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Abstract: Chromium (VI) [Cr(VI)] compounds display high toxic, mutagenic, and carcinogenic
potential. Biological analysis techniques (e.g., such as enzyme-based or cell-based sensors) have been
developed to measure Cr(VI); however, these biological elements are sensitive to the environment,
limited to measuring trace Cr(VI), and require deployment offsite. In this study, a three-stage
single-chambered microbial fuel cell (SCMFC) biosensor inoculated with Exiguobacterium aestuarii
YC211 was developed for in situ, real-time, and continuous Cr(VI) measurement. A negative
linear relationship was observed between the Cr(VI) concentration (5–30 mg/L) and the voltage
output using an SCMFC at 2-min liquid retention time. The theoretical Cr(VI) measurement range
of the system could be extended to 5–90 mg/L by connecting three separate SCMFCs in series.
The three-stage SCMFC biosensor could accurately measure Cr(VI) concentrations in actual tannery
wastewater with low deviations (<7%). After treating the wastewater with the SCMFC, the original
inoculated E. aestuarii remained dominant (>92.5%), according to the next-generation sequencing
analysis. The stable bacterial community present in the SCMFC favored the reliable performance
of the SCMFC biosensor. Thus, the three-stage SCMFC biosensor has potential as an early warning
device with wide dynamic range for in situ, real-time, and continuous Cr(VI) measurement of
tannery wastewater.
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1. Introduction

Hexavalent chromium [Cr(VI)] is a common environmental pollutant, used extensively in
numerous industrial processes (e.g., tanning, electroplating, wood preservation, textile dyeing,
and ore refining) [1]. Because of its high oxidizing potential, Cr(VI) easily causes toxic, mutagenic,
and carcinogenic effects on biological organisms and has been identified as one of the 17 chemicals
posing the greatest threat to humans by the US Environmental Protection Agency [2]. Thus, real-time
monitoring and bioremediation of Cr(VI) are essential to protect human health and the environment.
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To date, various bacterial strains, including Pseudomonas sp., Enterobacter aerogenes, Serratia
proteamaculans, Bacillus sp., Microbacterium sp., Trichococcus pasteurii, Desulfovibrio vulgaris,
Ochrobactrum sp., Escherichia coli, Shewanella algae, Paenibacillus ferrarius, Exiguobacterium aestuarii,
and Stenotrophomonas maltophilia, capable of reducing Cr(VI) to Cr(III), have been isolated from various
environments under anaerobic or aerobic conditions [3–9]. Although most of these microbes have
been isolated, the availability of high selectivity, high reducing power, broad environmental tolerance,
and anaerobic Cr(VI)-reducing bacteria is a prerequisite for accurate Cr(VI) measurement from actual
wastewater using microbial fuel cells (MFCs).

Numerous analysis methods have been developed for Cr(VI) measurement in water samples.
Commonly used chemical analysis techniques include atomic absorption spectrometry, inductively
coupled plasma mass spectroscopy, ion chromatography, and colorimetric methods based on
diphenylcarbazide [10]. These methodologies are effective and sensitive and have low detection limits;
however, complicated operating procedures, expensive equipment, and long measurement times
often restrict their application, especially for in situ or real-time Cr(VI) measurement [11]. Recently,
biological analysis techniques have been considered for Cr(VI) measurement. They can compete with
the chemical methods because of their simpler operation, cheaper equipment, and shorter measurement
periods [7]. These biological analysis techniques include enzyme-based sensors (e.g., those using
urease or cytochrome c3) and cell-based sensors (e.g., those using V79 cells, sulfur-oxidizing bacteria,
E. aerogenes, or recombinant E. coli) [11–15]. However, these enzymes, cells, and bacterial strains are
sensitive to environmental changes; they are often limited to measuring dilute Cr(VI) concentrations
and require deployment offsite under prepared controlled conditions [15].

