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Abstract: As wireless sensing has developed, wireless behavior recognition has become a promising
research area, in which human motion duration is one of the basic and significant parameters to
measure human behavior. At present, however, there is no consideration of the duration estimation
of human motion leveraging wireless signals. In this paper, we propose a novel system for robust
duration estimation of human motion (R-DEHM) with WiFi in the area of interest. To achieve this,
we first collect channel statement information (CSI) measurements on commodity WiFi devices
and extract robust features from the CSI amplitude. Then, the back propagation neural network
(BPNN) algorithm is introduced for detection by seeking a cutting line of the features for different
states, i.e., moving human presence and absence. Instead of directly estimating the duration of
human motion, we transform the complex and continuous duration estimation problem into a simple
and discrete human motion detection by segmenting the CSI sequences. Furthermore, R-DEHM is
implemented and evaluated in detail. The results of our experiments show that R-DEHM achieves
the human motion detection and duration estimation with the average detection rate for human
motion more than 94% and the average error rate for duration estimation less than 8%, respectively.

Keywords: duration estimation; human motion detection; channel statement information; back
propagation neural network; WiFi

1. Introduction

With the rapid development of sensor networks, human behavior recognition is one of the
research hotpots in various fields, such as smart homes, building surveillance, and medical health [1].
As a significant parameter of human behavior recognition, the duration of human motion has been
researched widely by many researchers. There have been a lot of schemes for the duration of human
motion in some scenarios of interest, including medical health [2], security monitoring [3], and even
special places. Specifically, in medical health, the duration of postoperative rehabilitation training for
patients affects the physical mechanisms of patients. In security monitoring, abnormal behavior of
mobile personnel can be analyzed through duration. In special places, such as cold storage, chemical
rooms with dangerous gases, and areas with strong radiation, the duration of human beings in the
area of interest requires strict control. Therefore, the duration estimation of human movement in the
scenario of interest is very important in research on human behavior recognition.
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Previous works of human behavior recognition are vision-based [4,5], infrared-based [6],
wearable-based [7,8], etc. However, there are some inherent limitations in traditional technologies.
Vision-based approaches involve the privacy of target users and are significantly affected by light.
Infrared-based methods are easy to block and fail to alarm. Furthermore, infrared devices need to be
fixed in specific locations, resulting in poor mobility. Wearable devices, though flexible, need to be worn
by objects, which makes users feel uncomfortable. Given the development of wireless communication,
wireless devices are widely popular. There is an observation that wireless signals can be reflected by
human bodies and present variance, which can be utilized to determine whether there are human beings
in the area of interest or can even identify specific behavior. Therefore, considering the benefits of wireless
signal detection, wireless human behavior recognition is increasingly becoming mainstream [1].

To make up for the limitations of traditional technologies, the received signal strength (RSS)
of wireless communication from the medium access control (MAC) layer is ubiquitously utilized
for human motion detection. There is an alteration for the RSS when the interest environment
changes. Furthermore, it is adept at obtaining and lightening the burden of objects. Thus, researchers
leverage existing wireless devices to capture the RSS from received packets and process it for human
motion detection. Despite major advances, prior RSS based techniques are limiting with the following
serious drawback: The RSS is highly variable to environmental changes, which can result in mistaken
detection. Driven by the necessity of precise human behavior recognition systems, researchers have
realized that a reliable metric is needed. Fortunately, channel state information (CSI) is obtained on
commercial-off-the-shelf (COTS) devices through modified hardware by researchers to identify human
behavior. Compared to the RSS, CSI has the following advantages: First, CSI maintains temporal
stability in static environments and exhibits variance in a changing scenario; second, different from
the RSS with spontaneous high susceptibility, CSI is independent of transmission power changes.
Therefore, CSI has been touted as promising information for human behavior recognition. Nevertheless,
there is a lack of research investigating the duration estimation of human motion using CSI.

In this paper, we propose a novel CSI-based robust duration estimation of human motion
(R-DEHM) in the area of interest, considering multi-antennas with a simple majority-vote based
detection algorithm. To achieve this, the human motion detection phase and duration estimation
phase are included. We first collect CSI measurements on COTS devices and extract the features of
different states of the scenario, i.e., static and dynamic. Next, a back propagation neural network
(BPNN) algorithm is introduced to classify features for the detection of human beings in the area of
interest. Finally, we apply a segmentation approach to estimate the duration of the moving human.
Furthermore, to incorporate the detection results of all CSI streams for high accuracy, a majority-vote
based algorithm is utilized in the human motion detection phase and duration estimation phase.
R-DEHM is prototyped on the off-the-shelf Atheros AR9382 NIC. We evaluate the performance of
R-DEHM in two real scenarios, including the working area and the living quarters. Experiment
results demonstrate that R-DEHM achieves great performances on human motion detection and
duration estimation.

In summary, the main contributions of our work are as follows:

• We transform the continuous and complex duration estimation problem into a discrete and
simple human motion detection problem. Further, we present the design and implementation of
R-DEHM in detail.

