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Abstract: Ultrasonic transducer is a piezoelectric actuator that converts AC electrical energy into
ultrasonic mechanical vibration to accelerate the material removal rate of workpiece in rotary
ultrasonic machining (RUM). In this study, an impedance model of the ultrasonic transducer is
established by the electromechanical equivalent approach. The impedance model not only facilitates
the structure design of the ultrasonic transducer, but also predicts the effects of different mechanical
structural dimensions on the impedance characteristics of the ultrasonic transducer. Moreover, the
effects of extension length of the machining tool and the tightening torque of the clamping nut on the
impedance characteristics of the ultrasonic transducer are investigated. Finally, through experimental
analysis, the impedance transfer function with external force is established to analyze the dynamic
characteristics of machining process.

Keywords: impedance model; equivalent circuit; ultrasonic transducer; rotary ultrasonic machining
(RUM)

1. Introduction

Super hard materials have been applied in many fields, including medical, electronic product,
industry equipment, and aeronautic technology fields [1–3]. Typical super hard materials include the
optical glass, quartz, glass ceramics, corundum, silicon nitride, and composite materials [2,4]. Rotary
ultrasonic machining (RUM) can provide the superposition of tool rotation and ultrasonic vibration on
the workpiece. With the novel RUM technology, the super hard materials that are difficult to process
in traditional way can be processed economically and achieve the better machining quality [4,5].

The ultrasonic vibration system of RUM consists of the power supply, contactless transformer and
ultrasonic transducer. The power supply provides AC excitation current to the piezoelectric ceramic
stacks, which is based on anti-piezoelectric effect to generate mechanical ultrasonic vibration. The
contactless transformer is an electromagnetic induction component to transfer the AC excitation power
to ultrasonic transducer through the air-gap. The ultrasonic transducer consists of piezoelectric ceramic
stacks, solid horn, collet, clamping nut, and machining tool. The function of the solid horn is to enlarge
the mechanical vibration, and to concentrate the ultrasonic energy on the smaller area. The machining
tool transmits ultrasonic vibration to the surface of the workpiece. Many investigations have proven
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that the stability of ultrasonic vibration is a critical factor of ultrasonic machining [6–11]. The impedance
characteristics of ultrasonic transducers depend on various factors, including the structure materials,
the tightness of clamping nut, extension length of the machining tool, and machining force. Therefore,
the ultrasonic transducer needs the precise impedance model to describe the ultrasonic transducer and
obtain optimized ultrasonic vibration. It is significant to investigate the reliable impedance equivalent
model to predict and control the machining process in RUM.