The MFC is a self-sustaining device that oxidizes organic compounds in anaerobic anodes
using electrogenic microbes, transporting electrons through an external circuit to the aerobic cathode,
and converts biochemical energy into electrical energy [16]. Almost all studies in the MFC field are
focused on electricity generation; however, continued efforts demonstrate increasing interest in making
MFCs as biosensors for monitoring water quality parameters such as organic organics, heavy metals,
biological oxygen demand (BOD), and volatile fatty acids [17]. MFCs involving Cr(VI) have been
developed for different purposes. In the cathode of an MFC, Cr(VI) is used as an electron acceptor to be
reduced or removed [18], to facilitate electricity production [19], or to detect trace Cr(VI) concentrations
of 0.2–0.7 mg/L [20] in batch mode. In the anode of an MFC, Cr(VI) may be used as a toxic compound
to cause the voltage to drop in the MFC because of the inhibition of anodic electrogenic bacteria activity.
For example, Liu et al. developed a single-chambered MFC (SCMFC) sensor for monitoring Cr6+ shock
(<10 mg/L) [21]. Similarly, Xu et al. developed a flat membrane-based MFC biosensor to monitor
voltage changes that occur with toxic Cr6+ concentrations [22]. However, the calibration curve for the
Cr6+ measurement was not established for these MFCs. Additionally, Cr(VI) is used as an electron
acceptor in the anode to make the MFC an “actual” biosensor. Wang et al. inoculated Ochrobactrum
anthropi YC152 into an MFC as an early warning device for accurately measuring Cr(VI) concentrations
of 0.0125–5 mg/L in batch mode [10]. Wu et al. (2017) inoculated E. aestuarii YC211 into an MFC and
discovered the operation performance of MFC-based biosensor was not affected by the surrounding
environment [7]. MFC-based biosensors can accurately measure Cr(VI) concentrations of 2.5–60 mg/L
in batch mode [7]. In practice, the concentrations of Cr(VI) emitted from various processes should be
strictly controlled or continuously monitored for sustainable, clean, and green production. MFC-based
biosensors inoculated with a single strain have shown higher selectivity and stability compared with
those using bacterial consortia; however, such sensors narrow the Cr(VI) detection range [17].

A multistage MFC possesses unique attributes because the unconsumed substrate from the
front MFC flows to the subsequent MFC, where the bacteria can continuously consume residual
substrate [23]. Such system was applied as a BOD sensor, and results indicated that a wide range of
BOD concentrations were obtained [23]. The present study developed a three-stage SCMFC biosensor
to increase the range of Cr(VI) measurements in continuous mode. In this study, E. aestuarii YC211
was inoculated into the three-stage MFC system to evaluate its feasibility as a biosensor for in situ
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and real-time Cr(VI) measurements. Cr(VI) concentrations in leather processing wastewater were
also measured using the developed system. To the best of our knowledge, this is the first report of
continuous Cr(VI) measurement in leather processing wastewater using an MFC-based biosensor.

2. Materials and Methods

2.1. Bacterial Strains and Cultivation

The E. aestuarii YC211 inoculated to MFC were isolated by Wu et al. from the sludge of an
electroplating wastewater treatment plant in New Taipei City, Taiwan [7]. A tryptic soy broth (TSB)
supplemented with Na2Cr2O7, which together are called a TSBCr medium, containing 60 mg/L of
Cr(VI) was used to cultivate the E. aestuarii YC211.

2.2. Construction of the SCMFC

An SCMFC was constructed to work as the Cr(VI) biosensor. The SCMFC comprised a
5 cm × 5 cm × 5 cm acrylic cube (working volume: 64 mL) with a surface area of 18 cm2, a graphite
felt anode, and a Pt-free air cathode. The air cathode was made from carbon cloth (30 wt% PTFE,
Fuel Cell Earth, Woburn, MA, SA), and a 50-µm microporous layer (MPL) was applied. The MPL was
manufactured as previously described [24]. The anode and cathode were connected using an OK wire
(silver plated copper wire) through a variable resistor.