• A new metric is firstly introduced to evaluate the duration performance of human motion in
wireless behavior recognition.

• We implement the system with off-the-shelf WiFi devices and evaluate its performance in two
typical real environments. The experimental results demonstrate the effectiveness and robustness
of the system.

In the remainder of this paper, the related work is reviewed in Section 2, and the preliminaries
about R-DEHM are provided in Section 3. Section 4 introduces the methodology of our proposed
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scheme. Furthermore, the system performances are evaluated and discussed in Section 5. In Section 6,
the overall work is summarized with conclusions.

2. Related Work

R-DEHM leverages wireless signals for human motion detection and duration estimation, which is
closely related to two categories: RSS-based technology and CSI-based technology.

RSS-based technology: RSS, the MAC layer signature, has been prevalently applied to human
motion detection due to its handy access to commodity devices. Specifically, the movement of
personnel interferes with wireless signals and introduces variations of the RSS. Accordingly, moving
humans can be detected by observing the fluctuation of the RSS. Leveraging this phenomenon,
Jedari et al. [9] used the RSS based fingerprinting method to estimate the indoor location of a user
or an object, which combined the k-nearest neighbor, a rules-based classifier, and random forest.
Cassarà et al. [10] presented device free localization, utilizing wireless RSS in ambient assisted
living scenarios. Kosba et al. [11] proposed a robust WLAN device-free passive motion detection
system (RASID), which takes advantage of a statistical anomaly detection technique for human
motion detection. RASID is robust in changing environments through building a non-parametric
profile for signal strength readings. Soldovieri and Gennarelli [12] developed an improvised motion
detection system (IMDS), exploiting a commercial smartphone as the access point and a laptop as
the receiving terminal, to infer human presence by utilizing the variation of the RSS caused by
shadowing and the multipath effect. The RSS achieved from commercial wireless devices can also be
applied for gesture recognition. Pu et al. [13] and Abdelnasser et al. [14] presented gesture recognition
systems by leveraging the minute Doppler shifts and different wireless signal change primitives,
respectively. Although RSS-based human motion detection has been extensively researched, RSS-based
technology cannot distinguish multiple signal propagation paths one by one since it measures the
superposition effect of signal multipath propagation. Consequently, false detection often occurs in
RSS-based detection systems, thus making it unfeasible.

CSI-based technology: The above limitation of RSS-based technology has motivated researchers
to seek a new type of technology that optimizes the performance of human motion detection. Since
commodity wireless network interface cards (NICs) in [15,16] were modified, a sample version can
be obtained in the form of CSI on ordinary Wi-Fi devices. Compared to the conventional RSS, CSI
provides finer-grained information with an amplitude and a phase [17]. Therefore, the fine-grained
signature as a reliable metric handily replaces RSS to achieve more accurate device-free human motion
detection. Wang et al. [18] presented an E-eyes scheme, which is an indoor device-free location-oriented
activity identification system. The basic idea of E-eyes is to leverage the characteristics of CSI amplitude
variations to classify activities in the area of interest. Zhu et al. [19] proposed a robust device-free
through-the-wall detection of moving human (R-TTWD) scheme to leverage the penetrability of
wireless signals. R-TTWD exploits the correlated CSI amplitude variations over different subcarriers
and extracts first-order differences of the eigenvector of the CSI feature to implement through-the-wall
(TTW) human detection. Alex et al. [1,20] proposed a channel state information based human activity
recognition and monitoring system (CARM) that is a CSI-based activity recognition and monitoring
system, building a CSI-speed model to characterize the relationship between CSI dynamics and
human movement speeds. Furthermore, a CSI-activity model was built to portray the relationship
between human movement speeds and human activities. CARM is implemented on COTS WiFi
devices, leveraging CSI amplitude variation for activity recognition, and achieves an average accuracy
of 96%. Gu et al. [21] designed a MoSense scheme, which is a radio frequency-based device-free
motion detection system, exploiting ubiquitous WiFi signals. MoSense describes stationary states to
distinguish motions with a silence analysis model and presents a distance-based mechanism to single
out certain subcarriers for excellent motion detection. In addition to human motion detection and
activity recognition, CSI-based technology is proverbially applied to fall detection [22,23], keystroke
recognition [24,25], vital signs monitoring [26], counting [27,28], and so on. Commonly, the physical



Sensors 2019, 19, 1421 4 of 17

(PHY) layer signatures of CSI, characterizing the small-scale multi-path components, are more sensitive
to human motion. In this paper, we explore a new CSI metric based on the PHY layer to detect and
estimate the duration of dynamic human motion. To the best of our knowledge, this is the first work to
apply fine-grained CSI to estimate the duration of human motion.

3. Preliminaries

This section introduces the core background of R-DEHM, including the PHY layer information
and the MIMO technology.