The structural design and dynamics analysis of the ultrasonic transducer have aroused general
concern by many researchers and manufacturers. Currently, the modeling methods of the ultrasonic
transducer include finite-element analysis, mass-spring-damper (MSD) system, transfer matrices, and
equivalent circuits [6–14]. The finite element method (FEM) can attain the vibration modal and the
resonant frequency of mechanical structure animatedly. It is commonly used to design and analyze
ultrasonic transducers and is always applied to the analysis of dynamic characteristic and resonant
frequency of the ultrasonic transducer [6–12]. The FEM can analyze the effect of different structures
on the dynamic characteristic of the ultrasonic transducer by setting FEM nodes. Therefore, only
the mechanical behavior of the ultrasonic transducer design can be accurately estimated by this
method, and it cannot analyze the loss of electrical and external mechanical load. The ultrasonic
transducer also can be modeled as a chain of the mass-spring-damper system. Saleem proposed a
model based on Kelvin–Voigt model to describe one-dimensional contact interaction between the
ultrasonic transducer and workpiece [13]. Voronina and Babitsky investigated a two-order equivalent
MSD system to describe the piezoelectric transducer and presented that the contact interface is
equivalent to nonlinear load. This equivalent electrical and mechanical system could explain the
dynamics of machining process [14,15]. Wang et al. investigated the MSD system to analyze the
dynamic characteristics of a thickness-mode piezoelectric transducer at its resonant frequency [16].
The analytical solution and the KLM and Mason’s equivalent circuit were investigated to produce
identical impedance curves [17]. The equivalent circuit method of the ultrasonic transducer can
precisely define the relationship between the electrical input and the mechanical vibration output under
defined operating conditions, which rely on an accurate model of the interaction between the electrical
and mechanical parameters of the ultrasonic transducer. To obtain an accurate model of ultrasonic
transducer, many researchers have studied various equivalent circuit methods. Smyth investigated an
analytical Mason equivalent circuit to describe the ultrasonic transducer and enable straightforward
and wide-ranging model implementation for future ultrasonic transducer design and optimization [18].
Je et al. developed an advanced equivalent circuit model for the piezoelectric ultrasonic transducer;
this model can be used to predict the effect of a piezoelectric layer on the coupling factor and efficiency
of piezoelectric micromachined ultrasonic transducers [19]. Caronti et al. developed an accurate
model for ultrasonic transducers [20]. Wang et al. presented the design of high-frequency ultrasonic
transducers by using electromechanical equivalent method and three-dimensional (3-D) FEM to get
the optimization geometric dimensions [21]. The equivalent circuit method can analyze the different
mechanical loads, the resonant frequency, and the displacement of an ultrasonic transducer [22–24].
In the above research, the effects of tightness of clamping nut and extension length of machining
tool, and the dynamical impedance model with different loads in numerical calculation were not
mentioned. In the ultrasonic transducer vibration system, the clamping nut is a critical component
to fix the machining tool. The fasten force of clamping nut influences the stress distribution and
impedance characteristics of ultrasonic transducer. It is necessary to investigate the tightening torque
effect of clamping nut. The machining tool’s extension length affects the wavelength distribution
of solid horn structure. The different tools’ extension lengths need to be considered in assembling
machining tool of ultrasonic transducer. Impedance and resonant frequency are key factors in the
ultrasonic transducer vibration system. The contributions of this paper are: (1) We investigate the
whole electromechanical characteristics of ultrasonic transducer by using the equivalent circuit to
describe the lumped static impedance/admittance characteristic of ultrasonic transducer, (2) The
ultrasonic piezoelectrical transducer is sensitive to the external mechanical load [25]. Therefore, the
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dynamical impedance transfer function of ultrasonic transducer with different loads is established by
the parameter fitting method. Through this modelling method, the resonant frequency and impedance
can be beneficial to the monitoring of machining process. In this paper, the impedance lumped model
of ultrasonic transducer can calculate and predict the static and dynamic impedance characteristics of
an ultrasonic transducer.

The paper is organized into six sections. Section 1 presents the introduction. In Section 2, the
mechanical structure is introduced. In Section 3, the impedance equivalent circuit method is applied
to impedance modeling of ultrasonic transducer. Section 4 establishes the experimental platform to
verify the effect of clamping nut and machining tool extended length. The static impedance model is
verified by the experimental measurement. In Section 5, The MSD and electrical models are utilized to
describe the ultrasonic transducer vibration system, the impedance transfer function with external
force is established to analyze the dynamic characteristic of machining process. Finally, the conclusions
are presented in Section 6.

2. Mechanical Structure of Ultrasonic Transducer

Figure 1 shows the typical structure of the solid horn-type piezoelectric transducer. Generally, the
ultrasonic transducer consists of eight main parts, including the inner screw bolt, the back slab, the
piezoelectric ceramic stacks, the front slab, clamping nut, collet tool, solid horn, and machining tool.
The piezoelectric ceramic stacks are clamped between the front slab and back slab. The determination
of horn structure resonant wavelength usually integer multiple of half wavelength [26]. The ultrasonic
vibration is realized by using the piezoelectric ceramics converts electrical energy into mechanical
energy based on anti-piezoelectric effect [27,28]. This vibration amplitude of piezoelectric ceramics
is still small, so the vibration of piezoelectric ceramic stacks is amplified by the horn structure.
The machining tool is clamped to the head of solid horn with threaded connection of the clamping nut.
The ultrasonic transducer is driven by the electric sinusoidal waveforms from an ultrasonic generator
with resonant frequency tracking. Then ultrasonic mechanical vibration is applied to the workpiece.

Sensors 2019, 19, x FOR PEER REVIEW  3 of 16 

 

impedance/admittance characteristic of ultrasonic transducer, (2) The ultrasonic piezoelectrical 
transducer is sensitive to the external mechanical load [25]. Therefore, the dynamical impedance 
transfer function of ultrasonic transducer with different loads is established by the parameter fitting 
method. Through this modelling method, the resonant frequency and impedance can be beneficial to 
the monitoring of machining process. In this paper, the impedance lumped model of ultrasonic 
transducer can calculate and predict the static and dynamic impedance characteristics of an ultrasonic 
transducer.  

