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Abstract: Curb detection and localization systems constitute an important aspect of environmental
recognition systems of autonomous driving vehicles. This is because detecting curbs can provide
information about the boundary of a road, which can be used as a safety system to prevent unexpected
intrusions into pedestrian walkways. Moreover, curb detection and localization systems enable the
autonomous vehicle to recognize the surrounding environment and the lane in which the vehicle is
driving. Most existing curb detection and localization systems use multichannel light detection and
ranging (lidar) as a primary sensor. However, although lidar demonstrates high performance, it is too
expensive to be used for commercial vehicles. In this paper, we use ultrasonic sensors to implement
a practical, low-cost curb detection and localization system. To compensate for the relatively lower
performance of ultrasonic sensors as compared to other higher-cost sensors, we used multiple
ultrasonic sensors and applied a series of novel processing algorithms that overcome the limitations
of a single ultrasonic sensor and conventional algorithms. The proposed algorithms consisted of
a ground reflection elimination filter, a measurement reliability calculation, and distance estimation
algorithms corresponding to the reliability of the obtained measurements. The performance of the
proposed processing algorithms was demonstrated by a field test under four representative curb
scenarios. The availability of reliable distance estimates from the proposed methods with three
ultrasonic sensors was significantly higher than that from the other methods, e.g., 92.08% vs. 66.34%,
when the test vehicle passed a trapezoidal-shaped road shoulder. When four ultrasonic sensors were
used, 96.04% availability and 13.50 cm accuracy (root mean square error) were achieved.

Keywords: autonomous vehicle; curb detection; curb localization; environmental recognition;
ultrasonic sensor array

1. Introduction

Since Google obtained the first license for an autonomous vehicle from the state of Nevada in
2012 [1], several other companies have made remarkable progress in autonomous vehicle technology.
For instance, in 2015, Audi announced that their prototype had successfully driven itself from Silicon
Valley to Las Vegas [2]. It is also known that BMW is testing their autonomous driving technology
in a prototype vehicle on highways between Munich and Nuremberg [3]. Furthermore, Volvo is
cooperating with the government of Sweden in planning a project that will produce one hundred
autonomous cars to drive on city streets [4]. Many other automobile companies and automotive
component companies are rushing into the market of autonomous driving technology. For these
reasons, the autonomous driving industry is currently drawing more attention than ever before.
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Autonomous driving technology consists of various subcategories, one of the most important of
which is environmental recognition, as this directly influences the safety of drivers and pedestrians.
Techniques that use sensors to detect objects surrounding the vehicle fall under the heading of
environmental recognition technology. Various driving situations correspond to a diverse list of
potential surrounding objects to be recognized, such as adjacent vehicles, pedestrians, lanes and
crossroads, traffic lights, signs, and curbs.

The ability to detect and localize curbs is especially useful. By providing information regarding
the outside boundaries of the driving lanes, curb detection and localization systems prevent vehicles
from intruding into pedestrian walkways and can detect the lane in which the vehicle is driving.
Driving lane detection is a crucial technology for autonomous driving. Usually, driving lane detection
is primarily based on precise Global Navigation Satellite Systems (GNSS) positioning technology [5–7]
and image processing from vision sensors [8–13]. GNSS, especially the Global Positioning System
(GPS) of the U.S., are widely used for various transportation modes and applications [14–19]. However,
the driving lane detection using GNSS requires a precise digital map. Otherwise, the absolute 3D
position obtained by GNSS cannot be converted to the driving lane information. The primary weakness
of GNSS stems from the system’s vulnerability to radio frequency interference [20–28] and ionospheric
effects [29–32]. The performance of the vision sensor [33,34] can be impeded by environmental factors
such as light and weather conditions [35–37]. Because of these factors, detecting a driving lane is
not a simple task for autonomous vehicles. Thus, curb localization information could improve the
performance of the current lane detection techniques. Curb localization information can also be used
to implement an automatic pull-over system, which automatically pulls over the vehicle to the curb
in an emergency situation such as a driver having a heart attack. To realize these benefits, several
research groups have been developing various curb detection and localization systems.

Previous studies on curb detection and localization systems predominantly utilized light detection
and ranging (lidar) sensors [38–46]. Lidar is a popular sensor that measures distance with a high
accuracy by illuminating an object with a laser. Multichannel scanning lidar is used to obtain a 3D point
cloud of the surrounding environment. In fact, lidar-based curb detection and localization systems
usually utilize 32- or 64-channel lidar systems. The resolution of the 3D point cloud is improved by
increasing the number of scanning channels.

There have been many recent developments that attempt to improve the accuracy and resolution
of curb detection and localization systems. For instance, Wang et al. [47] used a commercial mobile
laser scanning system that consisted of two single-channel lidars, an inertial measurement unit, and
GNSS equipment to detect road boundaries based on local normal saliency. Chen et al. [48] performed
curb detection with a range of up to 50 m using a 64-channel lidar. Zhao et al. [49] adapted a particle
filter to the measurements from a 64-channel lidar to detect curbs. Fernandez et al. [50] suggested
a curb detection method using both 64-channel lidar and a stereo vision sensor. Lastly, Hata et al. [51]
used a 32-channel lidar to recognize urban environments including curbs for vehicle localization.

Despite these benefits, multichannel lidar also has certain disadvantages such as high price and
the existence of wide blind spots. Multichannel lidar is too expensive for practical use in commercial
vehicles. The existence of wide blind spots is another weakness of scanning lidar. Most multichannel
lidar systems are attached to the roof of the vehicle to facilitate a 360◦ view. However, because of
the placement of the roof relative to the lidar system, the lidar cannot detect the region immediately
surrounding the vehicle. This blind spot is not critical to detecting most nearby obstacles such as other
vehicles or pedestrians, but it can become problematic in certain situations such as close approaches
to curbs. For these reasons, the commercialization of curb detection and localization systems with
a multichannel lidar constitutes a difficult task. Therefore, it is beneficial to consider using alternative
sensors that are both cost-effective and able to reduce the extent of blind spots.

