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Abstract: Current harvesting robots are limited by low detection rates due to the unstructured and
dynamic nature of both the objects and the environment. State-of-the-art algorithms include color-
and texture-based detection, which are highly sensitive to the illumination conditions. Deep learning
algorithms promise robustness at the cost of significant computational resources and the requirement
for intensive databases. In this paper we present a Flash-No-Flash (FNF) controlled illumination
acquisition protocol that frees the system from most ambient illumination effects and facilitates
robust target detection while using only modest computational resources and no supervised training.
The approach relies on the simultaneous acquisition of two images—with/without strong artificial
lighting (“Flash”/“no-Flash”). The difference between these images represents the appearance of
the target scene as if only the artificial light was present, allowing a tight control over ambient
light for color-based detection. A performance evaluation database was acquired in greenhouse
conditions using an eye-in-hand RGB camera mounted on a robotic manipulator. The database
includes 156 scenes with 468 images containing a total of 344 yellow sweet peppers. Performance of
both color blob and deep-learning detection algorithms are compared on Flash-only and FNF images.
The collected database is made public.

Keywords: Flash-No-Flash; outdoor vision; fruit detection; autonomous harvesting

1. Introduction

Commercialization of precision harvesting robots continues to be a slow and difficult process
due to the vast challenges in outdoor agricultural and horticultural environments. A major limitation
is the low detection rate [1], caused by the unstructured and dynamic nature of both the objects
and the environment [2-5]: fruits have a high inherent variability in size, shape, texture, and
location; a typical scene is highly occluded, and variable illumination conditions (caused by changing
sun direction, weather conditions, and artificial shades and natural objects) significantly influence
detection performance.

Significant R&D has been conducted on detection for agricultural robots [1,3,6]. A short summary
of previous relevant results in these reviews and several additional relevant papers is available in
Table 1.
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Table 1. Summary of previously published results and comparison to proposed methods.

Paper Crop Dataset Algo. FPR TPR F A P R
Ostovar et al., 2018 [7] Sweet peppers 170 img AD - - - 91.5% - -
Apples 1749 (21 img) 51% 95.7% B B _ _
Chen etal, 2017 [5] Oranges 7200 (71 img) bL 33% 96.1%
McCool et al., 2017 [9] Weed Pre-train: 10° img D-CNN - - - 9% - -
. tune & test: 60 img
L 5696 (867 img) _ _ _ 96.8% 97.3% 98.1%
Milioto et al., 2017 [10] Weed 26,163 (1102 img) CNN 97%  96.1% 96.3%
Sweet pepper 122 img 82.8%
Rock melon 135img 84.8%
) Apple 64 img 93.8%
Saetal, 2016 [4] Avocado 54img DL - T 932% - -
Mango 170 img 94.2%
Orange 57 img 91.5%
Vitzrabin et al., 2016 [11] Sweet pepper 479 (221 img) AD 4.6% 90.0% - - - -
. 20 img . 95.4%
Zheng et al., 2009 [12] Vegetation 80 img Mean-Shift - - - 95.99% - -
Our Results (FNF strict/flexible) ~Sweet pepper 156 img AD - - - - 65%/95%  94%/95%
Our Results (SSD) Sweet pepper 156 img DL - - - - 84% -

DL = Deep learning; AD = Adaptive threshold; F = F; Score; A = Accuracy; P = Precision; R = Recall.

The lack of data and ground truth information [13] in the agricultural domain is a major challenge
that current, most-advanced algorithms face due to the need for major datasets to be collected (such as
the DeepFruits dataset [4]). Best detection results are achieved for crops with a high fruit to image
ratio (e.g., apples, oranges, and mangos that grow in high density). Some research [9,14] aims to cope
with this data deficit by pre-training a network on either non-agricultural open access data [9] or by
generating synthetic data [14]. Both methods have shown promising results. An alternative direction
explored in this paper is the development of algorithms based on smaller datasets, which can match
the detection performance of machine learning algorithms and exceed their frame-rate—without the
need for complex and expensive hardware (such as GPUs).

