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Abstract: The unscented Kalman filter (UKF) is widely used to address the nonlinear problems
in target tracking. However, this standard UKF shows unstable performance whenever the noise
covariance mismatches. Furthermore, in consideration of the deficiencies of the current adaptive UKF
algorithm, this paper proposes a new adaptive UKF scheme for the time-varying noise covariance
problems. First of all, the cross-correlation between the innovation and residual sequences is given
and proven. On this basis, a linear matrix equation deduced from the innovation and residual
sequences is applied to resolve the process noise covariance in real time. Using the redundant
measurements, an improved measurement-based adaptive Kalman filtering algorithm is applied
to estimate the measurement noise covariance, which is entirely immune to the state estimation.
The results of the simulation indicate that under the condition of time-varying noise covariances, the
proposed adaptive UKF outperforms the standard UKF and the current adaptive UKF algorithm,
hence improving tracking accuracy and stability.
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1. Introduction

The main mission of target tracking is to estimate the dynamic parameters and show the trajectory
of a maneuvering target by extracting the useful information from sensor observations [1]. Target
tracking has a wide variety of both military and civilian applications in fields such as precision
guidance, target recognition, and surveillance [2–6]. To implement target tracking in these research
areas, filtering is being used increasingly in more recent tracking systems. Therefore, as a result, the
tracking accuracy is to a large extent determined by the performance of the filter [7]. Although the
statistical properties of measurement noise can be obtained in advance from the tracking sensor’s
physical characteristics, these aren’t reliable, since they are affected by the external interference,
especially in complicated environments. In addition, it is difficult to obtain the system noise
with an accurate statistical covariance because of the random characteristics of acceleration and
external manipulation [8]. The time-varying noise covariances involved in the maneuvering target
tracking system make the traditional non-adaptive filtering algorithms no longer suitable. Therefore,
an adaptive and stable filtering algorithm with high performance is required to deal with the noise
covariance uncertainty.

The Kalman filter is one of the best-known algorithms for dealing with the problem of state
estimation. This filter is based on the criterion of minimum mean square error, which can provide the
optimal estimation of a linear system by using knowledge of the exact statistics information of the
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system parameters and the measurements [9]. Nonetheless, the nonlinearity of the tracking system and
the time-varying noise statistic characteristics limit the applications of the Kalman filter. The extended
Kalman filter (EKF) linearizes the non-linear models using Taylor series expansions to make them
suit the Kalman filter algorithm [10,11]. However, the unknown and time-varying noise covariance
makes EKF limited in the field of target tracking applications. To achieve accurate location estimation
for a maneuvering target, adaptive EKF algorithms have been developed [12,13] that can update the
noise covariance during the estimation process. Despite the covariance estimation by adaptive EKF,
under strong nonlinearity, the basic drawback of EKF still exists, wherein the series approximations
often lead to poor representation of the posterior density distribution of the state. The generic particle
filter (PF), also known as sequential Monte Carlo estimation, can deal with nonlinearities of target
tracking problem by evaluating the posterior density distribution with a large number of particles;
however, this requires high computation cost and also has a well-known problem with respect to
sample impoverishment [14,15].

Instead of linearization, the unscented Kalman filter (UKF) uses unscented transform to evaluate
the nonlinear propagation of the state error covariance by producing a minimal special set of sigma
points [16,17]. Through the carefully chosen sigma points, the accuracy of the posterior mean and
covariance can be achieved to the third order for any Gaussian and nonlinear systems [1]. Overall,
for nonlinear problems, the filtering precision of UKF is higher than EKF, and the computation
complexity of UKF is less than that of PF [18,19]. Although UKF has sufficient advantages for the
filtering problem of nonlinear systems, it becomes inaccurate and divergent in cases where the noise
characteristics are unknown a priori. The interacting multiple model (IMM) algorithm is a well-known
approach to target tracking, and provides a state estimate by giving weights to a combination of
different model probabilities and the model switching probabilities. Therefore, this method can adapt
to the uncertain noise of target motion-mode [20,21]. Although the integration of IMM algorithm and
UKF can meet the challenges of noise uncertainty and system nonlinearity in maneuvering target
tracking, the computational cost of this integration needs to be considered [22,23].

To deal with adaptive estimation of the noise covariance, many researchers have resorted to
adaptive UKF algorithms. Zhang introduced the Sage-Husa statistics estimator to UKF in cases where
the noise covariances are unknown, hence improving the accuracy of state estimation [24]. Soken and
Hajiyev considered the covariance matching technique as a foundation, and put forward an adaptive
fading UKF to accomplish the picosatellite attitude estimation in cases where process noise covariance
changes [25]. However, these adaptation schemes may fail when the process and measurement noise
covariances change at the same time. Furthermore, Li and Meng et al. proposed an adaptive UKF with
noise statistic estimator that applies the innovation and residual sequences to estimate the covariance of
the process and measurement noise [26,27]. Although these methods enhanced the adaptive capability
of the standard UKF, one of their main deficiencies was that the determination of the process noise
covariance was based on the orthogonality of innovation and residual sequences. Theoretically,
the innovation and residual sequences extracted from the filter are correlative. Moreover, we can
similarly see from the commonly used estimation methods proposed in [28–30] that the estimated
method for measurement noise statistics is innovation-based and will be influenced by the state.
Therefore, the estimation error will result in a risk of degradation in filter performance during the
calculation of the measurement noise covariance. Aiming for this problem, Zhang et al. developed a
measurement-based adaptive Kalman filtering algorithm (MAKF) that overcame the instability issue
of improved Sage-Husa adaptive filter for the integrated navigation system [31,32]. Nonetheless, the
MAKF is valid only if one of the measurement noise covariances is relatively smaller than the other,
so that it can be neglected. To extend MAKF to any redundant measurement systems, an improved
MAKF named redundant measurement noise covariance estimation (RMNCE) is proposed in [33,34],
which is not only immune to the system state estimation error, but can also estimate the noise variance
of the redundant measurement.
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In consideration of the deficiency of the algorithms mentioned above, and taking the advantages of
the RMNCE algorithm, in this paper, a new adaptive UKF method is developed for nonlinear tracking
systems with unknown time-varying noise covariance. The new algorithm avoids the interaction
between the two types of noise and can estimate the covariance of the process and measurement
noise simultaneously. In the proposed adaptive scheme, a new method of Q-estimation is deduced
based on the correct correlation of the innovation and residual sequences. For the R-estimation,
measurement-based noise covariance estimation is introduced, which avoids the negative influence of
the inaccurate state estimation. Finally, the simulation results demonstrate that the proposed scheme
can increase the tracking precision primarily because the estimated noise covariances are in accord
with those of the real-time situations.