An ultrasonic sensor is a typical low-cost sensor that measures the distance to an object using
ultrasonic sound waves. Such sensors contain an ultrasonic wave transmitter and receiver and calculate
distance by multiplying the speed of sound and the duration of the wave propagation. Ultrasonic



Sensors 2019, 19, 1389 3 of 22

sensors are widely used in a variety of situations, ranging from daily tasks to industrial settings.
For instance, vehicles equipped with parking assistance systems use ultrasonic sensors to determine
whether there is enough space between adjacent vehicles. The widespread use of ultrasonic sensors
can be attributed to their low price. More specifically, a typical ultrasonic sensor costs under $30, which
is far less expensive than the lidar counterpart.

Using ultrasonic sensors in curb detection and localization systems can increase the price
competitiveness and thus offer a more practical commercial solution. However, the performance
of ultrasonic sensors is significantly lower than that of the lidar counterpart. A single, vehicle-mounted
ultrasonic sensor can only measure one-dimensional distance within a range of about 10 m.
Furthermore, the data acquisition rate of an ultrasonic sensor is inevitably lower than that of a lidar
because the speed of an ultrasonic wave is much lower than the speed of a laser. Given that the speed
of sound in air at sea level is 340 m/s, the theoretical maximum data acquisition rate is 34 Hz when the
target object is 5 m away from the ultrasonic sensor. The actual data acquisition rate of the ultrasonic
sensor used in our testbed was 10 Hz. Because the data acquisition rate is low, the distance information
becomes sparse so that even critical features of target objects might be missed. This problem decreases
the detection performance of ultrasonic sensors.

Therefore, novel approaches are required to improve the performance of ultrasonic-sensor-based
curb detection and localization systems. To the authors’ knowledge, there is no literature reporting
a curb detection and localization system based on ultrasonic sensors that has demonstrated satisfactory
performance. This paper proposes a curb detection and localization system using multiple ultrasonic
sensors with novel processing algorithms. This involves both hardware implementation of the testbed
and the introduction of software algorithms.

In Section 2, the implementation of our testbed is described. Section 3 presents several distance
estimation algorithms for curb detection and localization. Because the performance of the distance
estimation algorithms in Section 3 is unsatisfactory, Section 4 describes our series of processing algorithms
to enhance the availability of reliable distance estimates while providing good distance-estimation
accuracy. Results from a field test presented in Section 5 demonstrate the performance of the proposed
algorithms, which was significantly better than the previous algorithms during four representative
driving situations. Section 6 concludes this paper.

2. Testbed Implementation

The hardware of our curb detection and localization testbed consisted of four ultrasonic sensors,
a single-channel lidar, a camera, a GPS receiver, and a laptop. The ultrasonic sensors measured the
distance between the curb and the side of the vehicle. The single-channel lidar provided true distance
measurements so that the accuracy of the proposed system can be evaluated. The camera recorded the
view in front of the vehicle, including curbs. The GPS receiver collected the position and velocity data
of the vehicle. However, the lidar, camera and GPS receiver were not a part of our curb detection and
localization system. Instead, they merely verified the performance of the proposed system.

The ultrasonic sensor is a widely used sensor in various applications. In fact, ultrasonic sensors
are already installed on most vehicles for parking assistance. In our testbed, three ultrasonic sensors,
obtained at a cost of $15 each, were selected for implementing a low-cost curb detection and localization
system. The sensor uses a 40 kHz ultrasonic wave to detect objects.

An ultrasonic sensor can only provide a single measurement output for each transmitted ultrasonic
pulse. Therefore, even if there are multiple objects in the detection range, a single ultrasonic sensor
only perceives one object. This can create a problem, in that other unintended objects, e.g., the ground,
can be noticed instead of the intended target, e.g., the curb. In practice, sudden data jumps in the
distance measurements from ultrasonic sensors also cause a reliability problem. Measurement outliers
exist for any distance measuring sensors, but, in driving situations, ultrasonic sensors output outliers
with much greater frequency than other higher-cost sensors such as lidar.
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To compensate for the vulnerabilities of using a single ultrasonic sensor, our testbed used an
array of multiple sensors. This approach of using an array of sensors provided clear performance
enhancement. Multiple objects could be detected separately and simultaneously because the number
of independent sensor measurements increased. Furthermore, when detecting a single object, outputs
from multiple sensors enable cross-checks that exclude low quality measurements, thereby enhancing
the reliability of the distance estimates. As the number of sensors increases, so does the performance
of the whole system. Although ultrasonic sensor arrays have been utilized for measuring distances to
objects [52–56], they have not been used in outdoor driving situations.

In our curb detection and localization testbed, we equipped the vehicle with four ultrasonic
sensors. Three is the minimum number of sensors required to perform the cross-checks. We added one
more sensor to evaluate the performance enhancement caused by the fourth ultrasonic sensor. Figure 1
details the types of ultrasonic sensor and single-channel lidar that were attached on the right side of
the vehicle. Each ultrasonic sensor was hinge-mounted to enable precise and individual sight line
adjustment by changing the tilt angle. The line of sight of every ultrasonic sensor was set parallel to
the ground, thus aimed directly at the curb. The entire sensor connection is illustrated in Figure 2.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 22 

 

To compensate for the vulnerabilities of using a single ultrasonic sensor, our testbed used an 
array of multiple sensors. This approach of using an array of sensors provided clear performance 
enhancement. Multiple objects could be detected separately and simultaneously because the number 
of independent sensor measurements increased. Furthermore, when detecting a single object, 
outputs from multiple sensors enable cross-checks that exclude low quality measurements, thereby 
enhancing the reliability of the distance estimates. As the number of sensors increases, so does the 
performance of the whole system. Although ultrasonic sensor arrays have been utilized for 
measuring distances to objects [52–56], they have not been used in outdoor driving situations. 