For an algorithm to be practical in the robotics domain, it must remain efficient in terms of
computational power. To ensure applicability and usability of a robotic harvester it must be easily
adjustable to the highly variable conditions. The variability in the scene appearance that a harvesting
application must process is caused by three main sources [11,13]: object variability, environment
variability, and hardware variability. Object variability is a characteristic of its biological nature, in
addition to the variation caused by the different growing and environmental conditions, resulting
in differences in size, color, shape, location, and texture of the targets. Environment variability
includes unstructured obstacle locations (e.g., leaves, branches) and changing lighting conditions
(e.g., day/night time illumination, direct sunlight, shadows), which depend on time and location
and directly affect the performance of the detection algorithms. The specific robotic system modules
used (sensors, illumination, and manipulator design, including degrees of freedom, dimensions,
and controls) also affect the image quality and thus influence detection performance. Therefore,
segmentation algorithms developed for other domains (e.g., medical imaging [15,16], or sensing for
navigation in indoor environments [17,18]) often fail in outdoor and agricultural domains [2,19-21].
To overcome such variable conditions, some parameters of the environment must be stabilized. In this
paper we present the Flash-no-Flash (FNF) approach [22] to stabilize the impact of the ambient lighting
conditions on the image. This controlled illumination acquisition protocol frees the system from
most ambient illumination effects and facilitates robust target detection while using only modest
computational resources and not requiring supervised training. This approach relies on the acquisition
of two images in Figure 1 nearly simultaneously—one with a strong artificial light (“Flash”) and one
with natural light only (“no-Flash”). The difference between the two images represents the appearance
of the target scene as if only the artificial light was present (Figure 2). In order to maximize ambient
light reduction, camera exposure was set to the lowest possible setting (20 ps). As can be seen in
Figure 2, even these short exposures could not completely remove strong ambient light sources, such
as direct sunlight. Furthermore, once ambient light has been removed by the FNF process, the artificial
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light source becomes the scene’s main illuminant. Since flash intensity is quickly reduced over distance,
items closer to the camera remain properly exposed for detection while the background and the items
further away from the camera remain dark and filtered out. This is specifically beneficial for robotic
tasks within the greenhouse environment where adjacent crop rows are a significant source of visual
confusion. These FNF composite images can then serve as the basis for a simple and robust color-based
detection algorithm.

Figure 1. Experimentalsetting for FNF image acquisition; the same image is taken twice, with (right)
and without (left) artificial light.

Figure 2. Examples of the Flash-no-Flash process images taken facing the sun (top row), facing
away from the sun (center row), and facing to the side (bottom row). By subtracting the luminance
values of the No-Flash image (center column) from the Flash-only image (left column), natural scene
illumination is removed (right column).
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Alternatively, more complex algorithms have been used for the robust detection of fruit or
vegetables using artificial neural networks [4,6,23], where the Faster Region-based Convolutional
Neural Networks (Faster R-CNN) detector [24] was modified for fruit detection. Another recent
network for object detection is Single Shot MultiBox Detector (SSD) [25], which was shown to provide
accurate results and a faster runtime [26]. Such methods have been shown to provide accurate detection
results; however, they may be difficult to train and require additional computational resources (i.e., a
GPU), without which the computation may be rather slow. This typically requires a well-sized platform
to host those resources, a limitation that may prohibit certain applications.

While the results of the proposed algorithms are in most cases better than the basic detection
algorithm, the complexity of the advanced algorithms and their appetite for training data are major
limiting factors for implementation in greenhouse conditions. In their recent review, Kamilaris et al. [6]
mentioned that most deep-learning based algorithms to date have been trained and tested on data from
the same greenhouse; therefore the transferability of the obtained results to different environmental
conditions remains questionable. Both the advanced hardware and the need for fine-tuned training
procedure may once again increase the attractiveness of simpler algorithms, especially when aimed for
robotic applications that require fast detection. This paper aims to explore this issue in depth.

To analyze the proposed method (as is the case with any method), greenhouse data acquisition is
required. Indeed, the evaluation of all possible variations in environment, object, and robotic properties
requires acquisition of extensive datasets and thus should be automated. In this paper we present
automated data acquisition with a robotic manipulator that implements acquisition protocols [13].
These datasets enable advancement of vision algorithms development [27] and provide a benchmark
for evaluating new algorithms. To the best of our knowledge limited-size agricultural databases has
been released (e.g., [4,28]. Table 1 includes summary results of number of images and fruit type that
has been released to the public and documented in recent reviews [1,6]. Evaluation of previously
reported color-based algorithms was based on earlier limited data but indicated the importance of
evaluating algorithms for a wide range of sensory, crop, and environmental conditions [1]. The main
contributions presented in this paper are: an automatic methodology for dataset acquisition, detection
algorithms developed over the acquired dataset, and the dataset itself, which is publicly released for
the benefit of the scientific community.