3.1. PHY Layer Channel State Information (CSI)

As key information of the PHY layer, CSI is a measurement that characterizes the channel
properties of a wireless communication link by combining the effects of time delay, amplitude
attenuation, and phase shift [17]. Generally, a signal from the receiver is superposed since there
are scatting, diffraction, and reflection phenomena in the signal channel propagation. The main
purpose of CSI is to provide an adaption for the communication system within the current channel
conditions. In this case, high reliability and high-speed communication can be guaranteed in the
multi-antenna system.

In an orthogonal frequency division multiplexing (OFDM) system, the entire wireless channel is
divided into multiple narrowband subcarriers. The CSI for subcarriers can be estimated by leveraging
modern WiFi NICs. In our system, Atheros AR9382 is used for NICs with the maximum of N = 114
subcarriers in the frequency domain, which is compatible with IEEE 802.11a/g/n/ac. Based on this,
the PHY layer CSI can be estimated as shown in Equation (1):

H( f ) = [H( f1), H( f2), · · · , H( fk)], k ∈ [1, N], (1)

where H( fk) is the CSI at the subcarrier, k, with a centroid frequency, fk. Further, each H( fk) of the CSI
portrays the amplitude and phase of the OFDM subcarrier, k, as shown in Equation (2):

H( fk) = ‖H( fk)‖ej sin(∠H( fk)), (2)

where ‖H( fk)‖ and ∠H( fk) represent the amplitude and phase of the centroid frequency, fk, respectively.
For the sake of CSI extraction, two tools are currently available, i.e., Intel CSI Tool [15] and Atheros

CSI Tool [16]. In this paper, a COTS router TL-WDR3500 is adopted as the transmitter to send data.
Simultaneously, we have partiality for Atheros CSI Tool with Atheros NICs to implement R-DEHM.

3.2. Multiple-Input Multiple-Output (MIMO)

Multiple-input multiple-output (MIMO) technology leverages multiple antennas at the transmitter
and receiver to enhance the quality of communication [29]. Based on the multiple antennas in MIMO,
reliability can be increased via spatial diversity. Besides, the data throughput and the transmitting
distance can be improved without enhancing the bandwidth and total transmitting power. Therefore,
MIMO is considered a key technology in the wireless communication field.

In each antenna pair of the transmitter and receiver, the MIMO channel is composed of multiple
subcarriers. The status of all MIMO channels is continuously monitored by wireless devices and
characterized by CSI streams. Specifically, the CSI of all data streams can be portrayed as in Equation (3):

H =


H11 H12 · · · H1m
H21 H22 · · · H2m

...
...

. . .
...

Hn1 Hn2 · · · Hnm

, (3)
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where m and n represent the number of transmitter antennas and receiver antennas, respectively.
In addition, Hnm is a vector describing the CSI of all subcarriers between the mth transmitter antenna
to the nth receiver antenna, and hence the total number of CSI streams is m× n.

4. System Overview

In this section, we present an overview of the R-DEHM architecture as shown in Figure 1.
Two kinds of data streams exist, i.e., training data streams and testing data streams, collected with
COTS devices. The difference between the two kinds of data streams is that the training data streams
needs to be labeled artificially. The detailed procedure of R-DEHM is as follows:

• Firstly, the original training data needs to be preprocessed through the data preprocessing module
since the raw CSI measurements could contain biased observations and noise. In our system,
a Hampel identifier [30] is used for outlier filtering, 1-D linear interpolation for supplementing
the information, and wavelet-based noise removal for denoising.

• Secondly, the feature extraction module is introduced to extract the feature of the filtered training
data. In this module, we use principal component analysis (PCA) based technology to reduce CSI
dimensions. Based on the correlation among different subcarriers, we further extract the ratio of
the variance and the mean of the first-order difference to achieve a robust feature profile.

• Afterwards, a training model in R-DEHM is obtained by training robust features based on BPNN.
For the sake of reliability, we incorporate a majority-vote algorithm in the results of all streams in
the training model, considering multi-antenna.

• Then, to achieve the robust feature profile, a data preprocessing module and a feature extraction
module for each testing data stream are also employed. Subsequently, we leverage the training
model to confirm the statement of the presence or absence of each testing data. Besides,
the majority-vote algorithm is also utilized in the multi-antenna fusion module to enhance
the accuracy of human motion detection in our system.

• Finally, if a CSI data is confirmed as the statement of a presence in the scenario, the filtered data
of the CSI, after the data preprocessing module, is divided into lots of segments with the same
window size. Further, each segment undergoes feature extraction and the BPNN for human
motion detection, and the multi-antenna fusion module is applied to ensure accuracy. According
to the window size, the final results of all segments are integrated to estimate the duration of
human motion in the scenario.
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5. Methodology

In this section, we elaborate the design of R-DEHM with real measurements.

5.1. Data Preprocessing Module

Due to the noise in the CSI, the data preprocessing module is set for the raw signal, including
outlier filtering, data interpolation, and noise removal.