The paper is organized into six sections. Section 1 presents the introduction. In Section 2, the 
mechanical structure is introduced. In Section 3, the impedance equivalent circuit method is applied 
to impedance modeling of ultrasonic transducer. Section 4 establishes the experimental platform to 
verify the effect of clamping nut and machining tool extended length. The static impedance model is 
verified by the experimental measurement. In Section 5, The MSD and electrical models are utilized 
to describe the ultrasonic transducer vibration system, the impedance transfer function with external 
force is established to analyze the dynamic characteristic of machining process. Finally, the 
conclusions are presented in Section 6. 

2. Mechanical Structure of Ultrasonic Transducer 

Figure 1 shows the typical structure of the solid horn-type piezoelectric transducer. Generally, 
the ultrasonic transducer consists of eight main parts, including the inner screw bolt, the back slab, 
the piezoelectric ceramic stacks, the front slab, clamping nut, collet tool, solid horn, and machining 
tool. The piezoelectric ceramic stacks are clamped between the front slab and back slab. The 
determination of horn structure resonant wavelength usually integer multiple of half wavelength 
[26]. The ultrasonic vibration is realized by using the piezoelectric ceramics converts electrical energy 
into mechanical energy based on anti-piezoelectric effect [27,28]. This vibration amplitude of 
piezoelectric ceramics is still small, so the vibration of piezoelectric ceramic stacks is amplified by the 
horn structure. The machining tool is clamped to the head of solid horn with threaded connection of 
the clamping nut. The ultrasonic transducer is driven by the electric sinusoidal waveforms from an 
ultrasonic generator with resonant frequency tracking. Then ultrasonic mechanical vibration is 
applied to the workpiece.  

 
Figure 1. Mechanical structure of ultrasonic transducer. 

3. Impedance Modeling 

3.1. The piezoelectric Ceramic Stacks and Screw Bolt 

The electromechanical equivalent method is an effective way to deal with ultrasonic transducer 
design [22,29]. In the equivalent circuit, C0 is the piezoelectric capacitance of the transducer. In detail, 
the mechanical force is equal to voltage, and the vibration velocity is equal to current. Therefore, the 
electromechanical equivalent circuit of piezoelectric stacks and screw bolt is shown in Figure 2. The 
electromechanical equivalent circuit of ultrasonic transducer is obtained by separating the 
piezoelectric material into an electrical port and a mechanical port by using an ideal 
electromechanical transformer. N is piezoelectric coupling factor and N < 1. The screw bolt and 

Figure 1. Mechanical structure of ultrasonic transducer.

3. Impedance Modeling

3.1. The piezoelectric Ceramic Stacks and Screw Bolt

The electromechanical equivalent method is an effective way to deal with ultrasonic transducer
design [22,29]. In the equivalent circuit, C0 is the piezoelectric capacitance of the transducer. In detail,
the mechanical force is equal to voltage, and the vibration velocity is equal to current. Therefore, the
electromechanical equivalent circuit of piezoelectric stacks and screw bolt is shown in Figure 2.
The electromechanical equivalent circuit of ultrasonic transducer is obtained by separating the
piezoelectric material into an electrical port and a mechanical port by using an ideal electromechanical
transformer. N is piezoelectric coupling factor and N < 1. The screw bolt and piezoelectric ceramic
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stacks are labelled as S and P, respectively. Subscripts L, M, and R denote the left, middle and right
location of T-type equivalent impedance structure.
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The static capacitance value of piezoelectric ceramic stacks is expressed by:

C0 = n
d33

sE
33

S
t

(1)

where sE
33 is the elastic compliance, d33 is the piezoelectric charge coefficient, S is the area of piezoelectric

ring, and the area of the stack is S = π(r2
2 − r2

1). t is thickness of the piezoelectric ring and n is the
number of piezoelectric rings [22,29]. The piezoelectric coupling factor N is expressed as:

N =
nS
LP

d33

sE
33

(2)

where the total length of the piezoelectric stacks and the screw bolt is LP = nt.
The Equivalent impedances of screw bolt and piezoelectric stacks are expressed as:

ZS
R = ZS

L = jZS
0 tan

(
τSLP

2

)
(3)

ZP
R = ZP

L = jZp
0 tan

(
τpLP

2

)
(4)

ZS
M =

ZS
0

j sin(τSLP)
(5)

ZP
M =

ZP
0

j sin(τPLP)
(6)

where Zi
0 = ρcS is the specific acoustic impedance which is the product of the density, velocity and

area of the piezoelectric ring or the screw bolt. τi = ω/c is the material propagation constant, and c is
the material acoustic velocity.