2. Algorithms

The FNF contribution to detection was evaluated by comparing its performance to a simple
detection algorithm and an elaborate deep learning model, both on the Flash-only and FNF data.

2.1. FNF Algorithm

Due to the use of complex (custom illumination light-emitting diode array driven by an
independent controller) experimental hardware (pre-production customized prototype of the Fotonic
F80 camera)—implementation of the FNF procedure was not entirely straightforward and included
the following steps:

o  Detect Flash/No-Flash Illumination

While the camera was configured to alternate triggering of the LED array between frames, various
factors could interrupt this timing such as: the camera’s variable frame-rate, “dropped” frames,
and communication latency between various system components (camera/PC, camera/LED
controller). This necessitated constant evaluation of the incoming image stream in order to
determine which images were taken under flash illumination. To accomplish this goal, the average
brightness of consecutive images was compared, and if it exceeded a manually defined threshold
the images were considered a valid FNF pair. The system’s FNF threshold was determined once
via field-testing, and provided stable performance throughout the database acquisition process.
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e  Subtract Latest Flash/No-Flash Image Pair
Once a valid FNF image pair was acquired, the “no-Flash” image was subtracted from the “Flash”
image on a per-pixel basis. Color artifacts were avoided by excluding overexposed or “saturated”
pixels in the “Flash” from this subtraction process. Similarly, pixels that contained negative values
following this process were corrected to 0 in order to produce a valid RGB image.

The basic process of FNF image acquisition and its results are demonstrated in Figure 2.

2.2. Color-Based Detection Algorithm

This approach was selected to be as simple and as naive as possible, namely threshold-based
detection (Figure 3) of the targets applied on the following features:

e  Huelevel: 20/360-50/360
e  Saturation level: 90/255-255/255
e  Minimum object size: 400 px (image resolution: 320 x 240)

The features thresholds were calibrated using Matlab’s “color thresholder” app, by
processing 3 randomly sampled images. The app allows dynamic review of the image mask when
applying various threshold levels on 3 of the defined color channels (H, S, and V). Each image was
reviewed by a human operator to provide HSV thresholds that would best separate the fruits from the
background. The measure for best separation was subjective and included the thresholds that would
create no large area false positives with minimal removal of the area of the detected targets.

This simple calibration approach was designed to require only a small number of “training’
images (3) and can be performed quickly—thus facilitating rapid adaptation to new environments
(e.g., different greenhouses, growing conditions, pepper varieties). This advantage was utilized during
the SWEEPER pepper harvesting robot development [29] in order to adapt the algorithm to an artificial
plant model used for indoor testing (see Figure 4).
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Figure 3. Color-based algorithm flowchart. The additional transformation from pixel-based detection
to window-based detection is made for comparison with the deep learning algorithm.
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Figure 4. Detection of an artificial plant model via color-based detection after threshold re-calibration.
Image courtesy Bogaerts Greenhouse Logistics. The robotic harvesting system successfully detects and
“harvests” an artificial pepper fruit (left) while the detection algorithm’s results are displayed to the
operator on a graphical user inteface (left).

2.3. Deep-Learning Based Algorithm

We adopted a neural network-based SSD detector [25] due to its high speed and accuracy. This
detector is based on consequent convolutional layers that predict box locations without region pooling,
providing a fast detector. To enable the detection of peppers, the size of the last layers was reduced
to predict two object classes (pepper or background) and the learning rate reduce from 0.00004
to 0.000001. Apart from that, no additional tuning of hyper-parameters was required (Complete
parameter information for the SSD detector can be found on the GitHub repository associated with the
corresponding publication [25] (https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_

pascal.py).).
3. Methods

The following section describes the data acquisition methods, the databases, the data processing
and labelling, and analysis methods (performance measures and sensitivity analysis).

3.1. Data

A database was acquired (http://icvl.cs.bgu.ac.il/lab_projects/agrovision/DB/Sweeper04/) in
June 2017, during the 12th harvesting cycle in a commercial greenhouse in Ijsselmuiden, Netherlands.
The pepper cultivar was Gualte (E20B.0132), seed company—Enza Zaden. Data was acquired in
different natural lighting conditions (direct/indirect sunlight at various times of day, and various
angles relative to the sun) along three consecutive days using the experimental setup described in
Figure 5. These scenes incorporated peppers of all maturity classes (mature/non-mature/partially
mature). The data collection experiment resulted with a total number of 168 scenes that included
344 peppers.