In our curb detection and localization testbed, we equipped the vehicle with four ultrasonic 
sensors. Three is the minimum number of sensors required to perform the cross-checks. We added 
one more sensor to evaluate the performance enhancement caused by the fourth ultrasonic sensor. 
Figure 1 details the types of ultrasonic sensor and single-channel lidar that were attached on the 
right side of the vehicle. Each ultrasonic sensor was hinge-mounted to enable precise and individual 
sight line adjustment by changing the tilt angle. The line of sight of every ultrasonic sensor was set 
parallel to the ground, thus aimed directly at the curb. The entire sensor connection is illustrated in 
Figure 2. 

 
Figure 1. Detailed structure of a single ultrasonic sensor and single-channel light detection 
and ranging (lidar) in our testbed, attached on the right side of the vehicle. 

 
Figure 2. Sensor connection diagram of the testbed and the detection range of each sensor. 
Lidar, Global Positioning System (GPS), and camera for verification purpose only. 

Figure 1. Detailed structure of a single ultrasonic sensor and single-channel light detection and ranging
(lidar) in our testbed, attached on the right side of the vehicle.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 22 

 

To compensate for the vulnerabilities of using a single ultrasonic sensor, our testbed used an 
array of multiple sensors. This approach of using an array of sensors provided clear performance 
enhancement. Multiple objects could be detected separately and simultaneously because the number 
of independent sensor measurements increased. Furthermore, when detecting a single object, 
outputs from multiple sensors enable cross-checks that exclude low quality measurements, thereby 
enhancing the reliability of the distance estimates. As the number of sensors increases, so does the 
performance of the whole system. Although ultrasonic sensor arrays have been utilized for 
measuring distances to objects [52–56], they have not been used in outdoor driving situations. 

In our curb detection and localization testbed, we equipped the vehicle with four ultrasonic 
sensors. Three is the minimum number of sensors required to perform the cross-checks. We added 
one more sensor to evaluate the performance enhancement caused by the fourth ultrasonic sensor. 
Figure 1 details the types of ultrasonic sensor and single-channel lidar that were attached on the 
right side of the vehicle. Each ultrasonic sensor was hinge-mounted to enable precise and individual 
sight line adjustment by changing the tilt angle. The line of sight of every ultrasonic sensor was set 
parallel to the ground, thus aimed directly at the curb. The entire sensor connection is illustrated in 
Figure 2. 

 
Figure 1. Detailed structure of a single ultrasonic sensor and single-channel light detection 
and ranging (lidar) in our testbed, attached on the right side of the vehicle. 

 
Figure 2. Sensor connection diagram of the testbed and the detection range of each sensor. 
Lidar, Global Positioning System (GPS), and camera for verification purpose only. 
Figure 2. Sensor connection diagram of the testbed and the detection range of each sensor. Lidar,
Global Positioning System (GPS), and camera for verification purpose only.



Sensors 2019, 19, 1389 5 of 22

The ultrasonic sensors were connected to the USB hub, which was also connected to the vision
camera. The USB hub delivered the collected measurement data to a laptop computer. The vision
sensor was positioned in front of the vehicle to provide a forward view. It recorded the front view that
is used to verify the driving situation. Simultaneously, the GPS receiver collected the GPS position
and velocity measurements and recorded the data on the laptop. A single-channel lidar can scan
a 2D section in space, and we set the scanning angle from θLidar = 0◦ to 90◦. The lLidar and θLidar in
Figure 3 were obtained from the raw lidar data and then lUltrasonic was calculated, which served as
the true distance between the ultrasonic sensor and curb. Again, the lidar, GPS, and vision sensors
were not a part of the proposed curb detection and localization system; rather their data were used for
performance verification. The operation software that we developed ran the sensors and stored the
entire dataset in real time. The collected data were then analyzed by post-processing software, which
is discussed in Sections 3 and 4.
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3. Distance Estimation Algorithms for Curb Detection and Localization

3.1. Simple Averaging and Majority-Voting Algorithms

The implemented curb-detection testbed provided four distance measurements at each
data-acquisition epoch by using the four ultrasonic sensors. The distance-estimation results based
on three sensors are presented first and the performance enhancement when all four sensors were
used is discussed in Section 5.2. Examples of measurement data from the three sensors are shown in
Figure 4 (right). The collected measurements correspond to the situation depicted in Figure 4 (left),
where a vehicle drives by a short shoulder of a road. The shoulder has a trapezoidal shape and thus the
distance measurements were also expected to form a trapezoidal shape. In the scenario portrayed by
Figure 4, the vehicle started to pass the shoulder at 371.5 s and finished at 380.5 s. Raw measurement
data points obtained from three sensors are indicated with three different marks (o, x, +). Although
distance measurements generally follow the trapezoidal shape of the shoulder, there were a substantial
number of outliers that must be properly handled to obtain reliable distance estimates to the curb.

For a straightforward method to estimate the distance to the curb at each epoch, the three raw
distance measurements can be simply averaged. Figure 5a presents the estimated distances calculated
by applying the simple averaging algorithm to the raw data from Figure 4. It is almost impossible
to recognize the trapezoidal shape of the shoulder in the results of the simple averaging algorithm.
The high frequency of measurement outliers in the raw data of Figure 4 produced an averaged output
that fluctuated drastically. Figure 5a indicates that the driving situation may not be properly inferred
from these erroneous distance estimates.