2. The UKF Algorithm for Nonlinear State Estimation

Considering a general nonlinear discrete-time dynamic system, the process and measurement
models can be described as follows{

Xk = f(Xk−1) + Γk−1Wk−1
Zk = h(Xk) + Vk

(1)

where Xk ∈ Rn×1 is the state vector, Zk ∈ Rm×1 denotes the measurement vector, f(·) and h(·)
represent the known nonlinear state transition and measurement function, respectively. Γk−1 is the
system noise-driven matrix. Wk−1 and Vk are uncorrelated zero-mean Gaussian white noises whose
covariances are Qk−1 and Rk, respectively.

2.1. Standard UKF

The UKF algorithm is based on the notion that it should be easier to estimate a nonlinear
distribution than to make an approximation of a nonlinear function [16]. In the standard UKF,
the unscented transform is implemented to generate the sigma points to undergo the nonlinear
transformation and calculate the first two moments of the transformed set. The general structure of
the standard UKF algorithm can be described as follows:

Step 1: Initialization. {
X̂0 = E{X0}
P0 = E

{(
X0 − X̂0

)(
X0 − X̂0

)T
} (2)

where X̂0 is the initial state and P0 is the initial estimation error covariance.
Step 2: Sigma points calculation.

χ
(0)
k−1 = X̂k−1

χ
(i)
k−1 = X̂k−1 +

√
(n + λ)Pk−1i, i = 1, 2, · · · , n

χ
(i)
k−1 = X̂k−1 −

√
(n + λ)Pk−1i, i = n + 1, n + 2, · · · , 2n

(3)

where n is the state dimension, λ = α2(n + κ) − n is the composite scaling factor. α and κ are tuning
parameters. The parameter α is set to 0 ≤ α ≤ 1 and a good default setting on κ is κ = 0 [35].

Step 3: State prediction.

χ
(i)
k/k−1 = f

(
χ
(i)
k−1, k− 1

)
, i = 0, 1, 2, · · · , 2n

X̂k/k−1 =
2n
∑

i=0
ω
(m)
i χ

(i)
k/k−1

PXX =
2n
∑

i=0
ω
(c)
i

(
χ
(i)
k/k−1 − X̂k/k−1

)(
χ
(i)
k/k−1 − X̂k/k−1

)T

Pk/k−1 = PXX + Γk−1Qk−1ΓT
k−1

(4)
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where ω
(m)
i and ω

(c)
i are weights, which are defined as

ω
(m)
0 = λ

n+λ

ω
(c)
0 = λ

n+λ +
(
1− α2 + β

)
ω
(m)
i = ω

(c)
i = 1

2(n+λ)
, i = 1, 2, · · · , 2n

(5)

where β ≥ 0 is introduced to incorporate the higher order information of the distribution, and the
optimal setting is β = 2 for Gaussian distribution [36].

Step 4: Measurement prediction.

ζ
(i)
k/k−1 = h

(
χ
(i)
k/k−1, k

)
, i = 0, 1, 2, · · · , 2n

Ẑk/k−1 =
2n
∑

i=0
ω
(m)
i ζ

(i)
k/k−1.

(6)

Step 5: Kalman Gain calculation.

PXZ =
2n
∑

i=0
ω
(c)
i

(
χ
(i)
k/k−1 − X̂k/k−1

)(
ζ
(i)
k/k−1 − Ẑk/k−1

)T

PZZ =
2n
∑

i=0
ω
(c)
i

(
ζ
(i)
k/k−1 − Ẑk/k−1

)(
ζ
(i)
k/k−1 − Ẑk/k−1

)T
+ Rk

Kk = PXZP−1
ZZ.

(7)

Step 6: Filtering update.

X̂k = X̂k/k−1 + Kk
(
Zk − Ẑk/k−1

)
Pk = Pk/k−1 −KkPZZKT

k .
(8)

Step 7: For the next sample implement steps 2 to 6.

2.2. Problem Description of UKF for Time-Varying Noise Covariance

If the time-varying noise covariance is not correctly estimated in time, it will make the standard
UKF algorithm inaccurate or divergent. Based on the steps of the standard UKF algorithm, it can be seen
from Equation (4) that the calculation for the prediction covariance Pk/k−1 is influenced by the varying
process noise covariance Qk−1. Once the prediction covariance Pk/k−1 is contaminated, it will affect the
estimation covariance Pk via Equation (8) and then contaminate the sigma-point distribution at the next
epoch. Finally, the incorrect mean and covariance derived from the contaminated distribution reduces
the filtering accuracy. Moreover, the varying measurement noise covariance Rk directly affects the
calculation results of the filtering gain through Equation (7), hence making the standard UKF algorithm
unstable. Although a few adaptive UKF algorithms were proposed in [25,27], these algorithms have
flaws in estimating the process noise covariance. Hence, it is necessary to design an effective adaptive
UKF algorithm for target tracking systems with unknown time-varying noise covariance.

3. An Innovative Adaptive UKF Scheme

In this section, an innovative adaptive UKF scheme is developed, which makes optimal use of the
information in the filtering process. The innovation and residual sequences are applied to estimate
the process noise covariance Q and the redundant measurement difference sequences are exploited to
estimate the measurement noise covariance R.
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3.1. Adaptive Q Estimation

In Kalman filtering theory, the innovation εk and the residual ηk are defined according to [27,37] as

εk = Zk − h
(
X̂k/k−1

)
ηk = Zk − h

(
X̂k
) (9)

Theorem. For a given system as described by Equation (1), the cross-correlation between the innovation
and the residual at time k is

E
(

εkηT
k

)
= Hk/k−1PkHT

k + Rk

(
I−KT

k HT
k

)
(10)

where Hk/k−1 = δh
δX

∣∣∣
X̂k/k−1

and Hk =
δh
δX

∣∣∣
X̂k

are Jacobian matrices at X̂k/k−1 and X̂k, respectively.

Proof. Substitute the filtering update equations in Equation (8) into Equation (9) and evaluate the
partial derivative matrix at the predicted state X̂k/k−1, then the residual can be rewritten as

ηk = Zk − h
(
X̂k/k−1 + Kkεk

)
= Zk − h

(
X̂k/k−1

)
−Hk/k−1Kkεk

= (I−Hk/k−1Kk)εk.
(11)

According to Equation (11), it can be obtained that the residual vector is a linear combination of the
innovation vector. Thus, they are non-orthogonal.