The TSBCr medium (250 mL, 60 mg/L Cr(VI), 1/1000 TSB) containing 107.2 cfu/mL E. aestuarii
YC211 was placed in a sterile glass bottle and continuously recycled in the SCMFC at 30 ◦C with a
2000-Ω resistor using a submersible pump for cell immobilization under anoxic conditions for 10 d of
liquid retention time (LRT) [7]. To maintain anoxic conditions, the feed solution (TSBCr medium) and
SCMFC were purged with nitrogen gas before cell immobilization. Each SCMFC had an upper inlet
port for medium and wastewater entrance and a lower port for medium and wastewater exit (Figure 1).
Two small pores were located on the top of each SCMFC for online detection of pH, ORP, and DO.
In this study, the experiment was conducted in two stages. The Cr(VI) concentration was either
measured by an SCMFC in batch operation or by a three-stage SCMFC system in continuous-flow
mode (Figure 1). The three-stage SCMFC system connected three single SCMFC in series and operated
in continuous mode.
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2.3. SCMFC in Batch Operation and Continuous-Flow Operation

A 1/1000 TSB medium containing 60 mg/L Cr(VI) was used as the anolyte to evaluate the
performance of the SCMFC in batch operation. The circuit was adjusted using variable resistance
(50–10,000 Ω) to obtain the relationships between the voltage output and current density and between
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the power density and current density of the SCMFC. In this study, the response time was set at 30 min
for each resistance setting.

At the optimal operating resistance of the SCMFC, Cr(VI) with a final concentration (0.5–60 mg/L)
was added to the 1/1000 TSB medium as the anolyte to obtain an appropriate response time or establish
the relationship between the Cr(VI) concentration and voltage output of the SCMFC biosensor in
batch operation. To examine the feasibility of the SCMFC and obtain the standard curve of Cr(VI)
concentration versus voltage of the SCMFC in continuous mode, the anolyte containing various
Cr(VI) concentrations was sequentially and continuously introduced to the SCMFC at 0.5–4 min LRT.
The measurement data of the stable voltages of the SCMFC at different inlet Cr(VI) concentrations
were used to create a standard curve.

2.4. Three-Stage SCMFC in Continuous-Flow Operation

The anolyte containing different Cr(VI) concentrations were continuously introduced to the
three-stage SCMFC system at 2 min of LRT. The inlet Cr(VI) concentrations were divided into three
levels. The 45 mg/L Cr(VI) medium was first introduced to the system. After 14 min, the 80 mg/L
Cr(VI) medium was introduced; after 26 min, the 30 mg/L Cr(VI) was introduced. The estimated
Cr(VI) concentration was calculated using the stable voltage in each SCMFC based on the established
standard curve (described in Section 2.3); subsequently, the estimated Cr(VI) concentrations of water
samples were obtained.

To evaluate the feasibility of the three-stage SCMFC system, actual tannery wastewater samples
were collected. Wastewater samples A–H were obtained from the effluents of eight leather processing
units. Cr(VI) concentrations in the actual tannery wastewater were measured using a three-stage
SCMFC biosensor and a standard colorimetric method. Cr(VI) concentrations were measured by the
biosensor in continuous-flow operation but by the standard colorimetric method in batch operation.
The stable voltage for Cr(VI) measurement was recorded after 6.6 min of continuous operation.
Two major water quality parameters (BOD5 and DO) of the wastewater affecting the voltage production
of the SCMFC were determined. To understand the changes in the bacterial community of the SCMFC,
the biofilm at the graphite felt was collected for bacterial community analysis through next-generation
sequencing (NGS) before and after determining the Cr(VI) concentration in the tannery wastewater.
All of the experiments were conducted using five separate SCMFCs or three groups of three-stage
SCMFCs, and each analysis was conducted in triplicate.

2.5. Analysis

A specific Cr(VI) concentration was prepared from Na2Cr2O7 of analytical-grade chemicals
through weighting and dissolution in water. The standard colorimetric method for Cr(VI) measurement
was performed as described previously [3]. Briefly, the solution containing Cr(VI) was mixed
with 0.25% S-diphenylcarbazide and 6 M H2SO4 and was determined at 540 nm using a UV–Vis
spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). To perform the BOD5

analysis, the standard BOD method 5210 B was adopted. ORP, pH, and DO were measured using a
multiparameter portable meter 3630 IDS (Xylem Analytics, Beverly, MA, USA).

