of data. In addition, a functional network adapted to the
3D data was designed to output 3D bounding boxes and category information. These modifications
extended the RetinaNet to a 3D multi-sensor fusion detector and improved the detection performance
of the one-stage 3D object detection network with comparable capability to the two-stage networks
while maintaining the speed advantage. The experimental results on the KITTI dataset [33] show the
effectiveness of the proposed network. The main contributions of the proposed network include the
following two points: (1) through a series of improvement methods, RetinaNet is extended from 2D to
3D detection; and (2) the proposed one-stage 3D detection network can balance the detection speed
and precision, and has a good application prospect.

2. Review of RetinaNet

RetinaNet [21] is essentially composed of FPN structure and Focal Loss. The design idea is that the
backbone chooses effective feature extraction networks such as VGG [34] and ResNet [35]. Then, FPN
is used to obtain feature maps with stronger expression and multi-scale object information. Finally,
a two-path FCN subnetwork is used on the feature maps to complete the classification and regression
tasks for the bounding boxes.

Anchor information: 12 anchors are set for each pixel, ranging in area from 322 to 5122.There are
three different ratios of length to width {1:2,1:1,2:1} on each level of the feature pyramid from P3 to
P7. For denser scale coverage, three different size weights {20, 21/3, 22/3} are added to each level
anchor set. Finally, the network allocates a vector with length (K+4) to each anchor to carry classified
information and bounding box regression information.

Training and deployment of the model: the top 1,000 bounding boxes with the highest probability
were selected at each FPN level, and then all bounding boxes at all levels were summarized and
filtered using an NMS with a threshold of 0.5. The loss function is composed of L1 Loss and Focal
Loss. The former was used to measure the regression error, whereas the latter was used to measure the
classification error, and it can well solve the extreme imbalance between positive and negative samples.

3. Complex-Retina

In order to extend RetinaNet to the 3D domain, we have mainly made the following inheritance
and improvement:

• The backbone network has two paths of sub-network for the feature extraction of point clouds
and images. For each path, the first four layers of VGG network are selected and FPN structure is
adopted, which is similar with RetinaNet.

• There are differences in anchor settings. Every anchor is represented by the 6-dimensional array
of length, width, height and center point coordinates, and the clustering method is used to set the
size of anchors.

• There are also differences in ROI Pooling. By projection method, we used 3D anchors to perform
ROI Pooling and fusion on the feature maps of point clouds and images. In addition, unlike the
multi-output strategy of RetinaNet, our backbone network only performs ROI Pooling and fusion
on the feature map of P7 layer of the FPN.

Sensors 2019, 19, 1434 4 of 18

• In the design of loss function: Focal Loss is also used to measure the classification error and L1
function is used to measure the regression error of bounding box. In addition, orientation error is
added, which is very important for 3D object detection.

The structure of 3D object detection network designed in this paper is shown in Figure 1, which is
mainly divided into the backbone network and functional network. The backbone network is used to
extract the feature maps of point cloud and images, and then the feature maps are sent to the functional
network after ROI Pooling and fusion, which outputs the classification and regression information of
the objects.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 18

• In the design of loss function: Focal Loss is also used to measure the classification error and L1
function is used to measure the regression error of bounding box. In addition, orientation error
is added, which is very important for 3D object detection.
The structure of 3D object detection network designed in this paper is shown in Figure 1,

which is mainly divided into the backbone network and functional network. The backbone network
is used to extract the feature maps of point cloud and images, and then the feature maps are sent to
the functional network after ROI Pooling and fusion, which outputs the classification and
regression information of the objects.

Figure 1. The architecture of our proposed Complex-Retina network. It can be divided into the
backbone network and functional network. The backbone network is used to extract the feature
maps of point cloud and images, and then the feature maps are sent to the functional network after
ROI Pooling and fusion, which outputs the classification and regression information of the objects.

3.1. Input Data

We adopted a KITTI dataset for network training and validation. The dataset is jointly
published by Karlsruhe Institute of Technology and Toyota American Institute of Technology. It
uses cameras and Lidar sensors. This dataset contained a large number of images and point cloud
data with annotated information, and they needed to be preprocessed before input to the proposed
network.

The images in the KITTI dataset were collected by two color cameras and two gray-scale
cameras. We only used the image captured by the left color camera and each of the input images
was cut into 360 × 1200.

The point clouds in KITTI datasets were collected by vehicle-mounted Velodyne 64-line
LIDAR, which provided accurate object location information. The dataset took the forward
direction of the car as the X coordinate, the upward direction as the Y coordinate, and determined
the Z coordinate according to the right-hand rule. In order to process point clouds using deep
neural network, this paper presents point clouds as BEV, which has the following advantages: first,
less occlusion. For vehicle scenarios, BEV had less occlusion than the front view. Second, it can be
processed by a mature 2D object detection network as backbone. In order to transform point clouds
into BEV, this paper used 0.1 m × 0.1 m interval to grid point clouds on the X and Z axes, whereas
on the Y axis, the point clouds were evenly divided into five layers in the range of [0,2.5] m, so the
whole point clouds were divided into several cell units. The elevation information of the highest
point in each cell was preserved, and the five layers made up the five channels of the BEV. In
addition, the density information of point cloud was recorded in the sixth channel, and the

Figure 1. The architecture of our proposed Complex-Retina network. It can be divided into the
backbone network and functional network. The backbone network is used to extract the feature maps
of point cloud and images, and then the feature maps are sent to the functional network after ROI
Pooling and fusion, which outputs the classification and regression information of the objects.

3.1. Input Data

We adopted a KITTI dataset for network training and validation. The dataset is jointly published
by Karlsruhe Institute of Technology and Toyota American Institute of Technology. It uses cameras and
Lidar sensors. This dataset contained a large number of images and point cloud data with annotated
information, and they needed to be preprocessed before input to the proposed network.

The images in the KITTI dataset were collected by two color cameras and two gray-scale cameras.
We only used the image captured by the left color camera and each of the input images was cut into
360 × 1200.

The point clouds in KITTI datasets were collected by vehicle-mounted Velodyne 64-line LIDAR,
which provided accurate object location information. The dataset took the forward direction of the
car as the X coordinate, the upward direction as the Y coordinate, and determined the Z coordinate
according to the right-hand rule. In order to process point clouds using deep neural network, this paper
presents point clouds as BEV, which has the following advantages: first, less occlusion. For vehicle
scenarios, BEV had less occlusion than the front view. Second, it can be processed by a mature 2D
object detection network as backbone. In order to transform point clouds into BEV, this paper used
0.1 m × 0.1 m interval to grid point clouds on the X and Z axes, whereas on the Y axis, the point clouds
were evenly divided into five layers in the range of [0,2.5] m, so the whole point clouds were divided
into several cell units. The elevation information of the highest point in each cell was preserved, and the
five layers made up the five channels of the BEV. In addition, the density information of point cloud
was recorded in the sixth channel, and the calculation method was as follows: min

(
1.0, log(N+1)

log 16

)
[25].