Because we had three independent measurements at each epoch, a majority-voting algorithm
provided a better solution than did the simple averaging algorithm. The closest measurement pair
constituted the majority and the remaining single measurement was the minority. Then, the average of
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the majority measurements determined the estimated distance. The distance estimates derived from
the majority-voting algorithm are given in Figure 5b. These results were an improvement on the results
of Figure 5a in the sense that the distance estimates followed the trapezoidal shape of the shoulder
better; however, there were still many incorrect distance estimates. Further, this simple algorithm
does not provide information about which distance estimate is reliable to use for inferring the current
driving situation.
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3.2. Improved Distance Estimation Algorithm Considering Measurement Reliability

To provide reliability information for a distance estimate, we suggested an improved algorithm
that classified the measurements of each epoch into three reliability cases: the most reliable case,
the less-than-N/2-outlier case, and the unreliable case. The distance estimation algorithms for each
case are described in this subsection, which extends the simple averaging and the majority-voting
algorithms examined in the previous subsection. A general case with N ultrasonic sensors attached
to a vehicle was assumed. As described in Section 2, N = 4, in our testbed but the case of N = 3 is
first presented.

3.2.1. Most Reliable Case

When all the distance measurements from N sensors at a certain epoch were close enough to each
other, those measurements were the most reliable. The standard deviation of N measurements in (1) is
used as the criterion to determine the closeness.
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σ =

√√√√ 1
N

N

∑
i=1

(mi − µ)2, (1)

where mi is the distance measurement from the i-th sensor and µ is the average of all mi. If the standard
deviation of measurements is less than the preselected threshold, the case is classified as the most
reliable case. Based on the sensor data collected in extensive field tests, the threshold of the standard
deviation was set to σreliable = 20 cm.

This most reliable case corresponds to epoch a© in Figure 6. The raw measurements from three
sensors shown in epoch a© of Figure 6 (top) are close to each other. Hence, their standard deviation is
less than the threshold, σreliable, as indicated by the grey shading in Figure 6 (top). In this case, a simple
average of the three raw sensor measurements provides a sufficient estimate of the distance to the curb.
The estimated distance at epoch a© is represented with a blue square in Figure 6 (bottom).
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Figure 6. Example of ultrasonic sensor data and distance estimates for three different reliability cases.
The (top) plot shows raw measurements from three sensors and the (bottom) plot shows the distance
estimates to the curb based on the raw measurements. Three different estimation methods are used
for three different reliability cases as illustrated by three arrows with different colors. The examples
at epochs a©, b©, and c© occur in the order of decreasing reliability. The threshold value, σreliable,
is indicated by grey shades.

3.2.2. Less-than-N/2-outlier case

If the measurements of a certain epoch are not classified as the most reliable case, they may belong
to the less-than-N/2-outlier case, or the single outlier case if N = 3. In this case, the majority of the
measurements from N sensors at a given epoch are reliable even though a few outliers exist.
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If N = 3, a maximum of three majority vs. minority combinations (i.e., sensors 1 and 2 vs. sensor 3;
sensors 2 and 3 vs. sensor 1; sensors 1 and 3 vs. sensor 2) need to be checked. For example, if the
measurements of sensors 1 and 2 in the first combination are reliable, as determined by the standard
deviation of the measurements, then we do not need to check the second and third combinations. The
measurement of sensor 3 was neglected in this case, and our distance estimate is the average of the
measurements of sensors 1 and 2. If the majority of the first combination is not reliable, the majority of
the next combination is checked until a reliable majority is identified.

Note that this algorithm differs from the majority-voting algorithm in Section 3.1, where the
distance estimate is always provided by averaging the closest measurement pair without the notion of
reliability. In the less-than-N/2-outlier case, the distance estimate is calculated only if the standard
deviation of the measurement pair is less than the threshold of σreliable, that is, only if the measurement
pair is reliable.

Epoch b© in Figure 6 represents a less-than-N/2-outlier case. The measurements at epoch b© do not
belong to the most reliable case because their standard deviation was greater than the threshold, σreliable,
due to an outlier. Excluding the outlier measurement obtained by sensor 3, the standard deviation of
the remaining measurements of sensors 1 and 2 was less than σreliable. Thus, this case was classified as
the less-than-N/2-outlier case. The distance estimate at epoch b© averages the measurements from
sensors 1 and 2 and is indicated by the green square in Figure 6 (bottom).

If N = 5, for example, the maximum number of majority vs. minority combinations to be checked

is

(
5
4

)
+

(
5
3

)
= 5!

4!1! +
5!

3!2! = 15. The distance estimation algorithm for N sensors in the

less-than-N/2-outlier case is given in Algorithm 1. Because the process stops as soon as a reliable
majority is found, the algorithm is simple and fast enough for real-time processing.

Algorithm 1. Distance estimation algorithm for the less-than-N/2-outlier case

1 For n from 1 to

{ ⌊
N
2 (when N is odd)

N
2 − 1 (when N is even)

2 For all combinations of {N − n sensors},
3 If σ {N − n sensors} < σreliable,
4 Distance estimate = average of the measurements from {N − n sensors}.
5 Return.
6 End.
7 End.
8 End.

3.2.3. Unreliable Case

Measurements that do not belong to the previous two cases are categorized as the unreliable
case. The epoch c© of Figure 6 is an example of the unreliable case. Although we may estimate the
distance to the curbs as the average of N unreliable measurements, denoted by a red square in Figure 6
(bottom), we do not recommend using this distance estimate for curb detection and localization. Thus,
distance estimates derived from measurement sets categorized as unreliable cases were not considered
by our implementation.

3.3. Outputs from the Improved Distance Estimation Algorithm

Our improved distance estimation algorithm was rooted in the simple averaging and the
majority-voting algorithms, but it now categorizes the reliability of each distance estimate as one of
three reliability levels, enabling users to determine which distance estimates are safe to use for the
inference of driving conditions. Figure 7 shows the distance estimation results with corresponding
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reliability levels based on the application of the proposed algorithm to the same raw measurement
data used in Figures 4 and 5.