3.2. Data Acquisition

The setup consists of a 6 degree of freedom industrial manipulator (Fanuc LR Mate 200iD),
equipped with a Fotonic F80 camera (hybrid RGB-TOF depth camera capable of providing 320 x 240
RGB-D images at 20 fps, specially customized with an external illumination trigger) and a specially
designed 3D-printed illumination rig (four custom-ordered Effilux brand LED strips, each containing
two columns of 17 Osram LEDs, with a total of 136 LEDs) to automatically acquire RGB images and
depth information from three viewpoints as described in Table 2 with both artificial and non-artificial
illumination conditions (Kurtser et al., 2016). This acquisition was performed automatically according
to the procedure described in Figure 6.
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Figure 5. Experimental setup including a robotic arm, equipped with an RGBD camera and an
illumination rig.

Table 2. Viewpoints description.

View Point Distance to Stem (mm) Tilt (Degrees) Azimuth (Degrees)

1 190 10 -50
2 190 20 20
3 170 0 0

Start
robot

Move robotic
manipluator ;—ﬁirgcg} Generate FNF _J
Yes| into viewpoint lighting Image
Manually move position
robotic Available
manipulator viewpoint? + +
within lane
Take image Take image
with natural with artificial
No lighting lighting

Figure 6. Data acquisition protocol.

Acquired scenes were selected randomly within the row. To ensure the scenes include peppers,
the robotic manipulator sensory system was placed manually in front of a pepper or a cluster of
peppers in the scene before starting the automatic procedure. The scenes were acquired all along the
day on both sides of the aisle to collect data with variable natural illumination conditions (e.g., against
or in front of the sun).

3.3. Data Processing and Labelling

Since labelled data was necessary for both evaluation of performance and training of the deep
network algorithm, a manual labelling process was conducted using a custom-made user interface
designed and implemented in Matlab 2017a (Figure 7). Each image being labelled as well as the other
3 available viewpoints from the scene the image was taken from, were visible to the user. The user
could classify the observed peppers into up to 4 classes marked in different colors. The resulting mask
was then stored for future use.
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Figure 7. Custom-made user interface developed for labeling database images.

3.4. Performance Measures

To evaluate performance the following measures were calculated:

o FNF images vs. Flash-only images. To evaluate the impact the FNF acquisition methodology
has on the appearance of the processed images, we first computed the distribution of hue and
saturation of images acquired with the FNF protocol and compared them to the same measures
for the Flash-only images.

e  Detection accuracy measures. To evaluate the detection rate provided by the algorithms we
computed precision and recall (Equations (1) and (2)) performance of both algorithms on both the
Flash-only and FNF data.

" Ntp
Precision = 1
Ntp + Npp M
Nrp
Recall = ———— 2
Ntp + Npn @)

where Nrp is the number of correctly detected peppers (peppers were considered correctly
detected if the bounding boxes of the detection and label have an overlap ratio (The overlap ratio
of two bounding boxes is defined as the ratio between the area of their intersection and the area
of their union.) of at least 50%)); Nrp is the number of incorrectly detected peppers (where a
detection was produced but its bounding box did not satisfy the overlap ratio criteria with any
labeled pepper); Ny is the number of peppers that were tagged but had not been detected (where
a detection was either not produced, or produced but failed to satisfy the overlap ratio criteria
with the labeled pepper).

o Time measures. To evaluate the resources required for the color-based detection algorithm as
opposed to the advanced deep learning algorithm, the training times and operation times were
logged on different hardware.

Extra care should be provided for how clusters of peppers should be treated in the performance
measures analysis. Figure 8 portrays an example of overlapping peppers: a cluster of two or more
peppers was detected but due to morphological operations the cluster was identified as a single pepper.
For robotic harvesting, detecting a cluster of peppers as a single fruit implies incorrect localization
of the target pepper. Since most harvesters today are equipped with a visual servoing mechanism to
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approach the fruit [30,31], this error will be fixed either while approaching the fruit or after harvesting
one of the fruits in the cluster.

There are two detection accuracy measures presented in this paper. The first measure considers
each of the undetected peppers in a cluster as a false negative. The second measure considers each of
the peppers within the detected area to be a true positive.

Figure 8. Example of a clustered detection: the detected area (white) overlaps both a pepper considered
to be a true positive detection (green) as well as one considered a false negative detection (red).