Since only the forward [−40,40] m × [0,70] m point clouds were retained, the final size of the input

Sensors 2019, 19, 1434 5 of 18

point clouds BEV was 700 × 800 and the number of channels was six. Before input to the backbone
network, the BEVs were padding to 704 × 800 to facilitate the three layers of Maxpooling processing
in the backbone network.

3.2. Backbone Network

In this paper, the first four layers of VGG-16 were used in the design of the backbone network,
with the channel numbers of all the layers were modified, and the specific parameters are shown in
Table 1. The backbone network was used for feature extraction. By stacking convolution layers and
pooling layers one by one, the channel number of each layer was continuously increased and the size
of feature map was reduced. Usually, low-level feature maps have high resolution and low expressive
ability (i.e., low-level geometric information). On the contrary, high-level feature maps have low
resolution and high expressive ability (i.e., high-level semantic information). Most networks output
the last layer of feature maps for subsequent classification and detection tasks, which often leads
to small objects occupying few pixels, which is not conducive to detection. The FPN structure [24]
can effectively solve this problem. As shown in Figure 2, the backbone network treated the normal
top-down down-sampling process as an encoder and added a bottom-up decoder. The output feature
map of the conv4 layer of the encoder was used as the input of the decoder, and then it was fused with
conv3. Firstly, the conv4 layer feature map was convtransposed to conv_trans3 by 3 × 3 convolution
kernel. In this process, the size of the conv4 feature map was enlarged and the channels were reduced,
which was consistent with the conv3 feature map to achieve the effect of up-sampling. Then the
conv_trans3 feature map was combined with the conv3 feature map by concatation, and the pyramid3
layer fused the concat_3 feature map by convolution.

Table 1. The parameters of Backbone network layers. Since the network has two paths to process point
cloud bird’s eye view (BEV) and images separately, their parameters in each layer are different.

Input BEV Image

Part Layers Output Size Layers Output Size

Encoder

conv1_1
704 × 800 × 32

conv1_1
360 × 1200 × 32conv1_2 conv1_2

maxpooling 352 × 400 × 32 maxpooling 180 × 600 × 32

conv2_1
352 × 400 × 64

conv2_1
180 × 600 × 64conv2_2 conv2_2

maxpooling 176 × 200 × 64 maxpooling 90 × 300 × 64

conv3_1
176 × 200 × 128

conv3_1
90 × 300 × 128conv3_2 conv3_2

conv3_3 conv3_3

maxpooling 88 × 100 × 128 maxpooling 90 × 300 × 128

conv4_1
88 × 100 × 256

conv4_1
45 × 150 × 256conv4_2 conv4_2

conv4_3 conv4_3

Decoder

conv_trans3 176 × 200 × 128 conv_trans3 90 × 300 × 128
concat3 176 × 200 × 256 concat3 90 × 300 × 256

pyramid3 176 × 200 × 64 pyramid3 90 × 300 × 64
conv_trans2 352 × 400 × 64 conv_trans2 180 × 600 × 64

concat2 352 × 400 × 128 concat2 180 × 600 × 128
pyramid2 352 × 400 × 32 pyramid2 180 × 600 × 32

conv_trans1 704 × 800 × 32 conv_trans1 360 × 1200 × 32
concat1 704 × 800 × 64 concat1 360 × 1200 × 64

pyramid1 704 × 800 × 32 pyramid1 360 × 1200 × 32

Sensors 2019, 19, 1434 6 of 18

Sensors 2019, 19, x FOR PEER REVIEW 5 of 18

calculation method was as follows: ()log 1
min 1.0,

log16
N +

[25]. Since only the forward [−40,40] m ×

[0,70] m point clouds were retained, the final size of the input point clouds BEV was 700 × 800 and
the number of channels was six. Before input to the backbone network, the BEVs were padding to
704 × 800 to facilitate the three layers of Maxpooling processing in the backbone network.

3.2. Backbone Network

In this paper, the first four layers of VGG-16 were used in the design of the backbone network,
with the channel numbers of all the layers were modified, and the specific parameters are shown in
Table 1. The backbone network was used for feature extraction. By stacking convolution layers and
pooling layers one by one, the channel number of each layer was continuously increased and the
size of feature map was reduced. Usually, low-level feature maps have high resolution and low
expressive ability (i.e., low-level geometric information). On the contrary, high-level feature maps
have low resolution and high expressive ability (i.e., high-level semantic information). Most
networks output the last layer of feature maps for subsequent classification and detection tasks,
which often leads to small objects occupying few pixels, which is not conducive to detection. The
FPN structure [24] can effectively solve this problem. As shown in Figure 2, the backbone network
treated the normal top-down down-sampling process as an encoder and added a bottom-up
decoder. The output feature map of the conv4 layer of the encoder was used as the input of the
decoder, and then it was fused with conv3. Firstly, the conv4 layer feature map was convtransposed
to conv_trans3 by 3 × 3 convolution kernel. In this process, the size of the conv4 feature map was
enlarged and the channels were reduced, which was consistent with the conv3 feature map to
achieve the effect of up-sampling. Then the conv_trans3 feature map was combined with the conv3
feature map by concatation, and the pyramid3 layer fused the concat_3 feature map by convolution.

By repeating the above operations layer by layer, the final pyramid1 feature map had the same
size as the input data, which can facilitate ROI pooling. At the same time, the feature map had both
high resolution and expressive ability, which was very helpful for the detection task.

In terms of output strategy, this paper is different from the multi-scale output mode of
RetinaNet. RetinaNet will perform ROI pooling operations at each level of the feature pyramid, and
then input proposals of various scales into the functional network for filtering. This method
improves the detection effect by expanding the redundancy, but at the same time, it also increases
the amount of computation. In this paper, the backbone network only outputs the last feature map of
the FPN to the functional network to estimate the results, which reduces the computational
complexity compared with the multi-scale strategy.

Figure 2. The structure of Backbone network. Our backbone uses the FPN architecture but only
outputs the last layer of feature map to the functional network to estimate the detection results.

Table 1. The parameters of Backbone network layers. Since the network has two paths to process
point cloud bird’s eye view (BEV) and images separately, their parameters in each layer are
different.