Because distance estimates from data categorized as unreliable were discarded, the resulting low
availability of reliable distance estimates is a concern for this algorithm. For example, only 66.34% of
the epochs in Figure 7 belong to either the most reliable case or the less-than-N/2-outlier case. The
66.34% availability of reliable distance estimates may be unacceptably low, impeding the fast and
robust decision-making requirements of actual driving situations.
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Figure 7. Distance estimation results by the improved algorithm in Section 3.2 with the same raw
measurements of Figure 4. This improved algorithm provides a reliability level for each distance
estimate among the three reliability cases. However, the availability of reliable distance estimates is
only 66.34%.

4. Proposed Algorithms to Enhance the Availability of Reliable Distance Estimates

The improved distance estimation algorithm in Section 3.2 is an extension of the simple averaging
and the majority-voting algorithms in Section 3.1. Although this algorithm is straightforward to
understand and implement, the low availability of reliable distance estimates is problematic. Therefore,
after careful observations of the characteristics of the ultrasonic sensor data in various driving
situations, we proposed a series of processing algorithms, outlined in Figure 8, to significantly enhance
the availability. Each processing step is described in detail in the following subsections.

4.1. Ground Reflection Elimination Filter

Ground reflection in this paper refers to the undesired reflection of the ultrasonic wave by the
ground instead of the curbs. The ultrasonic waves from the sensors were correctly reflected by the
curbs at the initial setting because the lines-of-sight of the sensors in our testbed were set to the curb
direction. However, during an actual driving situation, the distance between the vehicle and the
curbs can differ from that of the initial setting. Then, the ultrasonic wave may touch the ground due
to its beam width, as depicted in Figure 9, and the sensors may detect a signal reflected from the
ground. This phenomenon causes the sensors to measure the distance to the ground instead of the
curbs. Additionally, the vertical fluctuations of a driving vehicle can also cause ground reflection as
the height of the sensors relative to the ground changes.
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Figure 9. Ground reflection occurs when the distance between the vehicle and the curbs is greater than
the distance of the initial setting.

Measurements produced by ground reflection can be distinguished because the measured
distance is abnormally smaller than the distance produced by the curbs. Compared to other random
measurement outliers, this attribute is unique to ground-reflected measurements. Based on this
observation, a ground reflection elimination algorithm for N ultrasonic sensors is suggested in
Algorithm 2, which is an improved version of our previously presented algorithm [57]. If the
majority of the sensors measure distances greater than a selected threshold, and the remaining sensor
measurements at the same epoch are less than the threshold, we can determine that the smaller
measurements are due to the ground reflection. Because the majority of the sensors provided a better
distance estimate to the curb in this situation, the smaller measurements due to ground reflection were
replaced by the average distance measurements obtained from the majority of the sensors.
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Algorithm 2. Ground reflection elimination algorithm

1
Separate the N sensor measurements of the current epoch into two sets: A = {measurements ≥ dcurb},

B = {measurements < dcurb}.
2 If the size of set B is smaller than the size of set A,
3 Replace the measurements in B with the average value of the measurements in A.
4 End.

This is a simple, fast, and effective algorithm, but its performance is partially dependent on
the selected distance threshold, dcurb. If the threshold is too high, the majority of legitimate distance
measurements without ground reflection may not clear the threshold. Then, the algorithm does not
eliminate any measurements, even if ground-reflected measurements exist. If the threshold is too
small, ground-reflected measurements may be classified as regular measurements and thus will not be
eliminated. Given that a reasonable minimum distance to the curbs occurs when the vehicle drives
in the middle of the outermost lane, a measurement less than this reasonable minimum distance can
be considered as a ground-reflected measurement. In other words, the distance threshold can be
determined as follows:

dcurb(n) = (n − 1)WLane + (WLane − WVehicle)/2 + WGutter, (2)

where the vehicle drives in the n-th lane from the curb. WLane is the width of the lane, WVehicle is the
width of the vehicle, and WGutter is the width of the gutter between the road and curb. In our testbed,
dcurb(1) was calculated as 130 cm.

This threshold does not eliminate a ground-reflected measurement if the vehicle is driving closer
to the curb than is assumed by the threshold. The remaining ground-reflected measurements were
treated as random measurement outliers in the following processing steps. Note that the proposed
ground reflection elimination filter does not attempt to eliminate all possible cases of ground reflection,
rather, it only eliminates the obvious cases.

4.2. Distance Estimation Algorithms with Additional Reliablility Cases

To enhance the availability of reliable distance estimates, we propose two more reliability cases in
addition to the three cases described in Section 3.2. The new reliability cases are the reliable adjacencies
case and the trend-matched case. These two additional reliability cases effectively survive some
measurements that were categorized as the unreliable case in Section 3.2, and consequently increase
the availability of reliable distance estimates.

4.2.1. Reliable Adjacencies Case

When the N sensor measurements of a certain epoch are not classified as the most reliable case
nor the less-than-N/2-outlier case, our algorithm postpones its decision on the reliability level of the
measurements until the next epoch. At the next epoch, the algorithm checks if the previous epoch
belongs to the reliable adjacencies case, which is the third-most reliable case of the five reliability levels
depicted in Figure 8.

The reliable adjacencies case occurred when the reliability levels of both adjacent epochs
were either the most reliable case or the less-than-N/2-outlier case, thus indicating momentary
sensor outages between two adjacent epochs with reliable distance estimates. Specifically, if the
reliability levels of the measurements at epochs t and t − 2 were either the most reliable case or the
less-than-N/2-outlier case, the reliability level of the measurements at epoch t − 1 was categorized as
the reliable adjacencies case.