To understand the changes in the bacterial community of the three-stage SCMFC system,
the biofilm at the anode was collected and analyzed. Bacterial DNA was extracted using a Fast DNA
Spin Kit (MP Biomedicals, Santa Ana, CA, USA). Polymerase chain reaction (PCR) was performed to
amplify the V3–V4 region of the eubacterial 16S ribosomal RNA fragments, and PCR profiling was
performed as described previously [7]. The PCR-amplified 16S rRNA gene fragments were purified
and preprocessed based on the methods described by Naz et al. (2016) [25]. The 16S rRNA gene
sequence data were analyzed using QIIME software (version 1.17). After processing, the qualified
reads were clustered into operational taxonomic units at a 97% sequence similarity through the
UCLUST method [26]. Taxonomic assignment was performed on representative sequences using the
RPD classifier.
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The SCMFC voltage was measured using a multimeter (Model 2700, Keithley Instruments,
Inc., Solon, OH, USA) and recorded by a personal computer through a data acquisition system
(Testpoint, Capital Equipment Co., Richmond, VA, USA). The current (I, amp) was obtained by
dividing the resistance (R, ohm) by the measured voltage (V, volt). The power (P) was calculated as
P (watt) = I (amp) × V (volt). Power density and current density were measured as watts and amperes
per unit of the total surface area of the anode.

3. Results and Discussion

3.1. Effect of External Resistance on SCMFC Performance in Batch Operation

When the potential of the SCMFC reached a steady state (after 19–21 days of immobilization
operation), the biofilm in the anode was considered stable or mature [3]. To optimize the SCMFC
biosensor’s signal and performance, the effects of external resistance on the biosensor in batch operation
were first evaluated. Figure 2 presents the curves of polarization and power density obtained in an
SCMFC biosensor during the stable phase of power generation. Results revealed that the voltage of
the SCMFC decreased with increasing current density and exhibited a typical polarization curve [27].
A maximum voltage of 926 ± 32.5 mV occurred at 10,000 Ω. For voltage output to stabilize, 20–30 min
was required. In addition, the power density of the SCMFC initially increased with current density
but started to decrease after a certain point. The maximum power density was 167.5 ± 6.8 mW/m2;
the voltage and external resistance were 367.2± 42.5 mV and 500 Ω, respectively, under such conditions.
Therefore, the external resistance for each MFC within the SCMFC was set at 500 Ω for subsequent
experiments [27]. The maximum power density of the SCMFC is superior to that reported in earlier
studies (100.1 ± 1.2 mW/m2) using a dual-chambered MFC inoculated with the same strain [7].
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Figure 2. Curves of polarization and power density obtained in an SCMFC biosensor inoculated with
E. aestuarii YC211 in the batch operation (anolyte: 1/1000 TSB supplemented with 60 mg/L Cr(VI),
external resistance: 50–10,000 Ω).

3.2. Effect of Cr(VI) Concentration on SCMFC Performance in Batch Operation

Wu et al. (2017) demonstrated that the performance of a dual-chambered MFC inoculated with
E. aestuarii YC211 was not notably affected by water quality measurements (coexisting ions, pH,
or NaCl concentration) [7]. Therefore, the effect of Cr(VI) concentration on SCMFC performance in
batch operation was evaluated. Under optimal operating conditions, the relationship between the
Cr(VI) concentration and voltage output of the SCMFC was characterized. In this study, a response
time of 20 min was required to obtain a stable voltage at 500 Ω. Figure 3 indicates that a negative
correlation was observed for Cr(VI) concentrations ranging from 0.5 to 60 mg/L. When the Cr(VI)
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concentration was lower than 0.5 mg/L or higher than 60 mg/L, no linear relationship was observed.
The regression equation for Cr(VI) concentration and voltage output of the SCMFC biosensor was
determined to be y = −5.7668x + 656.09 (r2 = 0.9997). Wu et al. (2017) using a dual-chambered
MFC inoculated with YC211 also observed a linear relationship (y = −2.3256x + 517.15), but their
Cr(VI) concentration ranges narrowed down to 2.5–60 mg/L. The higher slope or voltage drop that
occurred in our SCMFC suggests the biosensor exhibits some competitive advantages compared with
the dual-chambered MFC because of the SCMFC’s relative sensitivity and wide measurement range.
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Figure 3. Relationship between Cr(VI) concentration and voltage output of the SCMFC biosensor
inoculated with E. aestuarii YC211 in the batch operation (anolyte: 1/1000 TSB supplemented with
different Cr(VI) concentrations, response time: 20 min, external resistance: 500 Ω).