Input BEV Image

Figure 2. The structure of Backbone network. Our backbone uses the FPN architecture but only outputs
the last layer of feature map to the functional network to estimate the detection results.

By repeating the above operations layer by layer, the final pyramid1 feature map had the same
size as the input data, which can facilitate ROI pooling. At the same time, the feature map had both
high resolution and expressive ability, which was very helpful for the detection task.

In terms of output strategy, this paper is different from the multi-scale output mode of RetinaNet.
RetinaNet will perform ROI pooling operations at each level of the feature pyramid, and then input
proposals of various scales into the functional network for filtering. This method improves the
detection effect by expanding the redundancy, but at the same time, it also increases the amount of
computation. In this paper, the backbone network only outputs the last feature map of the FPN to the
functional network to estimate the results, which reduces the computational complexity compared
with the multi-scale strategy.

3.3. ROI Pooling and Multi-Sensor Fusion

In order to effectively carry out the regression of bounding boxes, we did not output directly from
the feature maps. Instead, a certain number of anchors were set up so that we could simply predict the
deviation of the anchors. For the feature maps output from backbone network, the 3D anchors were
projected into them first, then the feature maps were cropped according to the projection results, and a
large number of feature map 2D anchors with the same size were obtained. The ROI pooling operation
on both BEV and image feature maps was completed. Finally, the feature fusion of the multi-sensor
feature maps was carried out with element-wise mean to obtain 2D fusion anchors.

Anchors refer to the pre-set inaccurate bounding boxes arranged densely according to certain
rules. In addition, these kinds of boxes usually cannot surround the target well, so they need to
use the neural network for regression. That is to say, anchors can help network output bounding
boxes. In the following Section 3.4, those 2D fusion anchors are sent to the functional network for
final classification and regression. Unlike our method, the PIXOR [32] network does not set anchors,
but directly regresses the bounding boxes from the feature maps, so it is difficult to achieve better
results. In fact, the method of setting anchors has been used in many networks such as SSD [16] and
YOLOv2 [17]. YOLOv2 sets five anchors for each grid unit to adapt to different distances and sizes of
objects. However, we conducted the experiments with cars on the KITTI dataset as objects, considering
the data collected by mobile LIDAR, and the size of vehicles will not vary too much, so in order to
save unnecessary computational complexity, only two sizes of anchors were set up in this paper.

3.3.1. D Anchor Setting

The commonly used encoding method of 3D bounding boxes is represented by 24-dimensional
data of eight corners, but it cannot guarantee the alignment of the positions of those corners. In this
paper, an anchor is represented by six parameters of center coordinate (x, y, z) and length, width
and height (l, w, h). Firstly, in the BEV of point cloud, the x and y values were obtained by uniform
sampling at 0.5 m intervals, whereas the z value was determined by the height of the sensor from the
ground. Then, for the size of the anchors, they can be determined by clustering the label information

Sensors 2019, 19, 1434 7 of 18

of the vehicle object in the dataset as follows: [3.513, 1.581, 1.511] and [4.234, 1.653, 1.546]. Because of
the sparsity of point clouds, some 3D anchors did not contain point clouds and needed to be removed.
Integral image is widely used in image processing, and the value of each position in the integral image
is the sum of all the pixels in the upper left corner of the position in the original image. Similarly, we
can calculate the sum of point clouds in the 3D anchors, thus removing the anchors with the result
of zero.

3.3.2. ROI Pooling and Fusion with Anchors

In order to perform feature fusion, it is necessary to conduct ROI pooling on the feature maps. So,
we projected the 3D anchors onto the feature maps of BEV and images, and then, conducted cropping
and resizing on them. Since the 3D anchors were set on the BEV, the occlusion was not considered in
the projection process of BEV. For the 3D anchor (xt, yt, zt, l, w, h), the upper left corner and the lower
right corner of the projection region on the BEV can be expressed as (xl,min, zl,min) and (xl,max, zl,max):

xl,min = xt − l
2

xl,max = xt +
l
2

zl,min = zt − h
2

zl,max = zt +
h
2

(1)

For the 3D anchor projection to the image feature maps, the calculation process was more complex.
Because the KITTI data acquisition system has many coordinate systems as shown in Figure 3 [33],
in which point cloud and 3D anchors are represented in the Lidar coordinate system, Ol − XlYlZl ,
while images are in the image coordinate system Oi − XiYiZi, it is necessary to transform the 3D
anchors parameters into the image coordinate system.

1

Figure 3. Multi-sensor coordinates. For the vehicle-borne multi-sensor data acquisition system, the
Lidar coordinate system Ol − XlYl Zl , image coordinate system Oi − XiYiZi and camera coordinate
system are different, they can be transformed to each other when necessary.

Firstly, it is easy to calculate the coordinates of 8 vertices
(

xj
t, yj

t, zj
t

)
, j = 1 · · · 8 of the anchor

according to its center point, length, width and height.
Then the vertex coordinates were transformed into image coordinates. For the transformation from

Lidar coordinates to camera coordinates, it was necessary to multiply the corresponding transformation
matrix Tcam

lid . If a vertex in an anchor is set as M
(

xj
t, yj

t, zj
t

)
, the transformation into camera coordinates

can be expressed as:
(xj

c, yj
c, zj

c) = Tcam
lid ·

(
xj

t, yj
t, zj

t

)
(2)

Sensors 2019, 19, 1434 8 of 18

where, the transformation matrix Tcam
lid is provided by the dataset. According to the imaging projection

relationship, the point m in the camera coordinate system can be converted to the image coordinate
system as m

(
xj

i , yj
i

)
:

xj
i
f = xj

c

zj
c

yj
i
f = yj

c

zj
c

(3)

Its matrix form is:

zj
c

 xj
i

yj
i

1

 =

 f 0 0 0
0 f 0 0
0 0 1 0

xj
c

yj
c

zj
c

1

 (4)

where, f denotes the focal length of the camera. Equations (2) and (4) are used to transform the 3D
anchors from the Lidar coordinate system to the image coordinate system to obtain

(
xj

i , yj
i

)
, j = 1 · · · 8.

Considering the occlusion effect, the vertices of the projection area of the 3D anchors can be expressed
as follows:

xi,min = min
(

xj
i

)
xi,max = max

(
xj

i

)
yi,min = min

(
yj

i

)
yi,max = max

(
yj

i

) , j = 1 · · · 8 (5)

According to the parameters of the projection area of the 3D anchors, the feature map was cropped
and resized to 7 × 7, and the feature map anchors were in the same size. In this way, the 2D feature
map anchors can be corresponded with the 3D anchors. And the feature fusion of the multi-sensor
feature maps is completed with an element-wise mean.

