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Abstract: A class of bipolar electrostatically actuated micro-resonators is presented in this paper.
Two parametric equations are proposed for changing the microbeam shape of the upper and lower
sections. The mechanical properties of a micro-resonator can be enhanced by optimizing the two
section parameters. The electrostatic force nonlinearity, neutral surface tension, and neutral surface
bending are considered in the model. First, the theoretical results are verified with finite element
results from COMSOL Multiphysics simulations. The influence of section variation on the electrostatic
force, pull-in behaviors and safe working area of the micro-resonator are studied. Moreover,
the impact of residual stress on pull-in voltage is discussed. The multi-scale method (MMS) is used to
further study the vibration of the microbeam near equilibrium, and the relationship between the two
section parameters of the microbeam under linear vibration was determined. The vibration amplitude
and resonance frequency are investigated when the two section parameters satisfy the linear vibration.
In order to research dynamic analysis under the case of large amplitude. The Simulink dynamics
simulation was used to study the influence of section variation on the response frequency. It is found
that electrostatic softening increases as the vibration amplitude increases. If the nonlinearity initially
shows hardening behavior, the frequency response will shift from hardening to softening as the
amplitude increases. The position of softening-hardening transition point decreases with the increase
of residual stress. The relationship between DC voltage, section parameters, and softening-hardening
transition points is presented. The accuracy of the results is verified using theoretical, numerical,
and finite element methods.

Keywords: parametric equation; finite element methods; Simulink dynamics simulation; softening-
hardening transition points

1. Introduction

Nowadays, micro electromechanical system (MEMS) devices are attracting attention due to their
small size, low weight, and low energy consumption. Among them, microbeams are a popular
micro-component and are widely used in MEMS devices, e.g., as a microswitch [1,2], sensor [3,4],
or resonator [5–9]. Therefore, designing and optimizing microbeams can improve the mechanical
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properties of MEMS devices. An electrostatically actuated microbeam resonator is presented in
this paper.

Electrostatic actuation is one of the most common actuation methods in microstructures [10].
However, electrostatic actuation also has strong nonlinear characteristics [11]. The pull-in effect is the
most critical unstable behavior [12]. When the actuation voltage exceeds a critical value, the microbeam
will quickly come into contact with the plate, which can cause damage to the device in severe cases.
Therefore, determining the unstable position of the microbeam, increasing the pull-in voltage, and the
pull-in position of the resonator to improve its mechanical properties is a key issue in micro-resonator
design. Abdel-Rahman et al. [13] presented a mathematical model for electrostatic actuation of
microbeam resonators, which takes into account the neutral plane tension and nonlinear electrostatic
force. It was found that the maximum dimensionless deflection reached 0.39 near pull-in, which is
greater than the result calculated with the traditional method. Mobki, Harried et al. [14] presented two
models describing unipolar plate of an actuated microbeam and an actuated bipolar plate microbeam;
they found that the bipolar plate actuation model has a higher pull-in voltage. In addition, when the
voltage ratio at both ends is 1, the increased gap distance ratio leads to decreased attraction voltage,
and vice versa.

In addition to studying the pull-in behavior, vibration of the micro-resonator should also be
analyzed. Nonlinearity can lead to multiple solutions, leading to jump instability. The relationship
between the system’s equivalent natural frequency and DC voltage depends on the strong nonlinearity
and electrostatic softening. Moreover, the ideal working condition of the micro-resonator is linear
vibration, thus the nonlinearity in the design should be eliminated to the greatest possible extent.
Li et al. [15] studied the influence of physical parameters, such as microbeam viscoelasticity and DC
voltage, on the system vibration. Finally, the parameters were optimized to determine the relationship
between the physical parameters under linear vibration. Han et al. [16] used a spring-mass model
to study the vibration of clamped-clamped microbeams and obtained a parameter design diagram
relating the DC voltage and initial gap distance under linear conditions. The optimal design voltage
under linear conditions was derived. In addition, nonlinearity can be utilized; Li et al. [17] used
the modal coupling of a clamped-clamped microbeam to adjust the pull-in voltage and resonant
frequency. Based on the coupled vibration behavior between the antisymmetric and symmetric modes,
Hu et al. [18] presented a theoretical method for suppressing the midpoint displacement and reducing
deformation. However, most early studies were based on rectangular microbeams and focused on
optimizing their mechanical properties by adjusting their physical parameters.