Considering the partial derivatives of the measurement function, substitute the measurement
equations in Equation (1) into Equation (9). The innovation and residual sequences can be described as

εk = h(Xk)− h
(
X̂k/k−1

)
+ Vk

≈ Hk/k−1
(
Xk − X̂k/k−1

)
+ Vk

= Hk/k−1X̃k/k−1 + Vk
ηk = h(Xk)− h

(
X̂k
)
+ Vk

≈ Hk
(
Xk − X̂k

)
+ Vk

= HkX̃k + Vk.

(12)

where X̃k/k−1 denotes the prediction error and X̃k represents the estimation error.
According to Equation (12), the cross-correlation between the innovation and the residual at time

k is expressed as

E
(
εkηT

k
)

= E
{(

Hk/k−1X̃k/k−1 + Vk

)(
HkX̃k + Vk

)T
}

= E
{

Hk/k−1X̃k/k−1X̃
T
k HT

k + Hk/k−1X̃k/k−1VT
k + VkX̃

T
k HT

k + VkVT
k

}
= Hk/k−1E

{
X̃k/k−1X̃

T
k

}
HT

k + Hk/k−1E
{

X̃k/k−1VT
k

}
+ E

{
VkX̃

T
k

}
HT

k + E
{

VkVT
k
}

.

(13)

Due to the assumption that the process and measurement noises are uncorrelated, we have
E
{

X̃k/k−1VT
k

}
= 0. The cross-correlation E

{
X̃k/k−1X̃

T
k

}
and E

{
VkX̃

T
k

}
can be written as follows

E
{

X̃k/k−1X̃
T
k

}
= E

{
X̃k/k−1

[
(I−KkHk/k−1)X̃k/k−1 −KkVk

]T
}

= E
{

X̃k/k−1X̃
T
k/k−1(I−KkHk/k−1)

T − X̃k/k−1VT
k KT

k

}
= Pk/k−1(I−KkHk/k−1)

T

= PT
k = Pk

(14)
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E
{

VkX̃
T
k

}
= E

{
Vk

[
(I−KkHk/k−1)X̃k/k−1 −KkVk

]T
}

= E
{

VkX̃
T
k/k−1(I−KkHk/k−1)

T − VkVT
k KT

k

}
= −RkKT

k

(15)

where E
{

X̃k/k−1X̃
T
k/k−1

}
= Pk/k−1 and E

{
VkVT

k
}
= Rk.

Substitute Equations (14) and (15) back into Equation (13), the cross-correlation between the
innovation and the residual at time k can be obtained as

E
(
εkηT

k
)

= E
{(

Hk/k−1X̃k/k−1 + Vk

)(
HkX̃k + Vk

)T
}

= Hk/k−1PkHT
k −RkKT

k HT
k + Rk

= Hk/k−1PkHT
k + Rk

(
I−KT

k HT
k
)
.

(16)

This completes the proof. �

Remark. Considering the innovation and residual sequences are zero means, the covariance
Cov

(
εk, ηk

)
is equal to E

(
εkηT

k
)
. If the Jacobian matrices are evaluated at the same state, E

(
εkηT

k
)

is symmetric, and we have E
(
εkηT

k
)
= E

(
ηkεT

k
)
. Otherwise, for a small sampling time, the Jacobian

matrices Hk/k−1 ≈ Hk. Thus, E
(
εkηT

k
)
≈ E

(
ηkεT

k
)
.

To improve the robustness of the Q-estimation, both the innovations and the residuals are
used [37]. Taking the expectation of the difference between innovation and residual follows that

E
[
(ηk − εk)(ηk − εk)

T
]
= E

(
εkεT

k

)
+ E

(
ηkηT

k

)
− E

(
εkηT

k

)
− E

(
ηkεT

k

)
. (17)

From Equation (12), the innovation covariance E
(
εkεT

k
)

can be written as

E
(
εkεT

k
)

= E
{(

Hk/k−1X̃k/k−1 + Vk

)(
Hk/k−1X̃k/k−1 + Vk

)T
}

= Hk/k−1E
{

X̃k/k−1X̃
T
k/k−1

}
HT

k/k−1 + E
{

VkVT
k
}

= Hk/k−1Pk/k−1HT
k/k−1 + Rk.

(18)

Based on Equations (12) and (15), the residual covariance E
(
ηkηT

k
)

can be obtained as follows

E
(
ηkηT

k
)

= E
{(

HkX̃k + Vk

)(
HkX̃k + Vk

)T
}

= HkE
{

X̃kX̃
T
k

}
HT

k + HkE
{

X̃kVT
k

}
+ E

{
VkX̃

T
k

}
HT

k + E
{

VkVT
k
}

= Rk −HkPkHT
k .

(19)

Then, the covariance of the difference sequence between innovation and residual can be determined
based on the Theorem and Equations (18)–(19), namely,

E
[
(ηk − εk)(ηk − εk)

T
]

= E
(
εkεT

k
)
+ E

(
ηkηT

k
)
− E

(
εkηT

k
)
− E

(
ηkεT

k
)

≈ Hk/k−1Pk/k−1HT
k/k−1 + Rk + Rk −HkPkHT

k − 2
(
Hk/k−1PkHT

k −RkKT
k HT

k + Rk
)

= Hk/k−1Pk/k−1HT
k/k−1 −HkPkHT

k .

(20)

Substituting for Pk/k−1 from Equation (4) into Equation (20), the covariance of the difference
sequence can be rewritten as
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E
[
(ηk − εk)(ηk − εk)

T
]

= Hk/k−1Pk/k−1HT
k/k−1 −HkPkHT

k

= Hk/k−1

[
2n
∑

i=0
ω

(c)
i

(
χ
(i)
k/k−1 − X̂k/k−1

)(
χ
(i)
k/k−1 − X̂k/k−1

)T
+ Γk−1Qk−1ΓT

k−1

]
HT

k/k−1

−HkPkHT
k .

(21)

Then, it can be verified that

Hk/k−1Γk−1Qk−1ΓT
k−1HT

k/k−1 = E
[
(ηk − εk)(ηk − εk)

T
]

−Hk/k−1

[
2n
∑

i=0
ω

(c)
i

(
χ
(i)
k/k−1 − X̂k/k−1

)(
χ
(i)
k/k−1 − X̂k/k−1

)T
]

HT
k/k−1 + HkPkHT

k .
(22)

On the other hand, the expectation of the difference sequence E
[
(ηk − εk)(ηk − εk)

T
]

can be
approximated using a limited number of samples

E
[
(ηk − εk)(ηk − εk)

T
]
=

1
M

M−1

∑
j=1

(
ηk−j − εk−j

)(
ηk−j − εk−j

)T
(23)

where M is the window size.
When the unknown elements in Qk−1 is less than the rank of Hk/k−1, the unique solution can be

obtained through Equation (22). Otherwise, some unknown elements in Qk−1 can be assigned by their
previous estimates. Additionally, Qk−1 is normally a diagonal matrix. Therefore, the computational
load can be further reduced.