5.1.1. Outlier Filtering

In the data preprocessing module, filtering outliers is the first procedure to dispose the original
CSI measurement. In the middle of the experiment, due to the protocol specifications between the
transmitter and the receiver, as well as the exotic environmental interference, there are many abnormal
values that are apparently not triggered by human motion. Therefore, it is necessary to sift out outliers
that affect the performance of human motion detection and duration estimation. To identify and filter
out the outliers in R-DEHM, we exploit a Hampel identifier [30] to discriminate between cancerous
data and normal data. The Hampel filter identifies the location of outliers that fall outside of the closed
interval [µ− γσ, µ + γσ], where µ and σ represent the median and the median absolute deviation
(MAD) of the data sequence, respectively, and γ is a parameter that is dependent on the applications.
In our experiment, γ is adopted with the most extensive value of 3 [19]. Figure 2a illustrates the outlier
observations, and it can be seen clearly that there are some abrupt changes observed from the overall
trend, which are marked by red boxes.
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Figure 2. Outlier filtering and data interpolation for CSI measurement in the absence scenario:
(a) The original CSI data of subcarrier 1 with outliers; (b) the CSI data of subcarrier 1 after outlier
filtering and linear interpolation.

5.1.2. Data Interpolation

It must be noted that some locations with null CSI data exist after filtering outliers. In addition,
no matter what the sampling rate is, sampling jitter is quite common in CSI, which results in CSI data
packets being lost to varying degrees. Thus, to account for the CSI data loss caused by sampling jitter
and outlier filtering, the CSI measurements must be interpolated. Specifically, the simplest 1-D linear
interpolation algorithm is utilized in R-DEHM to ensure the integrity of the CSI measurements with
1 ms between consecutive measurements. Figure 2b presents the CSI measurements after performing
outlier filtering and data interpolation effectively.

5.1.3. Noise Removal

There is much noise in CSI measurement due to the hardware imperfections of the transceiver and
the electromagnetic interference in complex indoor environments, such as surrounding electromagnetic
interference, and air pressure and temperature changes. Hence, the measured CSI data are noisy after
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outlier filtering and data interpolation. As such, the interference is bound to conceal the distinctness of
the statement features in the scenario. Therefore, it is of great significance to remove the noise of the
measured CSI data after outlier filtering and data interpolation. Considering the variations caused by
human activities with a low frequency range, a low-pass filter is adopted in R-DEHM to eliminate noise
at the high end of the spectrum. According to the experiments, we argue that the conventional filter,
e.g., moving average filtering, is not appropriate for denoising in R-DEHM, since it is unable to achieve
the removal of random noises. However, wavelet analysis can simultaneously analyze a signal in
both time and frequency domains. Moreover, it has the ability of multi-resolution analysis. Therefore,
at different decomposition levels, wavelet analysis can effectively distinguish sudden changes of the
signal and noise signal to implement noise removal. Ultimately, a wavelet-based denoising scheme is
employed to eliminate messy noise and smooth the CSI measurement.

Wavelet analysis is the local analysis of spatial frequency, which consists of three stages:
Decomposition, thresholding detail coefficients, and reconstruction. It progressively refines the signal
by scaling and translation operation, thus achieving the time subdivision at high frequency and
the frequency subdivision at low frequency. Specifically, the original CSI measurement is firstly
decomposed by the wavelet to obtain high-frequency detailed components and low-frequency
approximate components. Then, the threshold processing is applied to high-frequency detailed
components for noise removal. Next, the processed components are reconstructed by the wavelet to
obtain the denoised CSI measurement. Figure 3b shows the CSI measurement after using wavelet-based
denoising when applied to the CSI measurement in Figure 3a in the presence scenario. It can be
observed that the noise signal is almost removed from the raw CSI measurement.
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Figure 3. Noise removal for the CSI measurement in the presence scenario: (a) The raw CSI measurement;
(b) the CSI measurement after removal with the wavelet-based denoising.

5.2. Feature Extraction Module

In this subsection, we extract the feature for human motion detection. Firstly, the PCA-based
dimension reduction is used to decrease the computational complexity of high dimensional CSI
measurements. Then, we analyze the eigenvectors and corresponding principal components of the CSI
measurements in order to extract the robustness features.

5.2.1. PCA-Based Dimension Reduction

It is universally known that PCA transforms the original data into a set of linearly independent
representations of each dimension by linear transformation. It can be used to extract the main feature
components of the data, basically holding back all useful information of the previous data. Given the
computational complexity of high dimensional CSI measurements with a maximum of N = 114
subcarriers, we apply a novel PCA-based technology for the denoised CSI streams to reduce data
dimensions, and to shorten the computational time of the system. Moreover, PCA is utilized to
identify the correlations between adjacent subcarriers and unveil the most common variations among
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different subcarriers. In R-DEHM, PCA-based technology on each primary denoised CSI stream has
the following four steps.