3.2. The Solid Horn Structures

The electromechanical equivalent equations of the solid horn can be expressed as a T-type
equivalent circuit [22,23,29], and the equivalent impedance expressions of the two horn structures are
shown in Table 1.
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Table 1. Impedance of the horn structure in the analytical model.

Type Shape Parameters Equations

Constant horn
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where   and   are Lamé or second-order elastic constants, l  and m  are Murnaghan’s third-
order elastic constants,   is the material density, cn is wave speed, and   is the compressive 
stress.  

The wave speed is determined by the tightening torque of clamping nut and the material 
properties. In the elastic range, the wave speed with the axial elongation △l is expressed as: 
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3.4. Impedance Equivalent Modeling 

From individual equivalent circuit and their corresponding impedance, the whole equivalent 
circuit for the ultrasonic transducer is integrated as Figure 3. The input impedance of the back slab, 

S = S1 = S2
S1 and S2 are the area of
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L is the horn length.
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Exponential horn
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3.3. The Tightening Torque of Clamping Nut

The wave speed in the material is determined by the stress and elongation. The relationship
between the wave speed and the bolt elongation is formulated and utilized to develop a real-time
ultrasonic control of the tightening process of bolted assemblies [30]. The clamping nut and collet tool
are constructed into fastening the machining tool. They can be taken as a rigid constant section horn.
The fasten force can impact the ultrasonic wave velocity of the threaded components.

The wave speed of material varies with fasten force. When the longitudinal ultrasonic wave
propagates in the uniform material and regular shape object, it is affected by the axial stress of
object [30,31]. The relational expression is as follows:

dcn

dσ
=

[
2l + λ +

(
λ+µ

µ

)
(4m + 4λ + 10µ)

]
2cnρ(3λ + 2µ)

(7)

where λ and µ are Lamé or second-order elastic constants, l and m are Murnaghan’s third-order elastic
constants, ρ is the material density, cn is wave speed, and σ is the compressive stress.

The wave speed is determined by the tightening torque of clamping nut and the material
properties. In the elastic range, the wave speed with the axial elongation ∆l is expressed as:

cn = (c2
o + Λ(∆l/L))

1
2 (8)

The clamping nut, collet tool and machining tool can be regarded as uniform and isotropic
material column. The equivalent impedance expressions are: ZC

R = ZC
L = ρccnSc

(
1

j tan(τc Lc)
− 1

j sin(τc Lc)

)
ZC

M = ρccnSc
j sin(τc Lc)

(9)

3.4. Impedance Equivalent Modeling

From individual equivalent circuit and their corresponding impedance, the whole equivalent
circuit for the ultrasonic transducer is integrated as Figure 3. The input impedance of the back slab,
front slab, clamping nut, and machining tool which are constant for their cross-section area, are defined
as constant horn. The input impedance of the solid horn is defined as the exponential horn.
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Zleft= ZP
L+ZS

L+ZB
R +

ZB
L × ZB

M

ZB
L + ZB

M
(12)

Therefore, the total mechanical impedance of the horn is:

Zm= ZS
M+ZP

M +
Zright × Zleft

Zright+Zleft
(13)

The electromechanical equivalent impedance of the ultrasonic transducer is expressed as:

Ze =
1

Ye
=

U
I
=

ZC0 × N2Zm

ZC0 + N2Zm
(14)

where ZC0 = 1/jωC0, Ye is admittance, and N is the coupling factor defined in Equation (2).
Therefore, the electrical impedance model of the ultrasonic transducer vibration system is

established as Equation (14). This lumped equivalent impedance/admittance model includes all
parameters, including wave speed and the density of material, the mechanical and electrical losses in
material and the structural dimensions.

4. Numeral Calculation and Discussion

From the established impedance model, the frequency and impedance of the ultrasonic transducer
at different loads are calculated in MATLAB. The properties of the ultrasonic transducer are listed in
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Table 2, and the material loss can be defined as imaginary part in the elastic module [29]. In experiment,
the impedance of the ultrasonic transducer is measured frequency sweeping by using an Agilent
4294A impedance analyzer. The axial force testing platform is established by the Z-axis motor motion
structure, the motor driver (model ATK-2MD4850), the force sensor (model FB10-100 kg), and the data
acquisition device (model JL-DT01). This platform can realize the identification of dynamic impedance
model of ultrasonic transducer with axial force. The experimental platform is shown in Figure 4.
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Table 2. Properties of the ultrasonic transducer in the analytical model.