In the radar tracking system, the rank of Hk/k−1 is not less than the number of unknowns in Qk−1.
Thus, the condition for solving unique solutions is well satisfied.

3.2. Adaptive R Estimation

In practical applications, the measurement noise covariance R is closely related to the performance
of the radar. Due to different external and internal time varying disturbances, R is also time varying
and should be estimated adaptively.

A relatively new method, RMNCE, used to estimate the measurement noise covariance can
be applied to the systems with redundant measurements [33,34]. Assume that Z1(k) and Z2(k)
are measurements of the true value ZT(k). Considering the steady-state and random error of the
measurement, their expression yields{

Z1(k) = ZT(k) + f1(k) + V1(k)
Z2(k) = ZT(k) + f2(k) + V2(k)

(24)

where f1(k) and f2(k) are steady items of the measurement errors, V1(k) and V2(k) are uncorrelated,
zero-mean Gaussian random noise.

When the measurement errors meet the following conditions:
diag

[
· · ·

(
fi
1(k)− fi

1(k− 1)
)2
· · ·

]
≤ E

{
V1(k)V1(k)

T
}

diag
[
· · ·

(
fi
2(k)− fi

2(k− 1)
)2
· · ·

]
≤ E

{
V2(k)V2(k)

T
} (25)

the covariance of the random noise for measurement Z1(k) and Z2(k) can be estimated as R1 =
E[∇Z(k)∇Z(k)T]+E[∆Z1(k)∆Z1(k)

T]−E[∆Z2(k)∆Z2(k)
T]

4

R2 =
E[∇Z(k)∇Z(k)T]−E[∆Z1(k)∆Z1(k)

T]+E[∆Z2(k)∆Z2(k)
T]

4

(26)
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where 
∇Z(k) = ∆Z1(k)− ∆Z2(k)

∆Z1(k) = Z1(k)− Z1(k− 1)
∆Z2(k) = Z2(k)− Z2(k− 1)

(27)

The proof is shown in the Appendix A. For a radar network, the radars can provide the range and
azimuth measurements Zk by processing the reflected signal from the target. The measurement error
can be classified into the steady-state error fM(k) and the random error VR(k) as follows:

Zk = ZT(k) + fM(k) + VR(k). (28)

Similarly, a redundant measurement ZR
k from the other radar node can be expressed as

ZR
k = ZT(k) + fR

M(k) + VR
R(k) (29)

where fR
M(k) denotes the steady-state error of the redundant measurement system, and VR

R(k) is the
zero-mean white noise, which is uncorrelated with VR(k).

The steady-state errors of the (redundant) measurement are stable over a short period, so the
difference between every two adjacent time steps of them can be neglected compared to the noise.
Hence, the conditions in Equation (25) are well satisfied, and the measurement noise covariance can be
estimated as:{

Rk =
{

E
[
∇Z(k)∇Z(k)T

]
+ E

[
(Zk − Zk−1)(Zk − Zk−1)

T
]
− E

[(
ZR

k − ZR
k−1
)(

ZR
k − ZR

k−1
)T
]}

/4

∇Z(k) = (Zk − Zk−1)−
(
ZR

k − ZR
k−1
) . (30)

Considering the smoothness of the covariance estimation, a recursive estimation formula is used.
Finally, the measurement noise covariance can be obtained as{

R̂k = (1− dk)Rk−1 + dkRk
dk =

1−b
1−bk+1

. (31)

where b is the fading factor, 0 < b < 1.

3.3. Adaptive UKF Scheme

Based on the adaptive methods described above, the proposed adaptive UKF scheme aimed
at target tracking in the presence of unknown time-varying noise covariance can be implemented
as follows:

Step 1: Initialize the original estimated state value X̂0 and covariance P0.
Step 2: Calculate the sigma points based on Equation (3).
Step 3: Apply the innovation and residual sequences to obtain the linear matrix Equation (22) and

acquire Q by solving the equation.
Step 4: Calculate the state and measurement prediction according to Equations (4)–(6).
Step 5: Use the raw measurement and redundant measurement sequences to estimate R via

Equations (30) and (31).
Step 6: Calculate Kalman gain and filtering solutions through Equations (7) and (8).
Step 7: For the next sample, implement steps from 2 to 6.

4. Simulation Results and Discussion

In this section, the effectiveness of the proposed adaptive UKF algorithm for maneuvering target
tracking will be illustrated through the simulations of different cases.
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4.1. Simulation Parameter and Cases

The simulated trajectory considered in the simulation is in the x-y plane. It is assumed that
the target makes a turn movement, then an approximate linear motion. The target conducts a
constant-acceleration curvilinear motion during 0–600 s, a variable acceleration motion during
601–1000 s and a constant-velocity straight-line during 1001–1400 s. The initial coordinate of the
target is (x0, y0) = (1000 m, 5000 m), its initial velocity is

( .
x0,

.
y0
)
= (10 m/s, 50 m/s) and its initial

acceleration is
( ..

x0,
..
y0
)
=
(
2 m/s2,−4 m/s2). In the simulation, the process noise covariance matrix is

set to be Q = diag[0.001 0.001]. A true target trajectory is depicted in Figure 1, and the actual curves of
the acceleration are drawn in Figure 2.
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As shown in Figure 2, the target performed a dynamic maneuver during the period from 601 s
to 1000 s. Note that maneuver accelerations can lead to a mismatch in the system model on which
the tracking filter relies. Therefore, dynamic maneuvers will cause potential changes to the process
noise covariance.



Sensors 2019, 19, 1371 10 of 19

Simulation Case 1: The measurement noise covariance matrix R = diag[100 0.0012] is known and
the process noise covariance matrix Q varies over time. During the period 200–350 s, the process noise
covariance matrix is assigned to be Q = diag[0.015 0.015].

Simulation Case 2: The measurement noise covariance matrix R is uncertain, and the process
noise covariance matrix Q is known. The measurement noise covariance matrix is taken as R = diag[20
× 100 20 × 0.0012] during the period 200–350 s, and it is assigned to be R = diag[100 0.0012] for the
remaining periods.