Firstly, let Htc,tr(i) be a N × 1 dimension vector containing the CSI values of the N = 114
subcarriers between an arbitrary antenna pair, tc− tr, for the ith CSI packet. Meanwhile, let Htc,tr

be a S× N dimension matrix containing the CSI values of the N subcarriers between an arbitrary
antenna pair, tc− tr, for S consecutive CSI packets. Specifically, Htc,tr can be characterized as shown in
Equation (4):

Htc,tr = [Htr,tr(1), Htc,tr(2), · · ·Htc,tr(s)]
T , (4)

where the columns of the matrix, Htc,tr, represent the CSI sequences for each subcarrier.
Secondly, we normalize the matrix, Htc,tr, such that each column has a zero mean and unit

variance, and we denote the normalized version of the CSI measurement as Nortc,tr.
Thirdly, we calculate the corresponding correlation matrix, portrayed as in Equation (5):

C =


C(1, 1) C(1, 2) · · · C(1, N)

C(2, 1) C(2, 2) · · · C(2, N)
...

...
. . .

...
C(N, 1) C(N, 2) · · · C(N, N)

, (5)

Finally, R-DEHM performs eigendecomposition of the correlation matrix, C, to obtain the
eigenvectors, Ev = (eig1, eig2, · · · , eigi), and simultaneously structures the principal components,
Pl = (pl1, pl2, · · · , pli), which is shown in Equation (6):

pli = Nortc,tr × eigi, (6)

where eigi and pli are the ith eigenvector and ith principal component, respectively.

5.2.2. Feature Extraction

To extract the robustness features that are sensitive to the environment and human motion,
we analyzed the eigenvectors and the corresponding principal components of the CSI measurements
after the PCA-based dimension reduction. To identify the robust features for human motion detection,
we analyzed the characteristics of the eigenvectors and the corresponding principal components.
Through our experiments, there were two main observations. On the one hand, Figure 4 portrays
the principal components of the CSI measurements in the absence scenario and the presence scenario.
It can be seen in Figure 4 that the first principal components both have great fluctuations in the
two environments. It is impossible to make an adequate distinction between presence and absence
for the first principal component. Consequently, the first components are eliminated when extracting
detection features in R-DEHM. Further, it can be observed in Figure 4 that there is feeble variation
with the remaining principal components in the absence scenario, however, the variation of the
principal components is palpable in the presence scenario. On the other hand, Figure 5 compares the
eigenvectors’ fluctuation in the absence scenario and the presence scenario. It can be seen in Figure 5
that the remaining adjacent eigenvectors fluctuate gently in the presence scenario and vary in the
middle in the absence scenario.

Typically, variance can measure the dispersion degree of data and the first-order difference
can reflect the relationship between adjacent data. Thus, we calculated the variance of the principal
components, E2{pli}, for the ith principal component, pli, as shown in Equation (7), and the mean of
the first-order difference, D{eigi}, for the ith eigenvector, eigi to expose the corresponding variation
characteristics, as shown in Equation (8):

E2{pli} =
1
L

L

∑
i=1

(pli −
1
L

L

∑
j=1

plj)
2, (7)
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D{eigi} =
1

N − 1

N

∑
l=2
|eigi(l)− eigi(l − 1)|, (8)

where L is the length of the CSI sequential packets, N = 114 is the number of subcarriers, and
|eigi(l)− eigi(l − 1)| is the difference in coefficients for neighboring subcarriers of the ith eigenvector.
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Figure 4. The principal components in two statement environments: (a) Top six principal components
in the absence environment; (b) top six principal components in the presence environment.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 17 

 

2

1{ } ( ) ( 1)
1

N

i i i
l

D eig eig l eig l
N =

= − −
−  , (8) 

where L  is the length of the CSI sequential packets, 114N =  is the number of subcarriers, and
( ) ( 1)i ieig l eig l− −  is the difference in coefficients for neighboring subcarriers of the ith eigenvector. 

  
(a) (b) 

Figure 4. The principal components in two statement environments: (a) Top six principal components 
in the absence environment; (b) top six principal components in the presence environment. 

  
(a) (b) 

Figure 5. The eigenvectors in two statement environments: (a) The remaining eigenvectors in the 
absence environment; (b) the remaining eigenvectors in the presence environment. 

According to the experiments in our system, we observed that the ratio, { , }i iF pl eig , of the 
variance of the principal components to the mean of the first-order difference is more robust as a 
feature to distinguish whether there is a presence or absence in the vicinity, which is shown in 
Equation (9): 

2{ }{ , }
{ }

i
i i

i

E plF pl eig
D eig

= , (9) 

Therefore, to enhance the robustness of the system to human motion detection, R-DEHM focuses 
on the other principal components except the first principal component, and uses the ratio of variance 
of the principal components to the first-order differential mean as the feature reflecting the changes 
of subcarriers. 