3.5. Sensitivity Analysis

The relation between the precision and recall might change along the performance of the robotic
task [32]. In overview images taken by the robotic harvester it is important to maximize the TP rates
and lower FP rates to ensure low cycle times (ensure the robot does not waste time on false targets).
On the other hand, in visual servoing mode, after the target has been located the arm must then be
guided accurately towards it for harvesting. At this stage, the detection task becomes “easier” since
the target is centered and close to the camera. Here, reducing FP should be emphasized to avoid
misguiding the arm, while the TP rate is less significant. Therefore, the relation between TP and FP as
a function of the algorithm’s parameters is also analyzed.

The color-based detection algorithm was evaluated across the entire dataset for two
evaluation schemes:

1. “Strict”—Detection of partially matured peppers considered a false positive.
2. “Flexible”—Detection of partially matured peppers considered a true positive.

It should be noted that since the detection algorithm is color-based, the chances of incorrectly
detecting a partially mature pepper is directly proportional to the level of maturity of that pepper.

4. Results

4.1. FNF Images vs. Flash Only Images

Studying all pixels labeled as ripe peppers under both FNF and Flash-only images revealed
significant differences in the distribution of both hue and saturation. Histograms depicting the value
distribution for both parameters can be found in Figure 9. The standard deviation for hue was 0.045 for
FNF and 0.203 for Flash-only, and the standard deviation for saturation was 0.091 for FNF and 0.138
for Flash-only. This significant reduction of sample variance in FNF images vs. Flash-only supports
the claim that FNF provides higher color constancy, thus facilitating better performance in color-based
detection algorithms.
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Figure 9. Histograms depicting the value distribution of hue and saturation for pepper pixels under
FNF and Flash-only illuminations. From the top left, clockwise: FNF Hue histogram, FNF saturation
histogram, Flash saturation histogram, and Flash hue histogram.

4.2. Color-Based Detection Results

Table 3 details the performance of the color-based detection algorithm under both “strict” and
“flexible” evaluation schemes. Figure 10 details the distribution of detections, including an analysis of
false positive cases:

e  TP—Correct detection of a fruit.

e  FP,—Partially-mature fruit detected as mature.

e FP;—Non-mature fruit detected as mature.

o DC—Distant, out of range, fruit detected (ignored).

e FP—False detection (no fruit at detected location).

e FN—False misdetection (fruit present but not detected)

Table 3. Performance evaluation of the color-based algorithm across the entire data-set.

Image Type Measure Strict Flexible

FNF Recall 75% 80%
Precision  60% 82%

Flash-only Recall 60% 64%
Precision  81% 98%

FNF Flash

[ Clustered [l Clustered

150 [

100 [

50

TP FP, FP, DC FP FN TP FP, FP, DC FP FN

Figure 10. Distribution of detections for the color-based algorithm for FNF (left) and Flash-only (right)
images. Proportion of false negatives due to clustering displayed in red.

False negatives due to pepper clusters were a significant proportion of false negatives in the FNF
configuration (as evident from Figure 10). While such errors do reduce localization accuracy, they do
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not necessarily indicate a failure to harvest since the “undetected” pepper may be harvested once the
detected pepper is harvested. Moreover, detected clusters are often separated into discrete detections
as the robot arm approaches them during the harvesting procedure. Table 4 details the performance of
the color-based detection algorithm, when clustered detections (cf. Figure 8) are considered successful.
The color-based detection algorithm achieved a throughput of 30 fps when run on an Intel© Core™
i7-4700MQ 2.4 GHz CPU.

Table 4. Performance evaluation of the color-based algorithm across the entire dataset, when pepper
clusters are considered successful detections.

Image Type Measure Strict Flexible

FNF Recall 94% 95%
Precision  65% 95%

Flash-only Recall 65% 69%
Precision  82% 99%

4.3. Deep Learning Results

The network is evaluated with the dataset described in Section 3.1, using 4 different train and test
splits (see Table 5). We train and test separately on Flash-Only and FNF images, achieving an AP of
(0.8341, 0.8478, 0.8482, 0.8326) over Flash splits, and (0.8493, 0.8601, 0.8437, 0.7935) over FNF splits,
where the mean across splits is 0.8407 and 0.8367, respectively. In addition, precision-recall curves for
all splits can be seen in Figure 11. While the effect of pepper clusters was quite pronounced in the
color-based detection algorithm, the trained network was found to be robust to pepper clustering and
did not detect large clusters as single peppers.