Simulation Case 3: Both the measurement noise covariance matrix R and the process noise covariance
matrix Q are uncertain. In this case, the changes in Case 1 and Case 2 are implemented simultaneously.

In the filters, the target dynamic equation applied in different simulation cases is

Xk =



1 0 T 0 T2/2 0
0 1 0 T 0 T2/2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1


Xk−1 + Γk−1Wk−1 , Γk−1 =



T2/2 0
0 T2/2
T 0
0 T
1 0
0 1


(32)

where Xk =
[

xk yk
.
xk

.
yk

..
xk

..
yk

]
. (xk, yk) denotes the position of the target at time k.

( .
xk,

.
yk
)

and
( ..
xk,

..
yk
)

denote the velocity and acceleration of the target respectively. The sampling interval T is
1 s. The initial state X0 = [1000 m, 5000 m, 10 m/s, 50 m/s, 2 m/s2, −4 m/s2], and the process noise
covariance matrix is

Qk−1 =

[
0.001 0

0 0.001

]
. (33)

The measurement systems are two radar observation stations. One is assumed to be located at the
origin of the Cartesian coordinates and the other is regarded as the redundant measurement system,
which can provide the same measurements of slant range rk and azimuth angle ϕk. The measurement
model is expressed as

Zk =

[
rk
ϕk

]
=

[ √
xk

2 + yk
2

arctan
(

yk
xk

) ]+ Vk. (34)

The initial measurement noise covariance R = diag[100 0.0012]. The noise covariance of the
redundant measurement is unknown, which can be estimated with the RMNCE algorithm.

4.2. Simulation Results

In view of the robustness and stability of the covariance matching and Sage-Husa adaptive
schemes, only the process or measurement noise covariances are estimated by these methods in the
first two Cases. For the third Case, a robust adaptive UKF scheme proposed in [38] is carried out as
a contrast to our proposed method for estimating the process and measurement noise covariances
simultaneously. The Q-estimation scheme in the robust adaptive UKF algorithm is the same as that
applied in the adaptive fading UKF [25], which is used for comparison in the first Case. Furthermore,
a new adaptive UKF proposed in [26], termed N-UKF, and an IMM algorithm constituted by two
UKFs with different noise covariances, termed as IMM-UKF, are used for tracking the target in three
different cases.

In all Cases, the simulations are run 100 times by utilizing the Monte Carlo method. The performances
of the algorithms are assessed by the root mean square error of the position tracking, which is defined as

Ek =

√√√√ 1
N

N

∑
i=1

[(
x̂i

k − xk
)2

+
(
ŷi

k − yk
)2
]

(35)
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where N is the simulation times,
(

x̂i
k, ŷi

k
)

denotes the filtering position of the target at time k in the
ith simulation.

For the first Case, the position tracking errors of the standard UKF, adaptive fading UKF with
covariance matching [25], IMM-UKF method, N-UKF algorithm, and our proposed Q-adaptive UKF
are shown in Figure 3. The means and variances of the position tracking errors during the periods of
200–550 s and 550–1400 s are listed in Table 1.
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Table 1. Position errors of the different schemes for Case 1.

Algorithm
200–550 s 550–1400 s

Mean (m) Variance (m2) Mean (m) Variance (m2)

Standard UKF 1.4549 0.3783 25.7565 341.6688
Adaptive fading UKF 2.1264 0.2519 2.8608 0.2411

IMM-UKF 1.3258 0.1141 2.7311 0.5510
N-UKF 3.7332 0.4344 4.5229 0.6996

Our proposed scheme 1.3398 0.1080 2.7165 0.5497

As shown in Figure 3, it takes a longer time for the standard UKF to achieve the desired accuracy
when the process noise covariance changes. A maneuver of the target for 400 s deteriorates the
estimation of the standard UKF until the end of the simulation. The statistical errors of the standard
UKF listed in Table 1 demonstrates that the potential process noise changes caused by target maneuver
lead to an increase in the position errors, from 1.4549 m to 25.7565 m. For the adaptive fading UKF
algorithm, in order to ensure that the process noise covariance does not change too much during
the correction, the adaptive fading factor is limited in a certain range. Otherwise, the over-adjusted
Q will lead to a divergence of the filter since the mismatches. Under the constraints, the position
tracking error of the adaptive fading UKF algorithm is decreased compared with the standard UKF.
Comparing the means and variances of the position errors during [200 s, 550 s] and [550 s, 1400 s]
intervals, it is clear that the filtering performances of the used methods except for the standard UKF
are all robust. As shown in Table 1, the tracking accuracy of our proposed Q-adaptive UKF scheme
is almost the same as that of the IMM-UKF method, which demonstrates that both algorithms can
resist the uncertainty of process noise. However, the computational load of IMM-UKF method is
approximately two times higher than that of our proposed adaptive UKF scheme. In addition, although
the N-UKF algorithm resists the disturbance of the changing statistics properties of states, its accuracy
is not optimal due to the neglect of the correlativity between the innovation and residual sequences.
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In this case, the simulation results demonstrate that our proposed method is affected by neither the
time-varying process noise nor the maneuvering motion models.

For the second Case, in order to verify the adaptive performance of our proposed UKF, the
improved Sage-Husa adaptive algorithm in [31] is introduced to the UKF algorithm for target tracking.
Meanwhile, contrast simulations of the standard UKF, IMM-UKF method and N-UKF algorithm are
conducted in this case. The position tracking errors of these algorithms are shown in Figure 4, and the
means and variances of the position tracking errors during the periods of 200–350 s and 601–1400 s are
listed in Table 2. The measurement noise standard deviations used in these algorithms are shown in
Figure 5.
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Table 2. Position errors of the different schemes for Case 2.