3.3. Effect of Flowrate and Cr(VI) Concentration on the Stable Time of SCMFC Performance in
Continuous-Flow Operation

Based on practical application, an SCMFC biosensor should be developed for the in situ or
real-time measurement of a wide range of Cr(VI) concentrations. Thus, the biosensor should be in
continuous-flow operation. Figure 4A indicates that the stable time for the potential production of
the SCMFC shortens with an increasing retention time. A fast flowrate resulted in an evidently long
stable time. The 2-min LRT achieved a relatively stable time (322 s) for potential production of the
SCMFC. Thus, the retention time of the SCMFC was set at 2 min in continuous-flow operation during
the subsequent experiment. Figure 4B illustrates the relationship between Cr(VI) concentration and
stable time at 2 min of LRT. Results indicated that the stable time for potential production of the
SCMFC increased with Cr(VI) concentration in continuous-flow operation. For 5–30 mg/L inlet Cr(VI)
concentrations, 198–400 s of stable time was required. When Cr(VI) concentration was lower than
5 mg/L or higher than 30 mg/L, the linear relationship did not apply.

3.4. Establishment of a Standard Curve for Determination of Cr(VI) Concentration by the SCMFC in
Continuous-Flow Operation

To establish the standard curve for determination of Cr(VI) concentration by the SCMFC, different
Cr(VI) concentrations were sequentially fed to the SCMFC at 2-min LRTs in continuous-flow operation.
For the initial 3 min, the anolyte was fed into the SCMFC, and the voltage output of the SCMFC reached
728 ± 16.2 mV. After 3 min, the anolyte containing 5 mg/L Cr(VI) was fed, and the voltage output
gradually decreased and stabilized at 645 ± 9.2 mV from minutes 7–11. After 11 min, the voltage
gradually recovered to 721± 21.6 mV. When the anolyte containing 10 mg/L Cr(VI) was fed, the voltage
gradually decreased and stabilized at 624 ± 6.1 mV during minutes 16–19. After 19 min, the anolyte
containing 15 mg/L Cr(VI) was fed, and the voltage output gradually decreased and stabilized at
602 ± 5.1 mV during minutes 25–27. A similar variation and tendency was observed after subsequent



Sensors 2019, 19, 1418 7 of 13

tests (Figure 5A). When 30 mg/L Cr(VI) was fed, the voltage output steadily decreased to 537± 4.6 mV.
In this study, the stable times for various Cr(VI) concentrations were 3.3–6.6 min.
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Figure 5. (A) Effect of different inlet Cr(VI) concentrations on voltage output of the SCMFC biosensor
inoculated with E. aestuarii YC211 in the continuous-flow operation (liquid retention time: 2 min,
external resistance: 500 Ω); (B) Relationship between Cr(VI) concentration and voltage output of the
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Figure 5B shows the standard curve for the determination of Cr(VI) concentration by the SCMFC
with 2-min LRT in continuous-flow operation. A strong negative correlation was observed between
Cr(VI) concentrations and voltage output. The regression equation was determined to be y (voltage,
mV) = −4.2629x [Cr(VI) concentration, mg/L] + 666.27 (r2 = 0.9994) when Cr(VI) concentration ranged
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from 5–30 mg/L. Thus, using the standard curve, the Cr(VI) concentration in the wastewater can be
determined in 6.6 min using an SCMFC biosensor in continuous-flow operation. Compared with the
previous results of batch operation (Section 3.2), the range measurement of Cr(VI) concentration by the
SCMFC is narrower in continuous-flow operation. Currently, no published studies exist regarding
the continuous Cr(VI) measurement by MFC biosensors. Compared with previous studies using
different MFC biosensors in batch operation, the measuring ranges of 2.5–60 mg/L by Wu et al. [7],
0.0125–5 mg/L by Wang et al. [10], 0.2–0.7 mg/L by Zhao et al. [20], 1–8 mg/L by Liu et al. [21],
and 5–20 mg/L by Xu et al. [22] strongly suggest that the SCMFC biosensor has considerable potential
for Cr(VI) measurement because of its wide dynamic range and continuous measurement.