Type Density
(kg. m−3)

Poisson
Ratio

Dimensions
Other Parameters

Diameter (mm) Length (mm)

Piezoelectric
Ring PZT-4 7700 0.25 Outer:32.0

Inner:13.9 6 d33 = 270(1 − 0.0003i) pC/N
S33

E = 2 × 1011(1 − 0.0012i) m2/N

Screw bolt

Stainless
steel

7930 0.28

13.5 36.5

E = 2.15 × 1011(1 + 0.001i) N/m2

Back slab 32.0 10.8

Front slab (1) 32.0 3.5

Front slab (2) 43.2 5.1

Exponential horn S1:28.2 Se:22.1 27.8

Clamping nut 17.1 15.2

Machining tool 6.0 (15*)
38.7

* Extension length of machining tool.

4.1. Load of Ultrasonic Transducer

When the ultrasonic transducer is loaded with the machining tool, the parameters of materials and
structural dimensions based on Table 2 are substituted in Equation (14). The impedance characteristics
of ultrasonic transducer are shown in Figure 5. It is found that the corresponding conductance,
susceptance and resonant frequency get closed to the experimental measurement results of ultrasonic
transducer. When the conductance is at maximum value and the susceptance is zero, the phase of
ultrasonic transducer is zero and corresponding impedance of ultrasonic transducer is lowest, the
current frequency is the resonant frequency of ultrasonic transducer. When the ultrasonic transducer
operates at resonant frequency, the active power of ultrasonic transducer reaches maximum. It means
that the electrical equivalent model can accurately describe the ultrasonic transducer in RUM.
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4.2. Load with Different Torques of Clamping Nut

The resonant frequency and impedance characteristics of the ultrasonic transducer with different
torques of clamping nut are obtained as shown in Figure 6. The experimental data validates the sound
velocity effect on the trend of resonant frequency. It is observed that when the fasten force increases
with the tightening torque, the sound velocity increases with the torque. When the tightening torque
becomes larger, the resonant frequency of ultrasonic transducer increases, while the corresponding
impedance of ultrasonic transducer at the resonant frequency decreases.
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Figure 6. Resonant frequency and impedance with different sound velocity and tightening torque.
(a) Theoretical calculation; (b) Experimental measurement.

4.3. Load with Different Extension Lengths of Tool

When the ultrasonic transducer is in operation, the machining tool wears down due to heat and
friction, resulting in poor processing quality of processed object. It is necessary to replace the broken
machining tool regularly. In the experiment, the admittance circle and the resonant frequency of
ultrasonic transducer are measured by the impedance analyzer. The measurement results are shown
in Figure 7. The admittance circle is changed with different extension lengths of machining tool in
Figure 7a. It is found that the extension length of machining tool strongly influences the vibration
characteristics of ultrasonic transducer. When the extension length of the machining tool becomes
longer, the resonant frequency of the ultrasonic transducer decreases (Figure 7b).
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5. Dynamic Modeling of Ultrasonic Transducer

When the ultrasonic transducer is in the no-load state, its resonant frequency and impedance do
not vary when the extension length of machining tool are fixed. Its impedance model can be taken
as constant. In the machining process, the external force is transmitted to the piezoelectric vibrator
through the horn and tool, and the internal material electromechanical coefficient varies with the
extrusion of axial forces. Therefore, the resonant frequency, impedance, and vibration amplitude of
the ultrasonic transducer affect the quality of the machining process. The external force effect can
be described by a dynamics simulation model, its equivalent MSD system is shown in Figure 8a.
When the ultrasonic power driver provides excitation voltage to the ultrasonic transducer by brass
electrodes, the piezoelectric ceramics output the ultrasonic vibration force to push the horn structure.
The initialization displacement of piezoelectric ceramics is x0(t), the piezoelectric ceramics part can
be taken as one-order MSD system. Mp is the mass of piezoelectric ceramic stacks, Bp and Kp are
the damping coefficient and spring rigidity of piezoelectric ceramics, respectively. Furthermore, the
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initialization displacement is amplified by the horn structure. The front slab, back slab, solid horn,
clamping nut, collet, and machining tool are another one-order MSD system, Mh, Bh, and Kh are the
mass, the damping coefficient and spring rigidity of MSD system. Then the vibration displacement
is transferred to the workpiece. Based on Mason’s rule [16,32], the impedance model of ultrasonic
transducer also can be equivalent to electrical equivalent model as shown in Figure 8b, the L1 is
the dynamic inductance, C1 is the dynamic capacitance, R1 is the dynamic resistance of ultrasonic
transducer, and Ra is the current sample resistance (Ra << R1).
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Figure 8. The equivalent model of ultrasonic transducer. (a) Dynamic MSD equivalent model;
(b) Electrical equivalent impedance model.