The epoch c© of Figure 10 corresponds to the reliable adjacencies case. Because the raw sensor
measurements of this epoch were spread, the measurements themselves demonstrated low reliability.
However, the measurements of the previous and next epochs belonged to the most reliable case and the



Sensors 2019, 19, 1389 12 of 22

less-than-N/2-outlier case, which have relatively high reliability. Thus, the unreliable measurements
of the epoch c© of Figure 10 were likely due to momentary sensor glitches, and so the average of
these measurements will not provide an acceptable distance estimate for the epoch. In the case of
reliable adjacencies, our distance estimate is the average of the distance estimates of the preceding and
following epochs, that is, the adjacent epochs. The distance estimate marked by a yellow square in
Figure 10 (bottom) represents the distance estimation that compensated for the momentary glitches of
the epoch c©.

Note that before determining a reliable adjacencies case, there is a fixed delay of one epoch, which
is 0.1 s in our testbed with the sensor data rate of 10 Hz. Considering the small lateral movement of
a vehicle in 0.1 s under normal circumstances, this delay does not compromise curb detection and
localization. Nevertheless, the check for the reliable adjacencies case can be omitted if the 0.1 s delay is
critical for a certain application.
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Figure 10. Ultrasonic sensor data and our distance estimates for five different reliability cases. The (top)
plot shows raw measurements from three sensors and the (bottom) plot shows the distance estimates to
the curb based on the raw measurements. Five different estimation methods are used for five different
reliability cases. The examples at epochs a©, b©, c©, d©, and e© are in the order of decreasing reliability.
Two threshold values, σreliable and Ttrend, are indicated by grey and orange shades, respectively.

4.2.2. Trend-Matched Case

As previously mentioned, other complications in reliable distance estimation result from the noise
and frequent outages associated with raw ultrasonic sensor measurements. If we simply ignore all
the outages, reliable distance estimations would not be available for the majority of the measurement
epochs, rendering the system impractical for curb detection and localization. For example, only 39.60%
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of the measurement epochs of Figure 4 are categorized as the most reliable case. Thus, reliable distance
estimates are not available for 60.40% of time unless other methods are applied. Once the distance
estimation method for the less-than-N/2-outlier case was applied, we obtained reliable distance
estimates for 66.34% of time.

Our distance estimation method for the reliable adjacencies case in the previous subsection
replaced erroneous distance estimates caused by momentary sensor glitches with more reliable
estimates based on the measurements of adjacent epochs. If this method was applied in addition to
the methods for the most reliable and less-than-N/2-outlier cases, the availability of reliable distance
estimates from the raw sensor data of Figure 4 increased to 74.26%. This is a drastic improvement
upon the 39.60% availability of the base case.

To further improve the availability of reliable distance estimates, we proposed an additional
method based on the trend of raw measurement data. As a practical example, the three sensor
measurements at the epoch d© of Figure 10 are spread, i.e., this is neither the most reliable nor the
less-than-N/2-outlier case, and one of the adjacent epochs, epoch e©, shares this status. Thus, the
epoch d© of Figure 10 does not belong to the reliable adjacencies case either.

An important observation here is that one sensor measurement, raw measurement 1, of the
three measurements at the epoch d© still represents a correct distance measurement while the others
experience outages. To capture this correct sensor measurement, we construct a trend line based on the
reliable distance estimates belonging to the recent Ntrend epochs in the least-squares sense. Figure 11
illustrates a trend line at time t; the line is constructed based on the reliable distance estimates of
the previous six epochs (i.e., Ntrend = 6). The trend line minimizes d2

t−1 + d2
t−4 + d2

t−5 + d2
t−6 and the

unreliable distance estimates at times t − 2 and t − 3 are not used for calculating the trend line.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 22 

 

4.2.2. Trend-Matched Case 

As previously mentioned, other complications in reliable distance estimation result from the 
noise and frequent outages associated with raw ultrasonic sensor measurements. If we simply 
ignore all the outages, reliable distance estimations would not be available for the majority of the 
measurement epochs, rendering the system impractical for curb detection and localization. For 
example, only 39.60% of the measurement epochs of Figure 4 are categorized as the most reliable 
case. Thus, reliable distance estimates are not available for 60.40% of time unless other methods are 
applied. Once the distance estimation method for the less-than-N/2-outlier case was applied, we 
obtained reliable distance estimates for 66.34% of time.  

Our distance estimation method for the reliable adjacencies case in the previous subsection 
replaced erroneous distance estimates caused by momentary sensor glitches with more reliable 
estimates based on the measurements of adjacent epochs. If this method was applied in addition to 
the methods for the most reliable and less-than-N/2-outlier cases, the availability of reliable distance 
estimates from the raw sensor data of Figure 4 increased to 74.26%. This is a drastic improvement 
upon the 39.60% availability of the base case. 

To further improve the availability of reliable distance estimates, we proposed an additional 
method based on the trend of raw measurement data. As a practical example, the three sensor 
measurements at the epoch ⓓ of Figure 10 are spread, i.e., this is neither the most reliable nor the 

less-than-N/2-outlier case, and one of the adjacent epochs, epoch ⓔ, shares this status. Thus, the 

epoch ⓓ of Figure 10 does not belong to the reliable adjacencies case either.  
An important observation here is that one sensor measurement, raw measurement 1, of the 

three measurements at the epoch ⓓ still represents a correct distance measurement while the others 
experience outages. To capture this correct sensor measurement, we construct a trend line based on 
the reliable distance estimates belonging to the recent Ntrend epochs in the least-squares sense. Figure 
11 illustrates a trend line at time t; the line is constructed based on the reliable distance estimates of 
the previous six epochs (i.e., Ntrend = 6). The trend line minimizes 2 2 2 2

1 4 5 6t t t td d d d− − − −+ + +  and the 
unreliable distance estimates at times t – 2 and t – 3 are not used for calculating the trend line. 

 
Figure 11. Illustration of constructing a trend line based on the previous reliable distance 
estimates. 