During the training phase, those feature fusion anchors were marked positive and negative by
calculating the IoU between the anchors and ground truth bounding boxes, the anchors were recorded
as positive samples when the IoU was greater than the threshold, and vice versa.

3.4. Functional Network

The samples of feature fusion anchors were input to the functional network for classification
judgment and regression of offset. The final prediction bounding boxes were based on the 3D anchors
with corresponding offsets. Compared with the traditional method of direct regression of bounding
boxes, this method not only reduced the difficulty of regression, but also located more accurately.
As shown in Figure 4, the functional network consisted of three parallel multi-path fully connected
layers. The three fully connected networks performed three tasks: classification, bounding box
regression and orientation regression.

3.4.1. The Output Size

For the feature fusion anchors with the total number of K, the classification information included
the object and background, and the total output dimension of the classification network was 2K. For the
bounding box regression network, in order to express the offset values of the center coordinates and
the length, width and height between the anchors and the ground truth bounding boxes, the regression
result was set as (∆xt, ∆yt, ∆zt, ∆l, ∆w, ∆h), and the output dimension was 6K. For the regression of
the orientation of the bounding box, this paper adopted the method of calculating the angle vector
(xor, yor) = (cos(θ), sin(θ)) of the projection of the bounding box in the BEV, so the output dimension
was 2K.

Sensors 2019, 19, 1434 9 of 18
Sensors 2019, 19, x FOR PEER REVIEW 9 of 18

2K

6K

2K

Figure 4. The output of fully connected layers. When the feature fusion anchors with the total
number of K, the output dimensions of classification FC network is 2K; the output dimensions of
bounding box regression FC network is 6K; the output dimensions of orientation regression FC
network is 2K.

3.4.2. Loss Function

In this paper, a multi-task loss function was designed. Two smoothing L1 functions were used
to measure the errors of regression of bounding box and orientation, and the Focal Loss function [21]
was used to measure the classification errors.

{ } { }() () () ()* * * * *1 1 1, , , t , ti i cls i i i reg i i i ang i i
i i icls reg ang

L p t L p p p L t p L t
N N N

λ λ= + + (6)

where, symbol i represents the index of the anchor, and symbol ip represents the probability value
of the predicted object. *

ip means the annotation information, and positive and negative samples
are labeled as 1 and 0 respectively. it represents the predicted result of the bounding box, and *t i
is the label of the positive example.

The first item on the right side of the equal sign is the loss value between the predicted
category and the ground truth, and the second item indicates the loss value between the estimated
bounding box and the ground truth, where *

i regp L indicating that the item is only related to the
positive samples, and for those estimated bounding boxes with IoU less than 0.65 are recorded as
negative samples, which are labeled as 0. The third item shows the deviation between the predicted
and ground truth of the orientation angle. In the formula, clsN , regN and angN are used to
normalize the above three items (respectively 5, 7 and 1), whereas the hyper-parameter λ is used
to balance the weights among the items.

The Focus Loss was used as our classification loss function. Because the background was the
majority of samples and object bounding boxes were only a small part of samples, there was a
problem of class imbalance and the network spent a lot of computing resources on the non-object
samples, which greatly reduced the training effect. Focal Loss reduced its impact by reducing the
weight of large-number samples, which effectively solved the problem. The parameters α and β
in Focus Loss were set to 0.25 and 2, respectively.

4. Experiment Results and Analysis

Dataset introduction: In this paper, the network was trained and tested on the KITTI dataset, in
which the samples were divided into three levels: easy, medium and difficult, according to the
bounding box height, occlusion level and truncation. Because the annotation information of the test
set was not openly available, this paper divided 3769 samples from the training set with 7481
samples into the validation sets, which were only used in the test phrase.

Sample selection: This paper adopted the end-to-end method to train the network. Each time
the numbers of point cloud file and image were input into the network both were set as one. After

Figure 4. The output of fully connected layers. When the feature fusion anchors with the total number
of K, the output dimensions of classification FC network is 2K; the output dimensions of bounding box
regression FC network is 6K; the output dimensions of orientation regression FC network is 2K.

3.4.2. Loss Function

In this paper, a multi-task loss function was designed. Two smoothing L1 functions were used to
measure the errors of regression of bounding box and orientation, and the Focal Loss function [21] was
used to measure the classification errors.

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i) + λ
1

Nang
∑

i
p∗i Lang(ti, t∗i) (6)

where, symbol i represents the index of the anchor, and symbol pi represents the probability value
of the predicted object. p∗i means the annotation information, and positive and negative samples are
labeled as 1 and 0 respectively. ti represents the predicted result of the bounding box, and t∗i is the
label of the positive example.

The first item on the right side of the equal sign is the loss value between the predicted category
and the ground truth, and the second item indicates the loss value between the estimated bounding
box and the ground truth, where p∗i Lreg indicating that the item is only related to the positive samples,
and for those estimated bounding boxes with IoU less than 0.65 are recorded as negative samples,
which are labeled as 0. The third item shows the deviation between the predicted and ground truth
of the orientation angle. In the formula, Ncls, Nreg and Nang are used to normalize the above three
items (respectively 5, 7 and 1), whereas the hyper-parameter λ is used to balance the weights among
the items.

The Focus Loss was used as our classification loss function. Because the background was the
majority of samples and object bounding boxes were only a small part of samples, there was a problem
of class imbalance and the network spent a lot of computing resources on the non-object samples,
which greatly reduced the training effect. Focal Loss reduced its impact by reducing the weight of
large-number samples, which effectively solved the problem. The parameters α and β in Focus Loss
were set to 0.25 and 2, respectively.

4. Experiment Results and Analysis

Dataset introduction: In this paper, the network was trained and tested on the KITTI dataset,
in which the samples were divided into three levels: easy, medium and difficult, according to the
bounding box height, occlusion level and truncation. Because the annotation information of the test
set was not openly available, this paper divided 3769 samples from the training set with 7481 samples
into the validation sets, which were only used in the test phrase.

Sample selection: This paper adopted the end-to-end method to train the network. Each time the
numbers of point cloud file and image were input into the network both were set as one. After feature

Sensors 2019, 19, 1434 10 of 18

extraction of the backbone network, ROI Pooling and feature fusion were carried out to produce the
feature map anchors for the functional network. In this stage, the upper limit of the number of batch
training was set as 16,384. When the number of feature map anchors in this paper was larger than this
upper limit, down-sampling processing was needed. Since the number of positive anchors was usually
few, only negative anchors were down-sampled.