As research has deepened, many scholars have found that the mechanical properties of a
micro-resonator can be improved by adjusting the microbeam geometry when using the same raw
materials. Joglekar and Trivedi [19,20] studied a class of clamped-clamped microbeams and proposed
a parametric equation that describes smooth changes along the width of the microbeams. The system
mechanical properties are improved by optimizing parameters in the relevant equation, and the
results from the method were verified in several cases. On the basis of [19,20], Zhang et al. [21]
discussed the influence of the optimized shape on the dynamic response of the microbeam. Kuang
and Chen [22] optimized the mechanical properties of a micro-resonator by adjusting the microbeam
thickness and gap distance. The required operating voltage range increased by a factor 6. Other studies
focus on active control of micro-resonators; Alsaleem and Younis [23] introduced time-delay feedback
into the dynamic control of electrostatically actuated micro-resonators. The influence of time delay
displacement and velocity feedback on the system dynamic characteristics is discussed in terms of
numerical and experimental results. Both kinds of control can improve the system dynamic behavior,
enhance stability, and prevent pull-in under positive feedback gain. This is a very effective method for
optimized resonator design.

So far, research on microbeam optimization primarily focuses on adjusting the microbeam size [24],
using time delay feedback for active control [25,26], and optimizing the shape of the microbeam [27].
In this study, a micro-resonator was optimized by adjusting the microbeam shape, and the number of
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parametric equations was increased compared to models presented by predecessors. Equations are
defined for the upper and lower sections of the microbeam such that the thickness changes uniformly
along its length. Each equation has an independent parameter that can be used to adjust variations in
the microbeam thickness. The resonator is optimized by choosing the appropriate values of two section
parameters. The influence of section on the electrostatic force, small amplitude vibration, and dynamic
behavior with large amplitude actuation in bipolar plates are investigated theoretically and with finite
element simulations.

The structure of this paper is as follows. The mathematical model (partial differential equation)
for electrostatic actuation of a microbeam resonator considering neutral stretching and bending is
established in Section 2,. Two parametric equations are proposed for adjusting variations in the
microbeam thickness. The Galerkin method is used to simplify the original vibration equation into
an ordinary differential equation. In Section 3, the finite element method is used to simulate the
electrostatic force on the system, and the influence of two section parameters on the electrostatic force,
static pull-in behavior, and safe working area are discussed. In Section 4, the MMS is used to determine
the response of the system under small amplitude vibrations. The relationship between the two section
parameters is obtained by taking linear vibration as an optimization condition. Variation in the system’s
equivalent natural frequency and vibration amplitude are studied given this relationship. COMSOL
Multiphysics was used to simulate and verify the natural frequency and electrostatic softening of
the optimized micro-resonator. In Section 5, the influence of the section parameters on transitions
between softening and hardening of the frequency response curve under large amplitude vibration is
discussed. Moreover, the relationship between DC voltage, microbeam thickness, and the transition
point is presented. Finally, a summary and conclusions are presented in the last section.

2. Mathematical Model

2.1. Governing Equation

A schematic of an electrically actuated microbeam is shown in Figure 1. The model consists of
two fixed plates and a movable microbeam. Microbeams can be divided into six cases corresponding
to various parametric equations. Figure 1a shows ordinary rectangular beams. Figure 1b,c shows
a microbridge model, where the thickness does not change along beam length. Figure 1d,e shows
thickened and thinned beams, respectively. both of which are symmetrical around the neutral plane.
Figure 1f shows an irregular beam. A capacitor forms between the microbeam and the plate by applying
a DC voltage Vdc and an AC voltage Vac cos(Ωt) to the plate, thus generating an electrostatic force.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 25 

 

and the number of parametric equations was increased compared to models presented by 
predecessors. Equations are defined for the upper and lower sections of the microbeam such that the 
thickness changes uniformly along its length. Each equation has an independent parameter that can 
be used to adjust variations in the microbeam thickness. The resonator is optimized by choosing the 
appropriate values of two section parameters. The influence of section on the electrostatic force, small 
amplitude vibration, and dynamic behavior with large amplitude actuation in bipolar plates are 
investigated theoretically and with finite element simulations. 