The correct sensor measurement is likely to be close to the trend line while the outages are 
located farther from the trend line, as illustrated by the epoch ⓓ of Figure 10. Therefore, a 
reasonable distance estimate of this epoch may be based on the single sensor measurement located 
near to the trend line, rather than on a calculation involving all three spread measurements.  

Figure 11. Illustration of constructing a trend line based on the previous reliable distance estimates.

The correct sensor measurement is likely to be close to the trend line while the outages are located
farther from the trend line, as illustrated by the epoch d© of Figure 10. Therefore, a reasonable distance
estimate of this epoch may be based on the single sensor measurement located near to the trend line,
rather than on a calculation involving all three spread measurements.

The distance estimation algorithm with N sensors for the trend-matched case is given in
Algorithm 3. Six previous epochs (i.e., Ntrend = 6) were utilized to construct the trend line, and
the threshold Ttrend indicating the closeness of each sensor measurement to the trend line was set to
30 cm in our implementation. If multiple measurements were close to the trend line, the algorithm
selected the closest one among them.



Sensors 2019, 19, 1389 14 of 22

Algorithm 3. Distance estimation algorithm for the trend-matched case

1
Construct a linear line based on the reliable distance estimates belonging to the recent Ntrend epochs

in the least-squares sense.
2 For all the N sensor measurements of the given epoch,
3 d = | each sensor measurement – value of the constructed trend line at the same epoch |.
4 If d < Ttrend,
5 c[i] = d.
6 e[i] = corresponding sensor measurement.
7 Increase i by 1.
8 End.
9 End.
10 ismallest = index i corresponding to the smallest c[i] value.
11 Distance estimate = e[ismallest].

The availability of reliable distance estimates is greatly improved to 92.08% by applying these
additional algorithms to the original raw sensor measurements of Figure 4. Recall that the most reliable
case after the ground reflection elimination only occurred in 44.55% of the total epochs; this value was
39.60% before the application of the ground reflection elimination filter, and although the distance
estimation method for the less-than-N/2-outlier case improved the availability of reliable distance
estimates to 66.34%, this is still too low for practical application of curb detection and localization.
The distance estimation method for the reliable adjacencies case further improved the availability to
74.26%, but the largest improvement was due to the distance estimation method for the trend-matched
case with a 17.82 percentage point improvement, which resulted in the 92.08% availability even with
the noisy sensor measurements of Figure 4.

Although our testbed consists of four sensors, that is, N = 4, the proposed algorithms are applicable
to any number of sensors. Additionally, as more sensors are used, the availability of reliable distance
estimates further improves; this is discussed in Section 5.2 by comparing the cases of N = 3 and N = 4.

4.3. Outputs from the Proposed Algorithms

Figure 12 shows an example output of distance estimates after applying all processing algorithms
outlined in Figure 8. As throughout the experiment, the raw sensor measurements for Figure 12 are
those of Figure 4. Figure 12 demonstrates that the distance estimates clearly follow the shape of the
shoulder. Remember that the red squares indicate the unreliable cases and they were not used in curb
detection and localization.Sensors 2019, 19, x FOR PEER REVIEW 15 of 22 
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5. Field Test Results

5.1. Field Test Setup

The hardware setup of the testbed for the field tests was shown in Figure 2. We also developed
a software to control the sensors and collect raw measurement data. While the vehicle was in motion,
the software stored the raw distance measurements from the ultrasonic sensors and lidar, the position
and velocity measurements from the GPS sensor, and the video recording from the vision sensor. The
graphical user interface of the developed software is presented in Figure 13.
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Figure 13. Graphical user interface of our software to collect the raw sensor measurements during
field tests.

The driving route in Figure 14 was selected to include representative driving situations and curbs.
The route consisted of four driving scenarios. In the first scenario, the vehicle drove in a straight line
beside the curb. Thus, the distance estimates to the curb were expected to be almost constant. In the
second scenario, the vehicle passed a trapezoidal-shaped shoulder. The distance estimates in this
situation were expected to gradually increase and then decrease. Then, the vehicle changed lanes,
moving away from the curb in the third driving scenario. In this case, the curb fell out of the range of
the ultrasonic sensors. In the fourth scenario, the vehicle passed through a crossroad where the curb
suddenly disappeared and reappeared after crossing the intersection. These four driving scenarios are
illustrated in Figure 15 next to their respective test results that will be discussed in the next subsection.Sensors 2019, 19, x FOR PEER REVIEW 16 of 22 
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5.2. Test Results in Four Representative Driving Situations

Our curb detection and localization system were tested under the four representative driving
scenarios. The raw sensor measurements were collected along the driving route depicted in Figure 14.
The collected data were post-processed by the algorithms proposed in Section 4 to obtain the results
reported in Figure 15. Because the algorithms require low computational power, they presented
no problem for real-time implementation. For example, the entire series of algorithms in Figure 8
processed 100 s of raw sensor data using Matlab on a conventional laptop computer in approximately
0.58 s.

The distance estimation algorithm in Section 3.2 is an extension of the majority-voting algorithm.
Although this algorithm can provide correct distance estimates if the majority of sensor measurements
are correct, the red marks in the middle column of Figure 15 demonstrate that reliable distance
estimates are unavailable for many epochs.

The algorithms proposed in Section 4, including the ground reflection elimination filter and the
algorithms to handle the reliable adjacencies case and the trend-matched case, solve the problems
encountered in Section 3.2. As shown in the right column of Figure 15, unreliable estimates, denoted
by red marks, occur at only a few epochs. Even at those epochs, unreliable distance estimates can
be discarded because the algorithms have already determined that those estimates were unreliable.
Even after neglecting all the unreliable distance estimates, the proposed algorithms provided a very
high availability of reliable distance estimates. The benefits of the proposed algorithms were clearly
demonstrated, especially in the scenario of passing a shoulder in Figure 15b, where many epochs were
classified as the reliable adjacencies or trend-matched cases. Only a few epochs did not have reliable
distance estimates to the curbs.