Training details: the ADAM function was used to carry out 150,000 iterations in the network. The
initial learning rate was 0.0001, which was attenuated exponentially with a coefficient of 0.1 and an
attenuation step of 100,000. In order to prevent overfitting during the training stage, the dropout of
each layer in the backbone network was set to be 0.9, and the dropout of the fully connected layer was
set to be 0.5. In addition, batch normalization was used for all the fully connected layers. Finally, when
there was a corresponding relationship between multiple anchors and one ground truth bounding box,
the non-maximum suppression (NMS) method was used to eliminate the redundant anchors, and the
threshold was set to 0.01. The GPU type used in the test phase was TITAN Xp.

4.1. Experiment 1: Feature Extraction Performance

Figure 5 shows the input point cloud BEV, where Figure 5a–e are the elevation diagrams, Figure 5f
is the density map, and Figure 6 is the corresponding picture, in the center of which a vehicle can be
clearly seen. In order to test the feature extraction performance of backbone network, we input the BEV
and image into the trained backbone network and visualize the feature maps of them in the Figure 7.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 18

feature extraction of the backbone network, ROI Pooling and feature fusion were carried out to
produce the feature map anchors for the functional network. In this stage, the upper limit of the
number of batch training was set as 16,384. When the number of feature map anchors in this paper
was larger than this upper limit, down-sampling processing was needed. Since the number of
positive anchors was usually few, only negative anchors were down-sampled.

Training details: the ADAM function was used to carry out 150,000 iterations in the network.
The initial learning rate was 0.0001, which was attenuated exponentially with a coefficient of 0.1
and an attenuation step of 100,000. In order to prevent overfitting during the training stage, the
dropout of each layer in the backbone network was set to be 0.9, and the dropout of the fully
connected layer was set to be 0.5. In addition, batch normalization was used for all the fully
connected layers. Finally, when there was a corresponding relationship between multiple anchors
and one ground truth bounding box, the non-maximum suppression (NMS) method was used to
eliminate the redundant anchors, and the threshold was set to 0.01. The GPU type used in the test
phase was TITAN Xp.

4.1. Experiment 1: Feature Extraction Performance

Figure 5 shows the input point cloud BEV, where Figure 5a–e are the elevation diagrams, Figure
5f is the density map, and Figure 6 is the corresponding picture, in the center of which a vehicle can
be clearly seen. In order to test the feature extraction performance of backbone network, we input
the BEV and image into the trained backbone network and visualize the feature maps of them in the
Figure 7.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. Input point cloud BEV. According to the method described in Section 3.1, we obtain the
BEV of point cloud as input for the network. (a–e): Five Elevation diagrams; (f): Density map.
Figure 5. Input point cloud BEV. According to the method described in Section 3.1, we obtain the BEV
of point cloud as input for the network. (a–e): Five Elevation diagrams; (f): Density map.

Sensors 2019, 19, 1434 11 of 18

Sensors 2019, 19, x FOR PEER REVIEW 11 of 18

Figure 6. Corresponding image input.

(a)

(b)

Figure 7. The output feature maps from con4_3 layer of backbone network: (a) the feature maps of
image; (b) the feature maps of BEV.

Figure 7 shows part of the feature maps from the last layer (i.e., con4_3) of the backbone
network when the input data were processed. Eight channels of the image feature map (Figure 7a)
and four channels of the BEV feature map (Figure 7b) were selected for visualization. It can be seen
from the Figure 7 that part of the feature maps has a relatively obvious response to the position of
the object i.e., vehicle, indicating that the backbone network adopted in this paper can effectively
extract the feature maps of the input data and lay a good foundation for detection.

In order to perform ROI pooling and feature fusion, we needed to project the 3D anchors into
the point cloud BEV and image feature maps and crop the feature map into 2D anchors. Figure 8a,b
show six image feature map anchors (size of 7 × 7) after cropping, and four of which contain the
object of vehicle. Figure 8c,d are the cropped samples of corresponding BEV feature maps. It can be
seen that there were great differences between image feature maps and BEV feature maps, and they
are highly complementary.

(a)

(b)

(c)

(d)

Figure 8. The features maps cropped using 3D anchors: (a,b) the feature maps of image; (c,d) the
feature maps of BEV.

Figure 6. Corresponding image input.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 18

Figure 6. Corresponding image input.

(a)

(b)

Figure 7. The output feature maps from con4_3 layer of backbone network: (a) the feature maps of
image; (b) the feature maps of BEV.

Figure 7 shows part of the feature maps from the last layer (i.e., con4_3) of the backbone
network when the input data were processed. Eight channels of the image feature map (Figure 7a)
and four channels of the BEV feature map (Figure 7b) were selected for visualization. It can be seen
from the Figure 7 that part of the feature maps has a relatively obvious response to the position of
the object i.e., vehicle, indicating that the backbone network adopted in this paper can effectively
extract the feature maps of the input data and lay a good foundation for detection.

In order to perform ROI pooling and feature fusion, we needed to project the 3D anchors into
the point cloud BEV and image feature maps and crop the feature map into 2D anchors. Figure 8a,b
show six image feature map anchors (size of 7 × 7) after cropping, and four of which contain the
object of vehicle. Figure 8c,d are the cropped samples of corresponding BEV feature maps. It can be
seen that there were great differences between image feature maps and BEV feature maps, and they
are highly complementary.

(a)

(b)

(c)

(d)

Figure 8. The features maps cropped using 3D anchors: (a,b) the feature maps of image; (c,d) the
feature maps of BEV.

Figure 7. The output feature maps from con4_3 layer of backbone network: (a) the feature maps of
image; (b) the feature maps of BEV.

Figure 7 shows part of the feature maps from the last layer (i.e., con4_3) of the backbone network
when the input data were processed. Eight channels of the image feature map (Figure 7a) and four
channels of the BEV feature map (Figure 7b) were selected for visualization. It can be seen from the
Figure 7 that part of the feature maps has a relatively obvious response to the position of the object i.e.,
vehicle, indicating that the backbone network adopted in this paper can effectively extract the feature
maps of the input data and lay a good foundation for detection.

In order to perform ROI pooling and feature fusion, we needed to project the 3D anchors into
the point cloud BEV and image feature maps and crop the feature map into 2D anchors. Figure 8a,b
show six image feature map anchors (size of 7 × 7) after cropping, and four of which contain the object
of vehicle. Figure 8c,d are the cropped samples of corresponding BEV feature maps. It can be seen
that there were great differences between image feature maps and BEV feature maps, and they are
highly complementary.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 18

Figure 6. Corresponding image input.

(a)

(b)

Figure 7. The output feature maps from con4_3 layer of backbone network: (a) the feature maps of
image; (b) the feature maps of BEV.