3.5. Cr(VI) Measurement of Artificial Tannery Wastewater Using Three-Stage SCMFC Biosensor in
Continuous-Flow Operation

The SCMFC biosensor could accurately determine 5–30 mg/L of Cr(VI) at 2-min LRT in
continuous-flow operation. To expand the Cr(VI) measurement range, a three-stage SCMFC biosensor
or system (Figure 1) was developed to determine the Cr(VI) concentration from artificial and actual
tannery wastewater. Figure 6 presents the effect of Cr(VI) concentrations sequentially fed to the system
on the voltage output of the SCMFC. In the first stage (through 14 min), the initial voltage in MFC 1
was 725 ± 10.5 mV; it gradually decreased and stabilized at 536.5 ± 2.8 mV between 6.6 and 10 min
while 45 mg/L Cr(VI) was introduced. The voltage output (536.5 mV) of MFC 1 converted to Cr(VI)
concentration in artificial tannery wastewater was 30.44 mg/L according to the regression equation
presented in Figure 5B. After 3 min of operation, MFC 2 received the wastewater from MFC 1, and the
voltage in MFC 2 gradually decreased before leveling off at 606.5 ± 5.1 mV during minutes 7–13.
The Cr(VI) concentration in the artificial tannery wastewater was calculated as 14.02 mg/L. After 4 min,
the MFC 2 effluent flowed into MFC 3; the lack of voltage change indicated a zero Cr(VI) concentration.
Therefore, the inflow Cr(VI) concentration was reduced in the three-stage SCMFC biosensor, and the
value was 44.46 (30.44 + 14.02) mg/L.Sensors 2019, 19, x FOR PEER REVIEW  10 of 13 
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three-stage SCMFC biosensor inoculated with E. aestuarii YC211 in continuous-flow operation (liquid
retention time: 2 min, stable time: 6.6 min, external resistance: 500 Ω).

In the second stage (14th–26th min), the voltage (726± 12.8 mV) in MFC 1 gradually decreased and
stabilized at 537.3 ± 1.4 mV during minutes 20–22, while 80 mg/L Cr(VI) was introduced. The Cr(VI)
concentration in artificial tannery wastewater was calculated as 30.25 mg/L. MFC 2 received the MFC
1 effluent, and the voltage in MFC2 gradually decreased before leveling off at 539.0 ± 1.2 mV during
minutes 20–22. The Cr(VI) concentration in artificial tannery wastewater was calculated as 29.86 mg/L.
Finally, the MFC 2 effluent flowed into MFC 3, and the voltage in MFC 3 stabilized at 580.0 ± 5.3 mV
during minutes 20–25. The Cr(VI) concentration in wastewater was calculated as 20.24 mg/L. Thus,
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the inflow Cr(VI) concentration was reduced in the three-stage SCMFC biosensor, and its value was
80.35 (30.25 + 29.86 + 20.24) mg/L.

In the third stage (26th–35th min), the voltage in MFC 1 first rose to 718± 18.2 mV and stabilized at
538.5 ± 0.6 mV during minutes 32–35 while 30 mg/L Cr(VI) was introduced. The Cr(VI) concentration
in wastewater was calculated as 29.97 mg/L. After 30 min of operation, the voltages in MFC 2 and
MFC 3 remained at 725.6 ± 13.4 mV, suggesting that Cr(VI) did not exist in the wastewater. Therefore,
the inflow Cr(VI) concentration was reduced in the three-stage SCMFC biosensor, and its value was
29.97 mg/L. The results indicated deviations were –1.2%, 0.44%, and –0.09% for determining 45, 80,
and 30 mg/L Cr(VI), respectively, using the three-stage SCMFC biosensor.