Algorithm
200–350 s 600–1400 s

Mean (m) Variance (m2) Mean (m) Variance (m2)

Standard UKF 2.9130 0.7260 26.7439 337.3589
Improved Sage-Husa UKF 2.4260 0.8123 359.2692 2.1492 × 105

IMM-UKF 3.0745 2.2106 2.8958 1.3549
N-UKF 7.9900 27.0631 3.5731 0.9831

Our proposed scheme 1.9730 0.1264 2.9107 1.0564

It can be seen from Figure 4 and Table 2 that the performances of the standard UKF and IMM-UKF
methods deteriorate when the measurement noise changes during the period of 200–350 s. As shown
in Figure 5, the measurement noise standard deviations used in the standard UKF and IMM-UKF
method are fixed values, which will be mismatched when the noise changes. Furthermore, due to the
mismatched system model, the position tracking error of the standard UKF increases significantly after
the 600th second. Although the improved Sage-Husa UKF algorithm can overcome the time-varying
noise covariance of the measurement, it diverges when the system model changes. It can be found
in Figure 5 that when the target performs a maneuvering motion, the measurement noise standard
deviations estimated by the improved Sage-Husa UKF algorithm are biased because the coupled
innovation is contaminated. The N-UKF algorithm can effectively detect the filtering divergence when
the noise variances increase. However, due to the negative influence of the inaccurate estimates of
the process noise covariance, the theoretical estimate error may be more than the actual estimation
error, and thus when the noise variance decreases the detection will fail and the measurement noise
standard deviations are not updated. By contrast, our proposed R-adaptive UKF is immune to the
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state estimation and can modify the measurement noise covariance effectively. When the measurement
noise changes, both our proposed method and the improved Sage-Husa UKF algorithm require a
delay to match the actual noise variances. This is because the estimate covariances are calculated
cumulatively based on the data in a sliding window. The fading factor and the window size are
usually selected by experience as they make a trade-off between the smoothness and rapidity of the
measurement noise covariance estimation. In our simulations, the fading factor is 0.98 and the window
size for estimation is chosen as 25. As expected, the proposed R-adaptive scheme avoids the divergence
occurred in the improved Sage-Husa algorithm. In addition, the position errors of the standard UKF
and the improved Sage-Husa UKF algorithm grow to 40 m without the Q-estimation, which means
that the adaptive process noise covariance in our proposed scheme can contribute to the increase in
the tracking precision.Sensors 2019, 19 FOR PEER REVIEW 13 
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Figure 6 shows the estimated results of the redundant measurement noise variance. It can be seen
that the estimate variances fluctuate around the reference values. To further evaluate the performance
of the estimation, the means of the estimated noise variance of the range and azimuth are calculated.
Their results are 100.8194 m2 and 1.0507 × 10−6 rad2, and the reference variances are 100 m2 and
1.0 × 10−6 rad2. It is clear that the RMNEC algorithm can provide a reliable estimation for the
redundant measurement variances.

For the third Case, the performance and feasibility of our proposed adaptive UKF scheme are
tested when Q and R change simultaneously. In this case, the standard UKF, IMM-UKF method, N-UKF
algorithm and a robust adaptive UKF scheme in [38] are applied to tracking the target. The contrast
results of the filtering position errors are presented in Figure 7. The means and variances of the position
tracking errors during the periods of 200–550 s and 550–1400 s are listed in Table 3.

Table 3. Position errors of the different schemes for Case 3.

Algorithm
200–550 s 550–1400 s

Mean (m) Variance (m2) Mean (m) Variance (m2)

Standard UKF 4.8845 4.0442 26.8136 316.1329
Robust adaptive UKF 4.6399 5.0780 3.0834 0.2204

IMM-UKF 3.9900 1.3483 4.6487 2.3042
N-UKF 4.7748 5.6900 3.3517 0.3042

Our proposed scheme 3.0623 1.0426 3.7313 0.7709
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As shown in Figure 7 and Table 3, the filtering result of the standard UKF algorithm becomes
inaccurate in the presence of the process and measurement noise covariance variations. The time-varying
noise covariances lead to the divergence of the standard UKF, even though the noise covariances return
to its priori value and changes disappear after the 350th second. This is because the standard UKF
algorithm has no adaptive abilities. As described in Section 2.2, the contaminated noise covariances
can influence the filtering gain and estimation covariances, which would cause the filtering divergence.
The robust adaptive UKF and the N-UKF algorithm can both avoid the filtering divergence, but the
performances of the Q-matching method in these algorithms are affected by the varying measurement
noise covariance. When the process and measurement noise covariances changed simultaneously, it is
hard to distinguish the type of the fault (either measurement interference or process noise uncertainty)
only though the statistical information of the innovation. Hence, the adaptation procedures in both
the robust adaptive UKF and the N-UKF algorithm failed to accord with the noise changes. During
the period of 601–1000 s, the fault was detected and isolated effectively by the robust adaptive UKF
and N-UKF algorithm when only the process noise covariance changed, which reduced the position
tracking error. Compared with our proposed scheme, the computational load of the IMM-UKF
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method is doubled, while the filtering results of IMM-UKF are also not optimal. One reason for this
unstable performance is that the models and the switching probabilities in the IMM-UKF method are
chosen by experience, and furthermore, the framework of the IMM method is designed for uncertain
system models. In our schemes, the changing measurement noise covariance is estimated through
the redundant measurements, which are entirely immune to the state estimation. This means that the
process noise covariance can be estimated depending on the “clean” innovation and residual sequences,
which have considered the influence of the contaminated measurement noise. Thus, our proposed
algorithm still maintained good tracking accuracy when the process and measurement noise covariance
varied during the period of 200–350 s. The simulation results prove that our proposed adaptive
UKF scheme with Q and R-adaptive can achieve accurate estimation and meet the requirements of
target tracking.

4.3. Discussion

The adaptive filtering problems for time-varying noise covariances involved in nonlinear target
tracking systems have been researched, and an innovative adaptive UKF scheme has been developed
to improve the tracking accuracy and stability. From the simulation results in Figure 3 and Table 1,
it is obvious that after the adaptive processes, the divergence of the standard UKF has been effectively
suppressed. However, it should be noted that the process noise covariance solution is likely to
be negative when resolving the linear matrix Equation (22) because of the limited size of window
in Equation (23) and the measurement approximation errors. Therefore, in order to avoid such
situations, an absolute or scale operator should be applied to the covariance solution in practical
applications [27,39].

Moreover, the varying measurement noise covariance also has a great influence on the filtering
result, which is shown in Figure 4 and Table 2. Although our proposed R-adaptive scheme can suppress
the noise and avoid the divergence which often occurs in the improved Sage-Husa method, it relies on
a redundant measurement system. With the absence of the redundant measurements, the RMNCE
method would be infeasible. In this situation, if the computational power permits, an alternative
scheme named improved second order mutual difference estimation can be applied to deal with the
single measurement noise covariance estimation problem [40].