Flash Strict FNF Strict
c = 1-‘
o i} |
2 @
g —Split 1 @ — Split 1
& o4l |—Splt2 | & o4l|—Spit2 |
Split 3 Split 3
—Split4 —Split4
0251 + Color based alg. | 0271 + Color based alg.
Color based alg. + clusters Color based alg. + clusters
0 ‘ ‘ ‘ : 0 ‘ ‘ ‘ :
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Recall Recall
Flash Flexible FNF Flexible
1 —
0.8 ‘
c c
2 2087
8 | [—spltt 8 | [—spit1 |
& oal ——Split2 | &4l ——Split2
Split 3 Split 3
——Split4 —Split 4
0211 + Color based alg. | 0271 4 Color based alg.
Color based alg. + clusters Color based alg. + clusters
0 ‘ ‘ ‘ : 0 ‘ ‘ ‘ :
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Recall Recall

Figure 11. Precision-recall (PR) graph of the SSD object detection over each split of the Flash-only and
FNF datasets. Color-based detection algorithm performance displayed for comparison. Figures depict:
PR under the strict evaluation scheme for flash images (top left) and FNF images (top right), and PR
under the flexible evaluation scheme for flash images (bottom left) and FNF images (bottom right).
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Table 5. Image counts for train/test sets used to train and evaluate the deep-learning based algorithm.

Train Test

Split 1 128 40
Split2 138 30
Split3 129 39
Split4 119 49

As can be seen, the neural network results are not significantly different over the two modalities.
Reported results were achieved with an SSD network based on VGG16, operating at 30 images per
second on Titan X GPU, or requiring a runtime of 3.5 s per image when run on an Intel©® Xeon®©
Processor E5-2637v4 3.5GHz CPU.

These performance measures should be considered an approximate upper bound for the
deep-learning approach since, as noted by Kamilaris et al. [6], performance may decrease or
comprehensive retraining may be required if the operational environment changes (e.g., different
greenhouses, growing conditions, lighting).

5. Conclusions

Analysis of ripe peppers” hue and saturation distribution in Flash-only and FNF images revealed
a significant reduction in variability for FNF images, suggesting higher color stability. This had, as
expected, a positive effect on the performance of the color-based algorithm. The color-based algorithm
was shown to obtain a maximum of 95% precision at a 95% recall level on FNF images compared
to 99% precision at a 69% recall for Flash-only images. This result suggests FNF is a successful tool
in stabilizing the effects of illumination for color-based detection algorithms. The detection results
for deep learning techniques showed similar results for both Flash-only and FNF images (average
precision 84% and 83.6%, respectively), implying that this approach can overcome variable illumination,
without the FNF correction, at the cost of additional computation. The FNF color-based algorithm
achieves comparable performance to the deep-learning approach despite its simpler methodology (cf.
performance points in Tables 3 and 4 as plotted on Figure 11).

Performance comparisons for both algorithms on a variety of server, desktop, and embedded
platforms (cf. Table 6) revealed that the color-based algorithm offers high performance in low-cost
embedded systems requiring real-time continuous detection, while the deep learning algorithm
requires specialized and costly hardware to perform in real-time. These results imply that while the
simpler algorithm suggested is indeed naive and may under-perform the advanced machine-learning
algorithm in some settings, it remains an appealing alternative for real-time embedded systems
that cannot afford the use of an on-board GPU in the field. In such cases, the FNF approach
may provide better overall performance due to its higher frame-rate and allow acquisition of
multiple viewpoints [13], increasing detectability and enabling visual servoing continued re-detection,
a common practice in robotic harvesting [30].

Other color-based algorithms could benefit from the implementation of FNF imaging as well, and
can be tested and benchmarked over the published FNF dataset.
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Table 6. Performance estimates for deep-learning and color-based detection algorithms. Performance
predictions were extrapolated based on the core-count and clock-speed of target systems relative to
measured performance on test systems (denoted in bold). Real world performance may vary due to the
various hardware instruction optimization and parallelization capabilities of each platform. Note the
color-based algorithm’s ability to provide high frame-rates on low-cost hardware embedded platforms

such as the Raspberry Pi.

CPU GPU Approximate Deep Learning Color-Based
System Cost Performance  Performance

2 X Intel© Xeon®© E5-2637v43.5GHz  Nvidia Titan X $9200 30 fps 44 fps

2 X Intel© Xeon®© E5-2637v4 3.5 GHz none $7800 0.28 fps 44 fps

8-core ARM v8.2 64-bit CPU 512-core Volta GPU $1400 33 fps 56 fps

Intel© Core™ i7-4700MQ 2.4 GHz none $800 0.19 fps 30 fps

Cortex-A53 64-bit SoC 1.4 GHz none $35 0.22 fps 35 fps

(Rasberry Pi 3 B+)

$ = United States Dollars.
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