3.6. Cr(VI) Measurement of Actual Tannery Wastewater Using Three-Stage SCMFC Biosensor and Bacterial
Community in Three-Stage SCMFC Biosensor in Continuous-Flow Operation

The three-stage SCMFC biosensor exhibited low deviations in the range of −1.2% to 0.44% in the
Cr(VI) measurement from artificial tannery wastewater. However, the concentration and composition
of organic compounds vary in actual tannery wastewater; therefore, the feasibility of the three-stage
SCMFC biosensor for Cr(VI) measurement from an actual tannery wastewater should be evaluated.
A previous study revealed that water quality parameters did not significantly affect the performance of
an MFC inoculated with E. aestuarii YC211 [7]. Thus, this study focuses on the effect of crucial electron
donors (e.g., organic compounds) and acceptors (e.g., Cr6+, O2) existing in the tannery wastewater.
The mechanism for Cr(VI) measurement using the SCMFC biosensor inoculated with E. aestuarii YC211
is possibly as follows [10]:

Anode: Organics→ CO2 (or other intermediates) + H+ + e− (by E. aestuarii YC211) (1)

Cr6+ + e− → Cr3+ (by E. aestuarii YC211) (2)

O2 + H+ + e− → H2O (by chemical reaction) (3)

Cathode: O2 + H+ + e− → H2O (by chemical reaction) (4)

The higher the organic concentrations entering the SCMFC are, the greater the voltages are
produced. The higher the Cr6+ or O2 concentrations are in the anode, the fewer electrons are
transferred to the cathode, and the fewer voltages are produced. Thus, the potential output will
decrease with increasing Cr6+ concentration except in a case of O2 interference. According to the
result in Figure 5B, the SCMFC biosensor for Cr(VI) measurement range is 5–30 mg/L; therefore,
the theoretical Cr(VI) measurement range of the three-stage SCMFC biosensor would be extended
to 5–90 mg/L by cumulating its voltage [23]. Table 1 lists Cr(VI) measurements of the effluents of
eight leather processing units (A–H) by three-stage SCMFC biosensor in continuous-flow operation
and using colorimetric method in batch operation. Results indicated a higher deviation (>12%) in
the Cr(VI) measurement of effluents of units A and H (2.6 and 124.5 mg/L) by our system compared
with the colorimetric method. This can be explained by the fact that the measurement range was
not within the optimal 5–90 mg/L measurement range. A lower deviation (<7%) was observed in
Cr(VI) measurement from effluents of units B–G (6.8–84.2 mg/L) by our system compared with the
colorimetric method because these units’ concentrations fell in the measurement range. Compared
with the deviation (−1.2%–0.44%) of Cr(VI) measurement of artificial wastewater using a similar
system (Figure 6), Cr(VI) measurement of actual wastewater is less accurate, mainly because of the
effects of BOD and DO in the wastewater [28].
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If the inlet organic concentration of BOD in the wastewater was >256 mg/L (the anolyte as
BOD), the initial potential of the three-stage SCMFC system would be higher than the expected
value. Although the amplitude of the voltage drop of the SCMFC was identical at the same Cr(VI)
concentration, the stable voltage was higher than the theoretical voltage. Thus, the Cr(VI) concentration
was underestimated according to the standard curve and resulted in a negative deviation (for units B,
C, D, and E). Conversely, BOD in the wastewater was <256 mg/L, which resulted in a lower initial
potential than the expected value. At the same potential drop, the voltage value at the equilibrium
would be lower than the theoretical voltage. Thus, the Cr(VI) concentration was overestimated and
resulted in a positive deviation (units F and G). In addition, high DO content competes with Cr(VI) as
an electron acceptor and causes the potential drop of the non-Cr(VI) factor. This resulted in the Cr(VI)
concentration being overestimated with a positive deviation (unit F). However, a combination effect
(DO and organics) is possible in this system [28].