When the vehicle moves away from the curbs in the different scenarios, the signatures in the
distance estimates of Figure 15b–d differ. In Figure 15b, the distance estimates almost linearly
increase and remain constant. In Figure 15c, the distance estimates gradually increase and disappear.
In Figure 15d, the distance estimates abruptly disappear. Using these unique signatures, the vehicle
can now easily classify its surrounding road environment, providing an immediate application of the
curb detection and localization system.

The field test results up to this point were for the case of utilizing three of the four ultrasonic
sensors attached to the vehicle. The proposed algorithms in Section 4 are applicable to any number of
ultrasonic sensors, and the improvement of the availability of reliable distance estimates when all the
four sensors were used is presented in Figure 16. The availability was improved from 92.05% when
N = 3 to 96.04% when N = 4.
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estimates increased from (a) 92.08% to (b) 96.04%. The driving scenario is the same as that of Figure 15b.
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Considering that the distance measurements from the lidar served as the true distances, the curb
localization accuracy of the proposed system can be evaluated. The means and standard deviations
(SDs) of the distance estimation errors and the root mean square errors (RMSEs) of the simple averaging
and majority voting algorithms in Section 3.1 are similar to each other, as shown in Table 1. Although
the distance estimates from the majority voting algorithm followed the trapezoidal shape of the
shoulder better than those from the simple averaging algorithm in Figure 5, the statistics of the
estimation errors are largely influenced by the outliers. Thus, their error statistics are not meaningfully
different. Both algorithms provide a 99.01% availability of distance estimates because the algorithms
cannot distinguish reliable and unreliable distance estimates, and thus utilize all the estimates. The
only case in which these algorithms cannot provide a distance estimate is when all the sensors do not
output any distance measurements; this case occurred at only one epoch (Figure 5).

Table 1. Comparison of the curb localization accuracy and availability of distance estimates.

Simple
Averaging
Algorithm
(N = 3)

Majority
Voting
Algorithm
(N = 3)

Improved
Algorithm in
Section 3.2
(N = 3)

Proposed
Algorithms in
Section 4
(N = 3)

Proposed
Algorithms in
Section 4
(N = 4)

Mean±SD (cm) −23.62±95.15 −24.66±99.19 6.48±9.89 7.99±10.08 7.89±11.01
RMSE (cm) 97.57 101.73 11.77 12.82 13.50
Availability (%) 99.01 99.01 66.34 92.08 96.04

The proposed algorithms in Sections 3.2 and 4 demonstrated significantly better accuracies than
the simple averaging and majority voting algorithms. The 1-m-level RMSEs of the simple averaging
and majority voting algorithms were reduced to a 10 cm level when the proposed algorithms were
utilized (Table 1). The proposed algorithms distinguish and discard unreliable distance estimates, and
thus the availabilities are relatively lower. Nevertheless, the proposed algorithms in Section 4 provided
a 92.08% availability of reliable distance estimates when three ultrasonic sensors were used (i.e., N = 3).
When one more sensor was added (i.e., N = 4), the availability was further improved to a 96.04%.

The proposed system estimated the distance to the curb from the center point of the vehicle where
the lidar was attached. If the angle of the curb with respect to the vehicle was large, as illustrated in
Figure 17, each ultrasonic sensor measured a different distance. Two sensors measured longer distances
while two measured shorter distances than the distance measured at the center point. Recall that the
measurements were averaged in the most reliable and less-than-N/2-outlier cases (i.e., longer and
shorter distances are averaged), and thus the distance estimate at the center point for those cases was
not significantly impacted even when the curb angle was large. In addition, as the reliable adjacencies
case depended on the most reliable and less-than-N/2-outlier cases of adjacent epochs, it was not
significantly impacted. However, the distance estimation error of the trend-matched case can grow if
the curb angle is large. If the measurement of sensors 3 or 4 in Figure 17 matches with the trend line,
an estimation error of 17.3 or 52 cm, respectively, is introduced. During our field test, the curb angle
was 10◦, which is typical, and the introduced error for the trend-matched case would be 5.3 or 15.9 cm
for sensors 3 or 4, respectively. This performance degradation can be reduced if the sensors are placed
close to each other. For example, if the separation between ultrasonic sensors is 10 cm, the introduced
error for the trend-matched case would be 2.9 or 8.7 cm for sensors 3 or 4, respectively, even when the
curb angle is 30◦.
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6. Conclusions

Ultrasonic sensors are widely used low-cost sensors in the automotive industry, and it is tempting
to develop a curb detection and localization system using those sensors instead of high-cost distance
measuring sensors such as lidar. However, the noisy sensor measurements with very frequent outliers
present a challenge to utilizing ultrasonic sensors for this purpose. Although it would be futile to
implement such a system using a single ultrasonic sensor, an array of ultrasonic sensors may achieve
reliable distance estimations. For example, we can apply typical algorithms such as consistency
checking and majority voting if at least three sensors provide raw measurements. This is a good
starting point, but it was shown that these methods provided reliable distance estimates to the curbs
only 66.34% of the time during our field test passing a shoulder of the road. To further improve
the performance of the curb detection and localization system, we suggested a series of processing
algorithms that achieved 92.08% availability during the same test scenario with only three ultrasonic
sensors. When four ultrasonic sensors were used, the availability was improved to 96.04% with
a 13.50 cm RMSE. The performance of our testbed was demonstrated under four representative driving
situations and curbs. Because the proposed algorithms are simple, fast, and efficient enough for
real-time processing, our proposed method offers a realistic ultrasonic-sensor-based curb detection
and localization system, which has not yet been demonstrated in the literature.
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