A dynamics expression of the piezoelectric actuator can be formulated to express the displacement
of the piezoelectric ceramics xo(t); the dynamics function is:

Mp
..
x0 = Bh(

.
x1 −

.
x0) + Kh(x1 − x0)− Bp

.
x0 − Kpx0 + Fa (15)

The x1 (t) movement function of the machining tool tip is:

Mh
..
x1 = −Bh(

.
x1 −

.
x0)− Kh(x1 − x0)− Fe (16)

where Fe is the contact force, and Fa is the ultrasonic vibration force.
The magnitude displacement of horn structure is:

GM =
x1

x0
(17)

The electromechanical impedance transfer function without external force based on Mason’s
rule [16,32] is expressed as:

G( s) =
Ui

I
=

as2 + bs + 1
C0s(as2 + bs + c + 1)

(18)

where a = (GMMh + Mp)/(Kp), b =
Bp
Kp

, c = N2

GMC0
.

The electrical impedance without external force in Figure 8b is expressed as:

Ze(ω) =
(ω2L1C1 − 1)− jωC1R1

ω2C0C1R1 + j[ω3L1C1C0 −ω(C1 + C0)]
(19)

where ω = 2πf is the angular frequency and f is natural frequency.
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The electrical impedance function is expressed as:

G(s) =
U
I
=

L1C1s2 + R1C1s + 1

C0s(L1C1s2 + R1C1s + C1
C0

+ 1)
(20)

It is observed that the dynamics impedance transfer function can be equivalent to the electrical
impedance transfer function from Equations (18) and (20). The parameters are set as a = L1C1, b = R1C1,
c = C1/C0.

The state space matrix of ultrasonic transducer without external force is expressed as:
duC0 (t)

dt
diL1 (t)

dt
duC1 (t)

dt

 =

 −
1

C0Ra
− 1

C0
0

1
L1

− R1
L1
− 1

L1

0 1
C1

0


 uC0(t)

iL1(t)
uC1(t)

+


1

C0Ra

0
0

ui(t) (21)

where uC0(t) is the voltage of the static capacitance,iL1(t) is the current of equivalent dynamic
inductance, and uC1(t) is the voltage of equivalent dynamic capacitance.

Figure 8a shows the MSD dynamic system of ultrasonic transducer. The coupling factor is N.
The input voltage is set to Ui. The current in the closed-loop system is obtained to analyze the vibration
amplitude of ultrasonic transducer. The external force is Fe. The overall closed-loop transfer function
of the ultrasonic transducer is shown in Figure 9.
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When the machining tool impacts and separates from the processing interface, the deformation 
of the piezoelectric ceramic stacks is affected by the contact force. When the ultrasonic transducer is 
pushed by the Z-axial motion platform structure, the force sensor is as the contact interface to test the 
axial force. The impedance and phase of the ultrasonic transducer with different axial forces in 
frequency sweeping are measured by the impedance analyzer are shown in Figure 10. The impedance 
and phase parameters of ultrasonic transducer provide the data set for overall dynamic and precise 
impedance modeling. It is found that the resonant frequency fr and anti-resonant frequency fa go up 
with the increase of external force, the corresponding lowest impedance Zr (resonant frequency) 
increases and corresponding highest impedance Za (anti-resonant frequency) decreases. In the 
machining process, it is investigated that the impedance-frequency characteristics of ultrasonic 
transducer drastically varies with the external force.  
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Figure 9. The closed-loop system of ultrasonic transducer.