5.3. Human Motion Detection 

After extracting the features of the absence and presence environments, R-DEHM realizes 
human motion detection by classifying different environmental features. If the classification result is 

0 100 200 300 400 500
-20

-15

-10

-5

0

5

10

15

20

 PCA1
 PCA2
 PCA3
 PCA4
 PCA5
 PCA6

Pr
in

ci
pa

l c
om

po
ne

nt
 v

al
ue

s

Package index
0 100 200 300 400 500

-20

-15

-10

-5

0

5

10

15

20

 PCA1
 PCA2
 PCA3
 PCA4
 PCA5
 PCA6

Pr
in

ci
pa

l c
om

po
ne

nt
 v

al
ue

s
Package index

0 20 40 60 80 100 114
-0.5

0

0.5

1.0

 Eigenvector2
 Eigenvector3
 Eigenvector4
 Eigenvector5
 Eigenvector6

Ei
ge

nv
ec

to
r v

al
ue

s

Subcarrier
0 20 40 60 80 100 114

-0.5

0

0.5

1.0

 Eigenvector2
 Eigenvector3
 Eigenvector4
 Eigenvector5
 Eigenvector6

Ei
ge

nv
ec

to
r v

al
ue

s

Subcarrier

Figure 5. The eigenvectors in two statement environments: (a) The remaining eigenvectors in the
absence environment; (b) the remaining eigenvectors in the presence environment.

According to the experiments in our system, we observed that the ratio, F{pli, eigi}, of the variance
of the principal components to the mean of the first-order difference is more robust as a feature to
distinguish whether there is a presence or absence in the vicinity, which is shown in Equation (9):

F{pli, eigi} =
E2{pli}
D{eigi}

, (9)

Therefore, to enhance the robustness of the system to human motion detection, R-DEHM focuses
on the other principal components except the first principal component, and uses the ratio of variance
of the principal components to the first-order differential mean as the feature reflecting the changes
of subcarriers.

5.3. Human Motion Detection

After extracting the features of the absence and presence environments, R-DEHM realizes human
motion detection by classifying different environmental features. If the classification result is presence,
R-DEHM will present the result of presence for the current environment, and otherwise, the current
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environment is presented as the result of absence. To achieve this process, the selection of classifiers is
particularly important. The artificial neural network obtains the training model under certain rules
through its own training and learning without defining the mapping relationship between the input
and output, and after the input value is given, an expected output value can be accurately achieved.
As the most widely-used artificial neural network, BPNN is utilized in R-DEHM as the classifier of
environmental features to achieve the demarcation line between human presence and absence.

In the construction of BPNN, generally, the number of hidden layers determines the application
effect of the classifier. Although the training model may be obtained easily by the multi-hidden layer
BPNN, it easily falls into the local minimum. Three-layer BPNN with a single hidden layer can complete
arbitrary complex function mapping. Therefore, R-DEHM constructs a simple three-layer BPNN with
a hidden layer as the classifier of the environmental feature classification, adopting the momentum
gradient descent algorithm with a variable learning rate. The specific classification operation has the
following three steps.

First, the data are divided into two categories, i.e., training data and test data.
Then, the features of the training data are selected as the input of the BPNN model. Further, BPNN

adjusts the weights and thresholds continuously through repeated learning and training processes,
so that the error decreases along the gradient direction. If the error approaches the threshold of 0.01,
the learning and training processes will be stopped, thus obtaining the training model of BPNN with
a demarcation line for discriminating between different scenarios.

Finally, the features of the test data are classified by using the BPNN training model, and hence
human motion detection is realized according to the classification criteria.

5.4. Multiple Antennas Fusion Module

With the endorsement of MIMO in modern communication, an increasing number of WiFi devices
are equipped with multiple antennas. Generally, not all wireless links are equally sensitive to human
movement and the sensitivity varies with the link fade level along with other factors. It is difficult
to provide reliable detection in R-DEHM when a specific antenna pair for motion detection is fixed.
To avoid this dilemma, we leveraged a simple majority-vote based detection algorithm to ensure the
robustness of R-DEHM. Specifically, we executed the human motion detection on each antenna pair,
and then we synthesized all results of different antenna pairs by the multiple antennas fusion module
to make a final precise human motion detection decision.

5.5. Duration Estimation

As a significant parameter of human activity recognition, the duration of human motion is
estimated in R-DEHM for the presence CSI data. Considering the continuity of the duration for each
presence CSI data, we transformed it into the discreteness of human motion detection. Based on this,
a complex duration assessment problem was transformed into a simple human motion detection
problem. To be more specific, the duration estimation of the presence CSI data is arranged in three
main steps.

Firstly, the entire information of the presence CSI data may be split for discrete analysis. In this
case, when the statement of the CSI data is confirmed as a presence in the scenario according to the
final human motion detection decision, the pre-processed CSI streams are divided into lots of CSI
segments with the same window size, W.

Then, there is a human motion detection process for each CSI segment, including the feature
extraction, BPNN, and multi-antenna fusion module. Moreover, the duration of each CSI segment is
defined as a window size, W, if the CSI segment is confirmed as a presence in the scenario; otherwise,
it should be defined as the value of zero.

Finally, we estimate the duration, T, of the human motion in the scenario, according to the sum of
the duration of all CSI segments, which is the statement of a presence in the scenario. Based on this,
the duration, T, of the human motion in the scenario can be portrayed as in Equation (10):
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T =
num

∑
s=1

W, (10)

where num represents the total number of CSI segments embodying human motion.

6. Implementation and Evaluation

In this section, the prototype implementation and experiment settings of our designed system
are presented in detail. Afterwards, we systematically evaluate the performance of the system via
real-world experiments.