When the process noise and measurement noise needed to be estimated simultaneously,
the filtering accuracy was well maintained by applying the RMNCE method and tuning the process
noise covariance adaptively based on the correct correlation of the innovation and residual sequences.
Although our proposed adaptive schemes are used for UKF, it can also be applied for EKF, since no
special feature of UKF is used in estimating Q or R. Furthermore, the proposed correction schemes
avoid the negative impact of the process noise on estimating the measurement noise covariance. It can
be seen from the target tracking simulation results, as shown in the simulation results in Figure 7 and
Table 3, that our proposed adaptive scheme can solve the uncertainties of the noise covariance and
make a considerable contribution to the filtering accuracy and stability.

In summary, the proposed adaptive UKF scheme can provide accuracy and reliable tracking in
challenging environments, compared with the standard UKF, IMM-UKF method and the current
adaptive UKF strategies. The next step is to broaden the application fields of the proposed
adaptive scheme, and further extend the estimation of measurement noise covariance to a single
measurement system.

5. Conclusions

Accurate estimation of the dynamic parameters in the maneuvering target relies in the
performance of the filter. However, the standard and current adaptive UKF algorithms will diverge
whenever the filtering models involve the time-varying noise covariance. To improve the stability and
accuracy of the target tracking, a new adaptive UKF algorithm is proposed. In the proposed method,
the covariance of the process and measurement noise is tuned in real time by using the innovation,
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residual and redundant measurement sequences. The process noise covariance can be obtained
by resolving the linear matrix equation, which is deduced from the expectation of the difference
sequence between innovation and residual. The measurement noise covariance is estimated through
the RMNCE method by using the redundant measurement from the multi radar system. Simulation
results demonstrate that the adaptive UKF scheme presented in this paper can effectively restrain the
filtering divergence and has a better filtering performance compared with the standard and existing
adaptive UKF algorithms. For the future, the influence of the correlation between the measurements is
worth further research, which will benefit the accuracy of the measurement noise covariance estimation.
In another way, the modern artificial intelligence methods may avoid the dilemma of the filtering noise
covariance estimation.
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Appendix A

This Appendix gives the proof of noise covariance estimation based on the redundant measurement.
As shown in Equation (24), the measurements from different systems are available. In this condition,
the first order difference sequence of two measurement systems can be calculated as

∆Z1(k) = Z1(k)− Z1(k− 1) = [ZT(k) + f1(k) + V1(k)]− [ZT(k− 1) + f1(k− 1) + V1(k− 1)]
= [ZT(k)− ZT(k− 1)] + [f1(k)− f1(k− 1)] + [V1(k)− V1(k− 1)]

∆Z2(k) = Z2(k)− Z2(k− 1) = [ZT(k) + f2(k) + V2(k)]− [ZT(k− 1) + f2(k− 1) + V2(k− 1)]
= [ZT(k)− ZT(k− 1)] + [f2(k)− f2(k− 1)] + [V2(k)− V2(k− 1)]

(A1)

Then, the second-order mutual difference sequence of the measurements yields

∇Z(k) = ∆Z1(k)− ∆Z2(k)
= [f1(k)− f1(k− 1)]− [f2(k)− f2(k− 1)] + [V1(k)− V1(k− 1)]− [V2(k)− V2(k− 1)].

(A2)

When the condition in Equation (25) is well satisfied and consider V1(k) and V2(k) are uncorrelated,
zero-mean Gaussian random noise, the autocorrelation of the first order difference sequences can be
obtained as

E
[
∆Z1(k)∆Z1(k)

T
]

= E
{
[Z1(k)− Z1(k− 1)][Z1(k)− Z1(k− 1)]T

}
= [ZT(k)− ZT(k− 1)][ZT(k)− ZT(k− 1)]T

+diag
[
· · ·

(
f i
1 (k)− f i

1 (k− 1)
)2
· · ·

]
+ E

{
V1(k)V1(k)

T
}

≈ [ZT(k)− ZT(k− 1)][ZT(k)− ZT(k− 1)]T + E
{

V1(k)V1(k)
T
}

= [ZT(k)− ZT(k− 1)][ZT(k)− ZT(k− 1)]T + 2R1.

(A3)

Similarly,

E
[
∆Z2(k)∆Z2(k)

T
]

= E
{
[Z2(k)− Z2(k− 1)][Z2(k)− Z2(k− 1)]T

}
= [ZT(k)− ZT(k− 1)][ZT(k)− ZT(k− 1)]T

+diag
[
· · ·

(
f i
2 (k)− f i

2 (k− 1)
)2
· · ·

]
+ E

{
V2(k)V2(k)

T
}

≈ [ZT(k)− ZT(k− 1)][ZT(k)− ZT(k− 1)]T + E
{

V2(k)V2(k)
T
}

= [ZT(k)− ZT(k− 1)][ZT(k)− ZT(k− 1)]T + 2R2.

(A4)
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Then, we can obtain that

E
[
∆Z1(k)∆Z1(k)

T
]
− E

[
∆Z2(k)∆Z2(k)

T
]
= 2R1 − 2R2. (A5)

On the other hand, the autocorrelation of the second-order difference sequences can be obtained as

E
[
∇Z(k)∇Z(k)T

]
= E

{
[∆Z1(k)− ∆Z2(k)][∆Z1(k)− ∆Z2(k)]

T
}

= diag
[
· · ·

(
f i
1 (k)− f i

1 (k− 1)
)2
· · ·

]
+ E

{
V1(k)V1(k)

T
}

+diag
[
· · ·

(
f i
2 (k)− f i

2 (k− 1)
)2
· · ·

]
+ E

{
V2(k)V2(k)

T
}

+E
{

V1(k− 1)V1(k− 1)T
}
+ E

{
V2(k− 1)V2(k− 1)T

}
≈ E

{
V1(k)V1(k)

T
}
+ E

{
V1(k− 1)V1(k− 1)T

}
+E
{

V2(k)V2(k)
T
}
+ E

{
V2(k− 1)V2(k− 1)T

}
= 2R1 + 2R2.

(A6)

Finally, the random noise covariances of measurement for Z1(k) and Z2(k) can be estimated by
solving Equations (A5) and (A6) as R1 =

E[∇Z(k)∇Z(k)T]+E[∆Z1(k)∆Z1(k)
T]−E[∆Z2(k)∆Z2(k)

T]
4

R2 =
E[∇Z(k)∇Z(k)T]−E[∆Z1(k)∆Z1(k)

T]+E[∆Z2(k)∆Z2(k)
T]

4

(A7)

This completes the proof. �
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17. Konatowski, S.; Pieniężny, A.T. A comparison of estimation accuracy by the use of KF, EKF & UKF filters.
Wit Trans. Model. Simul. 2007, 46, 779–789.