When the machining tool impacts and separates from the processing interface, the deformation
of the piezoelectric ceramic stacks is affected by the contact force. When the ultrasonic transducer
is pushed by the Z-axial motion platform structure, the force sensor is as the contact interface to
test the axial force. The impedance and phase of the ultrasonic transducer with different axial
forces in frequency sweeping are measured by the impedance analyzer are shown in Figure 10.
The impedance and phase parameters of ultrasonic transducer provide the data set for overall
dynamic and precise impedance modeling. It is found that the resonant frequency f r and anti-resonant
frequency f a go up with the increase of external force, the corresponding lowest impedance Zr (resonant
frequency) increases and corresponding highest impedance Za (anti-resonant frequency) decreases.
In the machining process, it is investigated that the impedance-frequency characteristics of ultrasonic
transducer drastically varies with the external force.
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Figure 10. Impedance and phase with different loads. (a) Impedance; (b) Phase.

The resonant frequency, anti-resonant frequency, and their corresponding impedance are
measured by the impedance analyzer. Therefore, the dynamic inductance L1, the dynamic capacitance
C1, the dynamic resistance R1, and the static capacitance C0 are estimated by the impedance analyzer.
To precisely establish the dynamic impedance transfer function, the parameter fitting method is applied
in the impedance modeling. The parameters trends with different external forces are calculated and are
shown in Figure 11. It is found that when the external force linearly increases, the parameter ‘a’ linearly
decreases, the parameter ‘b’ linearly increases and the parameter ‘c’ decreases when external force is
less than 11N and increases from 11N to 50N. The corresponding fitting functions and corresponding
coefficients of determination R2 are listed in Table 3. The parameter fitting functions can meet the
fitting accuracy of impedance transfer function of ultrasonic transducer with external force.

Table 3. Parameter fitting Functions and R2.

Parameters Type Function R2

a Fourier F(x) = a0 + a1 · cos(w · x) + b1 · sin(w · x) 0.9983
b Polynomial F(x) = p1 · x + p2 0.9952
c Linear Fitting F(x) = α · sin(x− π) + β · (x− 10)2 + δ 0.971
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After the calculation and parameter fitting process, the parameters in the impedance model of the
transducer are obtained to establish the accurate dynamic impedance model. The dynamic impedance
transfer function with external force is expressed as

G(s) =

 (3.857× 10−11 − 2.913× 10−12 cos(0.0173Fe)− 2.787× 10−12 sin(0.0173Fe))s2

+(1.536× 10−9Fe + 4.126× 10−8)s + 1




C0s((3.857× 10−11 − 2.913× 10−12 cos(0.0173Fe)− 2.787× 10−12 sin(0.0173Fe))s2

+(1.536× 10−9Fe + 4.126× 10−8)s
−4.611× 10−16 sin(Fe − π) + 2.386× 10−17 × (Fe − 10)2 + 1.692× 10−13 + 1)


(22)

To analyze the dynamic electrical response of ultrasonic transducer, the input voltage Ui is
assumed as 10 × sin (ωt) V, the current response of ultrasonic transducer can be obtained in the
closed-loop system (Figure 9) and Equation (21). The current responses of ultrasonic transducer are
shown in Figure 12. It is observed that the peak current response of ultrasonic transducer without
force factor in Equation (20) oscillates in the initialization time with different external forces, while the
peak current response of ultrasonic transducer with force factor in Equation (22) rises smoothly and
gets a greater value. Therefore, the dynamic impedance model is an important link of maintaining the
ultrasonic transducer to work at its resonant state.Sensors 2019, 19, x FOR PEER REVIEW  14 of 16 
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Through experiment and parameter fitting, it is found that the impedance transfer function of the
transducer varies with the force. When the impedance model of the ultrasonic transducer is adopted
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as the control object, the variable load impedance transfer function should be considered into the
resonant vibration control system.

6. Conclusions

In this work, an impedance model of the ultrasonic transducer in the ultrasonic machining is
established. By using the electromechanical equivalent circuit method, the equivalent impedance of
each component of the ultrasonic transducer is derived, and the assembled equivalent impedance
model is studied. The impedance equivalent model is calculated and effectively predicts the frequency,
susceptance and conductance of the ultrasonic transducer. The effects of the resonant frequency
and impedance of the ultrasonic transducer with different tightening torques of clamping nut
and various extension lengths of machining tool are analyzed. In the experiment, the impedance
dynamic impedance model with external force is established to obtain dynamic characteristic of
machining process.
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