6.1. Prototype Implementation and Experiment Settings

In our experiments, we employed two antennas, a TP-Link wireless router TL-WDR3500 as the
transmitter, and an Acer PC equipped with two antennas and Atheros AR9382 NICs was employed as
the receiver for pinging packets from the transmitter. According to the antennas’ distribution, a 2× 2
MIMO system was constructed by the transmitter and the receiver with four antenna links. In this case,
we denoted four antenna links as “Link A”, “Link B”, “Link C”, and “Link D”; the multiple antenna link
is denoted as “Multi_Link”, which represents our system. During the detection period, the transmitter
sends out beacon messages to the receiver with 1000 packets per second [31]. Then, the receiver gathers
these messages along with the CSI and uploads that to the detection server for processing.

To verify the robustness of the system, we conducted experiments under two typical real indoor
scenarios, i.e., working area and living quarters. The research laboratory was adopted for the working
area and the graduate dormitory for the living quarters, which were set as follows:

(1) Research Laboratory: We set up a working area testbed in a 7.5 m× 13 m key research laboratory
in Hebei University of Engineering, as shown in Figure 6a. The transmitter is placed on the top
of the shelters. At the receiver side, the CSI measurements are collected continuously in both
the presence and absence environments. The relative position of the transmitter and the receiver
is 4.1 m. For the purpose of human motion detection, we generated two data sets covering the
entire area of the laboratory, including an absence set and a presence set. The presence set is
formed by an individual walking back and forth continuously around the region of interest.

(2) Graduate Dormitory: We performed the living quarter experiments in a 3 m× 5 m graduate
dormitory. In this scenario, the transmitter and receiver are placed in a fixed position as shown in
Figure 6b, where the relative position is 5.13 m. We also collected the same number of CSI data
over the transmission link, and then the CSI data were uploaded to the system server.
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6.2. Performance Evaluation

In this subsection, we first present some evaluation metrics for estimation, and then the
performances of human motion detection and motion duration estimation are evaluated
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6.2.1. Evaluation Metrics

To evaluate the performance of our designed system, we focused on some metrics for estimation,
including the true positive, true negative, false positive, false negative, true positive rate, true negative
rate, and duration error rate.

• True positive (TP): The TP refers to an event in which a moving human presence is
correctly detected.

• True negative (TN): The TN refers to an event in which no human presence is correctly identified.
• False positive (FP): The FP refers to an event in which the system detects the human motion,

but there is, in fact, no people moving.
• False negative (FN): The FN refers to an event in which the system detects no human motion,

but there is, in fact, people moving.
• True positive rate (TPR): The TPR refers to the probability that the system makes the right

judgment in the existence of human motion, interpreting the detection performance in the presence
of FN, which can be expressed as in Equation (11):

TPR =
TP

TP + FN
, (11)

• True negative rate (TNR): The TNR refers to the probability that the system makes the right
judgment in the absence scenario, interpreting the detection performance in the presence of a FP,
which can be expressed as in Equation (12):

TNR =
TN

TN + FP
, (12)

• Duration error rate (DER): The DER is the ratio of absolute error caused by measurement to the
total time. Specifically, the formula can be expressed as in Equation (13):

DER =
|Mt− Rt|

St
, (13)

where Mt and Rt represent the measured duration and the real duration of human motion,
respectively, and St is the total time of the sample.

6.2.2. Performance Evaluation of Human Motion Detection

This subsection presents the performance of our designed system in terms of human motion
detection. Figure 7 shows the comparison of TPR among different antenna link cases in two diverse
scenarios, considering four cases of human motion duration. It is evident that R-DEHM, i.e., Multi_Link,
outperforms the single antenna cases in terms of the TP rate, with an improvement of approximately
16.96%. To be more specific, the average TPR by a single antenna link is 81.21% and the average TPR by
the multiple antenna links is 94.98%. This is because a simple majority-vote based detection algorithm
is leveraged in R-DEHM. Based on this, our multiple antennas fusion scheme achieves an excellent
performance, ensuring the stability of human motion detection and the validity of duration estimation
of human motion.

Besides, the human motion detection results of all single antennas are unstable, and bad results do
not always appear on the same single antenna, such as Link B at 30 s detecting a TPR of 75% and Link A
at 90 s detecting a TPR of 78%, as shown in Figure 7a. This is because factors, such as the communication
quality between transceivers and the moving position of the target human, have different effects on
each link in the process of data acquisition. Furthermore, this affect also occurs in different time periods
for the same antenna link. It can be observed in Figure 7 that the fluctuation of TPR in the graduate
dormitory is smaller than that in the research laboratory. This is because the distance between the
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transceivers is relatively small in the narrow dormitory space, and the range of activity of the target
human is also relatively close to the line of sight of the transceivers. Thus, wireless signals in graduate
dormitory more easily capture activity information.Sensors 2019, 19, x FOR PEER REVIEW 13 of 17 
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Figure 7. Impact of multiple antenna links in two testbeds: (a) True positive rate in a graduate
dormitory; (b) true positive rate in a research laboratory.