18. Tang, X.; Xie, J.; Wang, X.; Jiang, W. High-Precision Attitude Post-Processing and Initial Verification for the
ZY-3 Satellite. Remote Sens. 2014, 7, 111–134. [CrossRef]

19. Wan, E.A.; Van der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the
IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, Lake Louise,
AB, Canada, 4 October 2000; pp. 153–158.

20. Blair, W.D.; Watson, G.A.; Rice, T.R. Tracking maneuvering targets with an interacting multiple model filter
containing exponentially-correlated acceleration models. In Proceedings of the Twenty-Third Southeastern
Symposium on System Theory, Columbia, SC, USA, 10–12 March 1991.

21. Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans.
Aerosp. Electron. Syst. 2005, 41, 1255–1321.

22. Farina, A.; Immediata, S.; Timmoneri, L. Impact of ballistic target model uncertainty on IMM-UKF and
IMM-EKF tracking accuracies. In Proceedings of the 2006 14th European Signal Processing Conference,
Florence, Italy, 4–6 September 2006.

23. Xu, Q.; Li, X.; Chan, C.Y. A Cost-Effective Vehicle Localization Solution Using an Interacting Multiple
Model-Unscented Kalman Filters (IMM-UKF) Algorithm and Grey Neural Network. Sensors 2017, 17, 1431.
[CrossRef] [PubMed]

24. Zhang, S. An Adaptive Unscented Kalman Filter for Dead Reckoning Systems. In Proceedings of the
2009 International Conference on Information Engineering and Computer Science, Wuhan, China, 19–20
December 2009.

25. Soken, H.E.; Hajiyev, C. Adaptive Fading UKF with Q-Adaptation: Application to Picosatellite Attitude
Estimation. J. Aerosp. Eng. 2013, 26, 628–636. [CrossRef]

26. Li, L.; Hua, C.; Yang, H. A new adaptive unscented Kalman filter based on covariance matching technique.
In Proceedings of the 2014 International Conference on Mechatronics and Control, Jinzhou, China, 3–5 July
2014; pp. 1308–1313.

27. Meng, Y.; Gao, S.; Zhong, Y.; Hu, G.; Subic, A. Covariance matching based adaptive unscented Kalman filter
for direct filtering in INS/GNSS integration. Acta Astronaut. 2016, 120, 171–181. [CrossRef]

28. Akhlaghi, S.; Zhou, N.; Huang, Z. Adaptive adjustment of noise covariance in Kalman filter for dynamic
state estimation. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL,
USA, 16–20 July 2017; pp. 1–5.

29. Partovibakhsh, M.; Liu, G. An adaptive unscented Kalman filtering approach for online estimation of model
parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots. IEEE Trans. Control
Syst. Technol. 2015, 23, 357–363. [CrossRef]

30. Zhang, X.; Guo, M.; Wang, C.; Cheng, G.; Niu, S. Adaptive Filtering Algorithm of Multi-Sensor Information
Fusion for Individual Navigation. Navig. Position. Timing 2018, 5, 35–41.

31. Zhang, H.; Chang, Y.H.; Che, H. Measurement-based adaptive Kalman filtering algorithm for GPS/INS
integrated navigation system. J. Chin. Inert. Technol. 2010, 18, 696–701.

32. Zhou, Q.; Zhang, H.; Li, Y.; Li, Z. An Adaptive Low-Cost GNSS/MEMS-IMU Tightly-Coupled Integration
System with Aiding Measurement in a GNSS Signal-Challenged Environment. Sensors 2015, 15, 23953–23982.
[CrossRef]

http://dx.doi.org/10.3390/s7010144
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.6718
http://dx.doi.org/10.3390/rs70100111
http://dx.doi.org/10.3390/s17061431
http://www.ncbi.nlm.nih.gov/pubmed/28629165
http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000178
http://dx.doi.org/10.1016/j.actaastro.2015.12.014
http://dx.doi.org/10.1109/TCST.2014.2317781
http://dx.doi.org/10.3390/s150923953


Sensors 2019, 19, 1371 19 of 19

33. Zhou, Q.; Zhang, H.; Wang, Y. A Redundant measurement Adaptive Kalman Filter Algorithm. Acta Aeronaut.
Astronaut. Sin. 2015, 36, 1596–1605.

34. Li, Z.; Zhang, H.; Zhou, Q.; Che, H. An Adaptive Low-Cost INS/GNSS Tightly-Coupled Integration
Architecture Based on Redundant Measurement Noise Covariance Estimation. Sensors 2017, 17, 2032.
[CrossRef] [PubMed]

35. Kandepu, R.; Foss, B.; Imsland, L. Applying the unscented Kalman filter for nonlinear state estimation.
J. Process Control 2008, 18, 753–768. [CrossRef]

36. Julier, S.J. The Scaled Unscented Transformation. In Proceedings of the American Control Conference,
Anchorage, AK, USA, 8–10 May 2002; pp. 4555–4559.

37. Salahshoor, K.; Mosallaei, M.; Bayat, M. Centralized and decentralized process and sensor fault monitoring
using data fusion based on adaptive extended Kalman filter algorithm. Measurement 2008, 41, 1059–1076.
[CrossRef]

38. Hajiyev, C. Robust adaptive unscented Kalman filter for attitude estimation of pico satellites. Int. J. Adapt.
Control Signal Process. 2014, 28, 107–120. [CrossRef]

39. Myers, K.; Tapley, B. Adaptive sequential estimation with unknown noise statistics. IEEE Trans.
Autom. Control 1976, 21, 520–523. [CrossRef]

40. Jiang, L.; Zhang, H. Redundant measurement-based second order mutual difference adaptive Kalman filter.
Automatica 2019, 100, 396–402. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s17092032
http://www.ncbi.nlm.nih.gov/pubmed/28872629
http://dx.doi.org/10.1016/j.jprocont.2007.11.004
http://dx.doi.org/10.1016/j.measurement.2008.02.009
http://dx.doi.org/10.1002/acs.2393
http://dx.doi.org/10.1109/TAC.1976.1101260
http://dx.doi.org/10.1016/j.automatica.2018.11.037
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The UKF Algorithm for Nonlinear State Estimation 
	Standard UKF 
	Problem Description of UKF for Time-Varying Noise Covariance 

	An Innovative Adaptive UKF Scheme 
	Adaptive Q Estimation 
	Adaptive R Estimation 
	Adaptive UKF Scheme 

	Simulation Results and Discussion 
	Simulation Parameter and Cases 
	Simulation Results 
	Discussion 

	Conclusions 
	
	References