Figure 7 shows part of the feature maps from the last layer (i.e., con4_3) of the backbone
network when the input data were processed. Eight channels of the image feature map (Figure 7a)
and four channels of the BEV feature map (Figure 7b) were selected for visualization. It can be seen
from the Figure 7 that part of the feature maps has a relatively obvious response to the position of
the object i.e., vehicle, indicating that the backbone network adopted in this paper can effectively
extract the feature maps of the input data and lay a good foundation for detection.

In order to perform ROI pooling and feature fusion, we needed to project the 3D anchors into
the point cloud BEV and image feature maps and crop the feature map into 2D anchors. Figure 8a,b
show six image feature map anchors (size of 7 × 7) after cropping, and four of which contain the
object of vehicle. Figure 8c,d are the cropped samples of corresponding BEV feature maps. It can be
seen that there were great differences between image feature maps and BEV feature maps, and they
are highly complementary.

(a)

(b)

(c)

(d)

Figure 8. The features maps cropped using 3D anchors: (a,b) the feature maps of image; (c,d) the
feature maps of BEV.

Figure 8. The features maps cropped using 3D anchors: (a,b) the feature maps of image; (c,d) the
feature maps of BEV.

Sensors 2019, 19, 1434 12 of 18

4.2. Experiment 2: 3D Object Detection Performance

The results in the validation set are shown in Table 2. The 3D detection results can be measured
by average precision (AP). The threshold was set to 0.7. When the IoU value was greater than the
threshold, the detection was successful.

Table 2. Detection Results of Different Methods.

Method Structure Input Runtime/s Easy/% Moderate/% Hard/%

BirdNet [36] 2-stage Lidar 0.11 14.75 13.44 12.04
RT3D [37] 2-stage Lidar 0.09 23.49 21.27 19.81

Complexer-YOLO [30] 1-stage Lidar 0.06 55.63 49.44 44.13
A3DODWTDA [38] 2-stage Lidar + img 0.08 59.35 56.81 50.51

MV3D [25] 2-stage Lidar + img 0.36 71.09 62.35 55.12
Proposed 1-stage Lidar + img 0.09 78.62 72.77 67.21

As can be seen from Table 2, for the three tasks of the dataset, namely Easy, Moderate and
Hard, the proposed method surpassed the other methods in detection performance. The network
BirdNet [36] and RT3D [37] only used the point cloud data of LIDAR, since the resolution of the point
cloud data was much lower than that of the image, it was not conducive to the detection of small
objects, so the AP was relatively low. Complexer-YOLO [30] characterizes the height, intensity and
density of point clouds as RGB-map input, uses 18 convolution layers and 5 maxpooling layers for
feature extraction, then uses YOLO-like loss function in the design of loss function. However, due to
the unbalanced classification of object and background, too many negative samples are not conducive
to the further improvement of network performance. The A3DODWTDA [38] network uses images to
detect two-dimensional objects first, then projects them into 3D space to obtain the possible regions of
objects and segment the object point clouds. Finally, the 3D detection results of objects were obtained
by regression. Because the method divided images and point clouds into two steps separately, it did
not achieve effective fusion effect, so the detection effect was not good. The MV3D [25] network
effectively fused the features of image and point cloud, and the detection performance surpasses
the above algorithms. In terms of timeliness, since the network adopts two-stage network design,
it runs slowly. The network proposed in this paper achieved the fusion of multi-sensor data and good
detection results. Moreover, the problem of class imbalance was solved, so the detection accuracy
was higher than that of the above-mentioned network, and because of the one-stage network design,
the running time was also better than that of MV3D.

4.3. Experiment 3: BEV Object Detection Performance

We also provide experimental results on BEV with the KITTI dataset, setting the IoU of BEV to
0.7. As shown in Table 3, the performance of the A3DODWTDA and MV3D networks that combine
images with point clouds exceeds the Complexer-YOLO that uses only point clouds. The PIXOR
network is the best one-stage point cloud BEV detection network at present. Its design is better than
Complexer-YOLO network, for example, the introduction of FPN in the backbone network is beneficial
for detection and PIXOR also refers to Focal Loss in the loss function. Therefore, the final detection
result is even better than the two-stage network MV3D. However, PIXOR does not use anchors,
and does not design 3D regression operations, resulting in the inability to obtain 3D information. The
proposed network in this paper has improved this by introducing anchors and 3D information fusion,
and our BEV detection results surpass PIXOR.

Sensors 2019, 19, 1434 13 of 18

Table 3. Detection Results of Different Methods in BEV.

Method Structure Input Runtime/s Easy/% Moderate/% Hard/%

Complexer-YOLO [30] 1-stage Lidar 0.06 74.23 66.07 65.70
A3DODWTDA [38] 2-stage Lidar + img 0.08 76.65 72.86 64.51

MV3D [25] 2-stage Lidar + img 0.36 86.02 76.90 68.49
PIXOR [32] 1-stage Lidar 0.09 86.79 80.75 70.60
Proposed 1-stage Lidar + img 0.09 89.01 84.69 78.71

4.4. Experiment 4: Accuracy-Recall Curve

Figure 9a–c are the accuracy-recall curves of 3D detection, which correspond to three difficulties:
Easy, Medium and Difficult. It can be seen from the figures that the performance of Complexer-YOLO
as one-stage network was obviously lower among the three tasks, whereas the proposed network in all
the three tasks was significantly better than the other three networks, which shows that the proposed
network has certain advantages in the detection of different cases. For the “Easy” task, A3DODWTDA
and MV3D can maintain longer and higher precision too, since both networks are two-stage networks,
with the improvement of recall, the number of proposals also increases, which can give full play to
the screening function of RPN subnetwork. However, the proposed network is superior to the two
networks in precision retention.

Similarly, Figure 9d–f are the BEV test results. Here we focus on comparing with the best
one-stage BEV detection network PIXOR. It can be seen that in the three difficulties, the proposed
network is obviously better than PIXOR. Moreover, it is worth noting that in terms of BEV detection,
the proposed network also has some advantages over MV3D, which further indicates the effectiveness
of the proposed network.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 18

effectiveness of the proposed network.

Table 2. Detection Results of Different Methods.

Method Structure Input Runtime/s Easy/% Moderate/% Hard/%
BirdNet [36] 2-stage Lidar 0.11 14.75 13.44 12.04
RT3D [37] 2-stage Lidar 0.09 23.49 21.27 19.81

Complexer-YOLO [30] 1-stage Lidar 0.06 55.63 49.44 44.13
A3DODWTDA [38] 2-stage Lidar + img 0.08 59.35 56.81 50.51

MV3D [25] 2-stage Lidar + img 0.36 71.09 62.35 55.12
Proposed 1-stage Lidar + img 0.09 78.62 72.77 67.21

Table 3. Detection Results of Different Methods in BEV.