Table 1 shows the comparison of TNR among different antenna link cases in two diverse scenarios.
R-DEHM detects human motion, leveraging a simple majority-vote based detection algorithm with an
average TNR almost close to 100%. Moreover, we observed that the TNR of all simple antenna link
cases is less than 95% except for Link B in the graduate dormitory. After checking the trace, we found
that the false alarms are almost always caused by a sudden increase in noise levels. We also found
that the TNR in the research laboratory is inferior to the TNR in the graduate dormitory. This is
because the space distribution of the laboratory is complex, and hence the result are easily affected by
the multi-path.

Table 1. TNR among different antenna link cases in different scenarios.

Scenario
Antenna

Link A Link B Link C Link D Multi_Link

Dormitory 0.89 0.96 0.90 0.93 1.00
Laboratory 0.90 0.94 0.90 0.80 0.99

6.2.3. Performance Evaluation of Motion Duration Estimation

This subsection presents the performance of our designed system in terms of motion duration
estimation. Figures 8 and 9 show the DER of duration estimation for human motion by four cases of
human motion duration in a graduate dormitory and research laboratory, respectively. We observed
that the DER using multiple antenna links is lower than that of the single antenna link. This is because
the position of the target human changes during the course of their activities, which leads to different
changes of each antenna link. Therefore, it is almost impossible to express the information of the
activity completion by using a single antenna to estimate human motion duration. On the contrary,
when leveraging the simple majority-vote based detection algorithm, the information of each antenna
can be synthesized to estimate the duration of human motion more completely. Besides, we noticed
that R-DEHM estimates the human motion duration by leveraging a simple majority-vote based
detection algorithm with an average DER less than 10%.
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Figure 8. The DER in the dormitory: (a) DER with 30 s; (b) DER with 60 s; (c) DER with 90 s; (d) DER
with 120 s.
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We also observed that the DE rate decreases with the increase of the window size. This is because
the variance of a CSI segment changes more obviously as the window size is enlarged. In this case,
when the variance of a CSI segment is much smaller than the human motion duration, the system is
more sensitive to the moving information. Furthermore, it can be seen that we cannot identify which
single antenna link case has the worst or best performance of DER. This is because there is no stable
sensitivity for all single wireless links to detect human motion under any situation. Furthermore, it is
evident that the mean fluctuation of DER in the graduate dormitory is smaller than that in the research
laboratory. This is because of the difference in the space distribution, which is the same reason for
the TPR trend differences. There is less multi-path impairment when the smaller enclosed scenario is
adopted for the experiment.

Table 2 shows the average DER with different antenna links in the graduate dormitory and
research laboratory. It can be seen that the average DER rates with a single antenna link in the graduate
dormitory and research laboratory are 13.7% and 14.25%, respectively. Moreover, the average DER
with multiple antenna links in the graduate dormitory and research laboratory are 8% and 7.61%,
respectively. Since the simple majority-vote based detection algorithm was employed in our designed
system, the improvements of DER in the graduate dormitory and research laboratory are 41.61% and
46.6%, respectively. We observed that the DER improvement of the research laboratory is larger than
that of the graduate dormitory. This implies that the scheme of multiple antennas fusion is of great
significance to R-DEHM and it works especially well in complex environments. Besides, Table 2 shows
that the average DER of Link A in the dormitory and Link B in the laboratory are relatively high,
with both exceeding 15%. Thus, it proves once again that it is impossible to fix a specific antenna link
for duration estimation of human motion.

Table 2. The average DER with different antenna links in two scenarios.

Scenario
Antenna

Link A Link B Link C Link D Multi_Link

Dormitory 17.43% 12.2% 13.84% 11.33% 8%
Laboratory 14.23% 18.62% 10.7% 13.43% 7.61%

7. Conclusions

With the development of wireless technology, wireless human behavior recognition has attracted
much attention, but there is lack of consideration of the duration of human motion. In this paper,
we presented a channel statement information (CSI)-based device-free system for robust duration
estimation of human motion with commodity WiFi devices, and the design and implementation of
the system were presented in detail. To the best of our knowledge, this is the first system that utilizes
the CSI from the physical layer for duration estimation of human motion. A fresh perspective was
proposed to transform the complex and continuous duration estimation problem into a simple and
discrete human motion detection problem. We prototyped the system and evaluated it in two real
environments, containing the effectiveness of human motion detection and duration estimation.
The evaluation results presented that the average true positive rate (TPR) and true negative rate
(TNR) of human motion detection with multiple antenna links are larger than 94% and close to 100%,
respectively. Simultaneously, the average duration error rate (DER) of duration estimation of human
motion with multiple antenna links in a graduation dormitory and research laboratory are 8% and
7.61%, respectively, which provides evidence of the effectiveness of R-DEHM. In the near future, more
environmental factors should be considered to optimize our methods for more accurate estimation.
Furthermore, we will strive to achieve the motion duration estimation of multiple humans in our
future work.
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