Table 1. Cr(VI) measurement from effluents of eight leather processing units by three-stage SCMFC
biosensor in continuous-flow operation and colorimetric method in batch operation.

Tannery Wastewater

Unit A B C D E F G H

BOD 250 350 360 420 460 180 230 560

DO 2.1 1.8 2.3 2.6 2.5 3.1 1.6 1.2

MFC biosensor 2.6 ± 0.08 6.8 ± 0.21 12.8 ± 0.51 32.4 ± 2.01 52.3 ± 1.62 75.6 ± 2.41 84.2 ± 3.64 124.5 ± 7.26

Colorimetric
method 2.3 ± 0.04 7.1 ± 0.13 13.6 ± 0.35 33.6 ± 1.06 56.1 ± 1.81 71.2 ± 2.56 82.6 ± 4.06 142.1 ± 6.04

Deviation (%) * 13.0% −4.2% −5.9% −3.6% −6.8% 6.2% 1.9% −12.4%

* The determined value by SCMFC biosensor compared to that by colorimetric method.

To understand the changes in the bacterial community of the three-stage SCMFC biosensor after
operation, the biofilm at the anode was analyzed through NGS [29]. Figure 7 indicates the relative
abundances of the bacterial 16S rRNA gene sequences in three separate SCMFCs (MFC 1, MFC 2,
and MFC 3) after measuring the Cr(VI) concentration from the effluents of eight leather processing
units. At first, E. aestuarii YC211 alone was inoculated in the three-stage SCMFC. After the SCMFC
system was used to treat the wastewater, the bacterial community in MFC 1 was the simplest, and only
four strains were observed: E. aestuarii (97.5%), O. anthropi (1.45%), Exiguobacterium sp. (0.92%),
and O. tritici (0.13%). These four strains are classified as Cr(VI)-reducing bacteria [7,10,30,31]; thus,
they can endure relatively high Cr(VI) concentrations. The complexity of the bacterial community in
MFC 2 was the second simplest, and the community increased to seven strains. The strains included
Lysinibacillus fusiformis, Pseudomonas putida, and Arthrobacter sp. in addition to the four strains that
existed in MFC 1. The Cr(VI)-reducing capability of these three strains has been reported [32–34].
In MFC2, the dominant strain remained E. aestuarii (95.12%), and other strains were represented
at <1.5%. The bacterial community in MFC 3 was the most complicated because the inlet Cr(VI)
concentration was the lowest. The bacterial community increased to 10 strains. The strains comprised
Microbacterium sp., Streptomyces coelicolor, and Staphylococcus aureus and the seven strains that existed
in MFC 2. These three new strains have been regarded as potential Cr(VI)-reducing bacteria [4,35,36].
In MFC 3, the dominant strain was E. aestuarii (92.54%), and other strains were represented at <3.0%.
The results of the aforementioned studies demonstrate that reliable three-stage SCMFC performance
(<7% deviation) should be attributed to a stable bacterial community (>92.5% original strains) present
during the treatment period (four months).
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4. Conclusions

In this study, a three-stage SCMFC biosensor inoculated with E. aestuarii YC211 was developed
for the continuous measurement of Cr(VI) from actual tannery wastewater. The system exhibits
competitive advantages over previous MFCs, including a simpler structure, higher accuracy, shorter
measurement time, and wider measurement range. Through NGS analysis, the original inoculated
E. aestuarii remained dominant (92.5%–97.5% of the total bacterial community) in the three-stage
SCMFC even after treating the actual tannery wastewater. The parameters most affecting the accurate
Cr(VI) measurement of the system were the concentrations of organics and oxygen in the wastewater.
Although both these unexpected factors may slightly restrict the system’s application, the system has a
potential as an early warning device with wide dynamic range for in situ, real-time, and continuous
Cr(VI) measurement. Moreover, the three-stage SCMFC can further expand to a multistage MFC
biosensor by connecting several separate SCMFCs in series and increase its application fields or range.
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