Method Structure Input Runtime/s Easy/% Moderate/% Hard/%
Complexer-YOLO [30] 1-stage Lidar 0.06 74.23 66.07 65.70

A3DODWTDA [38] 2-stage Lidar + img 0.08 76.65 72.86 64.51
MV3D [25] 2-stage Lidar + img 0.36 86.02 76.90 68.49
PIXOR [32] 1-stage Lidar 0.09 86.79 80.75 70.60
Proposed 1-stage Lidar + img 0.09 89.01 84.69 78.71

(a) (b) (c)

(d) (e) (f)

Figure 9. Accuracy-recall curve: (a) Easy task in 3D detection; (b) Moderate task in 3D detection; (c)
Hard task in 3D detection; (d) Easy task in BEV detection; (e) Moderate task in BEV detection; (f)
Hard task in BEV detection.

Figure 10 shows some visualization results of the detection. Figure 10a,c,e,g correspond to four
images whose index numbers are 000002, 000008, 000039 and 004118, respectively. The difficulty of
object detection in each image is marked. We can see that the bigger the occlusion part is, the more
difficult the detection is. Figure 10b,d,f,h show the 3D detection results corresponding to the four
samples mentioned above. In the figures, the red 3D bounding boxes are the ground truth and the
white ones are the estimated results. From the figures, it can be seen that the proposed network can
achieve satisfactory detection results on objects labeled as Easy and Moderate. But for the objects
labeled as Hard, there are several cases of missed detection. For example, in Figure 10f,h, we can see

Figure 9. Accuracy-recall curve: (a) Easy task in 3D detection; (b) Moderate task in 3D detection; (c)
Hard task in 3D detection; (d) Easy task in BEV detection; (e) Moderate task in BEV detection; (f) Hard
task in BEV detection.

Figure 10 shows some visualization results of the detection. Figure 10a,c,e,g correspond to four
images whose index numbers are 000002, 000008, 000039 and 004118, respectively. The difficulty of
object detection in each image is marked. We can see that the bigger the occlusion part is, the more
difficult the detection is. Figure 10b,d,f,h show the 3D detection results corresponding to the four

Sensors 2019, 19, 1434 14 of 18

samples mentioned above. In the figures, the red 3D bounding boxes are the ground truth and the
white ones are the estimated results. From the figures, it can be seen that the proposed network can
achieve satisfactory detection results on objects labeled as Easy and Moderate. But for the objects
labeled as Hard, there are several cases of missed detection. For example, in Figure 10f,h, we can see
that the innermost object has not been successfully detected because of the serious occlusion and very
few point clouds can be received from these objects. The detection of Hard targets will be the focus of
our next stage of research.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 18

that the innermost object has not been successfully detected because of the serious occlusion and
very few point clouds can be received from these objects. The detection of Hard targets will be the
focus of our next stage of research.

(a)

(b)

(c)

Figure 10. Cont.

Sensors 2019, 19, 1434 15 of 18

Sensors 2019, 19, x FOR PEER REVIEW 15 of 18

(d)

(e)

(f)

(g)

Figure 10. Cont.

Sensors 2019, 19, 1434 16 of 18

Sensors 2019, 19, x FOR PEER REVIEW 16 of 18

(h)

Figure 10. Detection results of two samples for the Val dataset: (a) image 000002; (b) point cloud
000002; (c) image 000008; (d) point cloud 000008; (e) image 000039; (f) point cloud 000039; (g) image
004118; (h) point cloud 004118.

5. Conclusions

The application of multiple sensors makes it possible for people to carry out more accurate
object detection. In this paper, a convolutional neural network for 3D object detection was proposed.
By improving the existing RetinaNet, a unified architecture for 3D object detection was designed.
The network can be divided into two parts: the backbone network and the functional network.
Firstly, the backbone network performs feature extraction on point cloud BEV and images. Then,
ROI pooling and feature fusion are performed on the feature map, and the feature map is cropped
and resized by projecting the 3D anchors into the feature map of BEV and image respectively.
Finally, multi-path fully connected layers are used to conduct the object classification and the
regression of 3D bounding boxes. In addition, the designed network is a one-stage convolutional
neural network without the use of RPN and it achieves the balance between object detection
precision and detection speed. The validation experiments on the KITTI dataset show that the
proposed network is superior to the baseline in terms of AP and time consumption.

In the data preprocessing stage, we set the parameters of 3D anchors according to the
distribution characteristics of the KITTI dataset, so it is necessary to adjust the anchors when
applying the network to other datasets, which is not conducive to the portability and universality of
the network. This defect will be the focus of our follow-up study.

Author Contributions: Conceptualization, Y.H.; Methodology, M.L.; Software, M.L.; Validation, Y.H., N.Z.;
Formal analysis, N.Z.; Investigation, Q.Q.; Resources, Y.H.; Data curation, M.L.; Writing—original draft
preparation, M.L.; Writing—review and editing, N.Z.; Project administration, Y.H.; Funding acquisition, Y.H.

Funding: This work was supported by the National Natural Science Foundation of China, Grant number
61271353, 61871389.

Acknowledgments: The authors would like to thank the support of the laboratory, university and government.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this
paper.

References

1. Lin, T.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.;
Dollár, P. Microsoft COCO: Common Objects in Context. arXiv 2015, arXiv:1405.0312v3.

2. Cordts, M. The Cityscapes Dataset for Semantic Urban Scene Understanding. arXiv 2016, arXiv:1604.01685.
3. Tomov, N.-S.; Tomov, S. On Deep Neural Networks for Detecting Heart Disease. arXiv 2018,

arXiv:1808.07168.

Figure 10. Detection results of two samples for the Val dataset: (a) image 000002; (b) point cloud 000002;
(c) image 000008; (d) point cloud 000008; (e) image 000039; (f) point cloud 000039; (g) image 004118; (h)
point cloud 004118.

5. Conclusions

The application of multiple sensors makes it possible for people to carry out more accurate
object detection. In this paper, a convolutional neural network for 3D object detection was proposed.
By improving the existing RetinaNet, a unified architecture for 3D object detection was designed.
The network can be divided into two parts: the backbone network and the functional network. Firstly,
the backbone network performs feature extraction on point cloud BEV and images. Then, ROI pooling
and feature fusion are performed on the feature map, and the feature map is cropped and resized by
projecting the 3D anchors into the feature map of BEV and image respectively. Finally, multi-path fully
connected layers are used to conduct the object classification and the regression of 3D bounding boxes.
In addition, the designed network is a one-stage convolutional neural network without the use of RPN
and it achieves the balance between object detection precision and detection speed. The validation
experiments on the KITTI dataset show that the proposed network is superior to the baseline in terms
of AP and time consumption.

In the data preprocessing stage, we set the parameters of 3D anchors according to the distribution
characteristics of the KITTI dataset, so it is necessary to adjust the anchors when applying the network
to other datasets, which is not conducive to the portability and universality of the network. This defect
will be the focus of our follow-up study.

Author Contributions: Conceptualization, Y.H.; Methodology, M.L.; Software, M.L.; Validation, Y.H., N.Z.; Formal
analysis, N.Z.; Investigation, Q.Q.; Resources, Y.H.; Data curation, M.L.; Writing—original draft preparation, M.L.;
Writing—review and editing, N.Z.; Project administration, Y.H.; Funding acquisition, Y.H.

Funding: This work was supported by the National Natural Science Foundation of China, Grant number
61271353, 61871389.

Acknowledgments: The authors would like to thank the support of the laboratory, university and government.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of
this paper.

References

1. Lin, T.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.;
Dollár, P. Microsoft COCO: Common Objects in Context. arXiv 2015, arXiv:1405.0312v3.

2. Cordts, M. The Cityscapes Dataset for Semantic Urban Scene Understanding. arXiv 2016, arXiv:1604.01685.
3. Tomov, N.-S.; Tomov, S. On Deep Neural Networks for Detecting Heart Disease. arXiv 2018, arXiv:1808.07168.

Sensors 2019, 19, 1434 17 of 18

4. Jin, D.; Szolovits, P. Advancing PICO Element Detection in Medical Text via Deep Neural Networks. arXiv
2018, arXiv:1810.12780.

5. Tokuda, K.E.; Lockerman, Y.; Ferreira, B.A.G.; Sorrelgreen, E.; Boyle, D.; Cesar, M.R., Jr.; Silva, T.C. A
new approach for pedestrian density estimation using moving sensors and computer vision. arXiv 2018,
arXiv:1811.05006.

6. Yu, Y.; Li, J.; Guan, H.; Wang, C. Automated Detection of Three-Dimensional Cars in Mobile Laser Scanning
Point Clouds Using DBM-Hough-Forests. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4130–4142. [CrossRef]

7. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 24–27 June 2014; pp. 580–587.

8. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision,
Washington, DC, USA, 7–13 December 2015; pp. 1440–1448.

9. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

10. Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object detection via region-based fully convolutional networks. In
Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December
2016; pp. 379–387.

11. Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into High Quality Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 6154–6162.

12. Hu, H.; Gu, J.; Zhang, Z.; Dai, J.; Wei, Y. Relation Networks for Object Detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June
2018; pp. 3588–3597.

13. Singh, B.; Davis, S.L. An Analysis of Scale Invariance in Object Detection—SNIP. arXiv 2017,
arXiv:1711.08189v2.

14. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F. ImageNet: A Large-Scale Hierarchical Image Database. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25
June 2009; pp. 248–255.

15. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 779–788.

16. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox
detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 October 2016; Springer: Amsterdam, The Netherlands, 2016; pp. 21–37.

17. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

18. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767v1.
19. Fu, C.-Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional Single Shot Detector. arXiv 2017,

arXiv:1701.06659v1.
20. Zhang, Z.; Qiao, S.; Xie, C.; Shen, W.; Wang, B.; Yuille, L.A. Single-Shot Object Detection with Enriched

Semantics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 18–22 June 2018; pp. 5813–5821.

21. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of
the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2999–3007.

22. Zhou, P.; Ni, B.; Geng, C.; Hu, J.; Xu, Y. Scale-Transferrable Object Detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June
2018; pp. 528–537.

23. Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S. Single-Shot Refinement Neural Network for Object Detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–22 June 2018; pp. 4203–4212.

24. Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object
Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 936–944.

http://dx.doi.org/10.1109/TGRS.2016.2537830
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650

Sensors 2019, 19, 1434 18 of 18

25. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3D object detection network for autonomous driving. In
Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; Volume 1, p. 3.

26. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S. Joint 3D Proposal Generation and Object Detection
from View Aggregation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Madrid, Spain, 1–5 October 2018; pp. 1–8.

27. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–22 June 2018; pp. 4490–4499.

28. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum PointNets for 3D Object Detection from RGB-D Data.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–22 June 2018; pp. 918–927.

29. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 77–85.

30. Simon, M.; Milz, S.; Amende, K.; Gross, H.M. Complex-YOLO: Real-time 3D Object Detection on Point
Clouds. arXiv 2018, arXiv:1803.06199.

31. Ali, W.; Abdelkarim, S.; Zahran, M.; Zidan, M.; Sallab, A.E. YOLO3D: End-to-end real-time 3D Oriented
Object Bounding Box Detection from LiDAR Point Cloud. arXiv 2018, arXiv:1808.02350.

32. Yang, B.; Luo, W.; Urtasun, R. PIXOR: Real-time 3D Object Detection from Point Clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22
June 2018; pp. 7652–7660.

33. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence,
RI, USA, 16–21 June 2012; pp. 3354–3361.

34. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556v6.

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

36. Beltran, J.; Guindel, C.; Moreno, F.; Cruzado, D.; Garcia, F.; Escalera, A. BirdNet: A 3D Object Detection
Framework from LiDAR information. arXiv 2018, arXiv:1805.01195.

37. Zeng, Y.; Hu, Y.; Liu, S.; Ye, J.; Han, Y.; Li, X.; Sun, N. RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point
Cloud for Autonomous Driving. IEEE Robot. Autom Lett. 2018, 3, 3434–3440. [CrossRef]

38. Gustafsson, F.; Linder-Norén, E. Automotive 3D Object Detection without Target Domain Annotations.
Master’s Thesis, Linköping University, Linköping, Sweden, June 2018.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LRA.2018.2852843
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Review of RetinaNet
	Complex-Retina
	Input Data
	Backbone Network
	ROI Pooling and Multi-Sensor Fusion
	D Anchor Setting
	ROI Pooling and Fusion with Anchors

	Functional Network
	The Output Size
	Loss Function

	Experiment Results and Analysis
	Experiment 1: Feature Extraction Performance
	Experiment 2: 3D Object Detection Performance
	Experiment 3: BEV Object Detection Performance
	Experiment 4: Accuracy-Recall Curve

	Conclusions
	References