The structure of this paper is as follows. The mathematical model (partial differential equation) 
for electrostatic actuation of a microbeam resonator considering neutral stretching and bending is 
established in Section 2,. Two parametric equations are proposed for adjusting variations in the 
microbeam thickness. The Galerkin method is used to simplify the original vibration equation into 
an ordinary differential equation. In Section 3, the finite element method is used to simulate the 
electrostatic force on the system, and the influence of two section parameters on the electrostatic force, 
static pull-in behavior, and safe working area are discussed. In Section 4, the MMS is used to 
determine the response of the system under small amplitude vibrations. The relationship between 
the two section parameters is obtained by taking linear vibration as an optimization condition. 
Variation in the system’s equivalent natural frequency and vibration amplitude are studied given 
this relationship. COMSOL Multiphysics was used to simulate and verify the natural frequency and 
electrostatic softening of the optimized micro-resonator. In Section 5, the influence of the section 
parameters on transitions between softening and hardening of the frequency response curve under 
large amplitude vibration is discussed. Moreover, the relationship between DC voltage, microbeam 
thickness, and the transition point is presented. Finally, a summary and conclusions are presented in 
the last section. 

2. Mathematical Model 

2.1. Governing Equation 

A schematic of an electrically actuated microbeam is shown in Figure 1. The model consists of 
two fixed plates and a movable microbeam. Microbeams can be divided into six cases corresponding 
to various parametric equations. Figure 1a shows ordinary rectangular beams. Figure 1b,c shows a 
microbridge model, where the thickness does not change along beam length. Figure 1d,e shows 
thickened and thinned beams, respectively. both of which are symmetrical around the neutral plane. 
Figure 1f shows an irregular beam. A capacitor forms between the microbeam and the plate by 
applying a DC voltage dcV  and an AC voltage cos( )acV tΩ  to the plate, thus generating an 
electrostatic force.  

 
Figure 1. Schematic of an electrically actuated microbeam: (a) rectangular beam; (b) microbridge 
bending upward; (c) microbridge bending downward; (d) thickened microbeam; (e) thinned 
microbeam; (f) irregular beam. 

Figure 1. Schematic of an electrically actuated microbeam: (a) rectangular beam; (b) microbridge
bending upward; (c) microbridge bending downward; (d) thickened microbeam; (e) thinned
microbeam; (f) irregular beam.
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Changes in the microbeam shape will produce an uneven electrostatic force between the upper
and lower parts of the microbeam. The distance between the microbeam section at the fixed end
and electrode plate is d, and the microbeam exhibits lateral motion under the action of electrostatic
forces. A model whose thickness varies along microbeam length is considered here, where l and b
are the length and the width of the microbeam, respectively. h is the thickness of microbeam at the
clamped ends. The cross-sectional area and moment of inertia of the two clamped sides are A0 = bh
and I0 = bh3/12, respectively. The microbeam thickness is determined by y1(x) = h

2 + λ1h sin πx
l

and y2(x) = − h
2 + λ2h sin πx

l , where λ1 and λ2 are section parameters, and the microbeam section
curvature changes with λ1 and λ2. The cross-sectional area and moment of inertia are A(x) =

A0(1+(λ1−λ2) sin(πx/l)) and I(x) = I0(1 + (λ1 − λ2) sin(πx/l))3, respectively. In order to achieve
better mechanical properties when both of microbeams consume same amount of material during their
fabrication, it is assumed that the volume of the microbeam is constant. The relationship between h
and λ1, λ2 is found to be h = h0(π−2λ1+2λ2)

π by setting the microbeam volume does not change when
the shape changes, where h0 is the microbeam thickness when the beam is rectangular. The capacitance
varies in microbeam different positions due to the changes in the gap between the microbeam and
electrode plate. The capacitances of the upper and lower plates are

C1 = ε0εrbl
d−y1(x)+ h

2−y(x,t)

C2 = ε0εrbl
d+y2(x)+ h

2 +y(x,t)

(1)

where ε0 is the dielectric constant in free space, εr is the relative dielectric permittivity in the gap
relative to free space, C1 is the capacitance between the upper plate and the microbeam, and C2 is the
capacitance between the upper plate and the microbeam.

The total energy stored by two capacitors is

W =
1
2

C1(Vdc + Vac)
2 +

1
2

C2(Vdc)
2. (2)

The electrostatic force is

F =
∂( 1

2 C1(Vdc + Vac cos(Ωt))2)

∂(d− y1(x) + h
2 − y(x, t))

−
∂( 1

2 C2(Vdc)
2)

∂(d + y1(x) + h
2 + y(x, t))

(3)

The equation of motion considers changes in the cross-sectional area and the electrostatic force on the
bipolar plate, the equation is therefore rewritten as follows [28]:

∂2

∂x2 (EI(x) ∂2y(x,t)
∂x2 ) + ρA(x) ∂2y(x,t)

∂t2 + c ∂y(x,t)
∂t = (N

+ E
2l

1∫
0

A(x)(( ∂y(x,t)
∂x )

2
+ ∂y(x,t)

∂x
d(y1(x)+y2(x))

dx )dx)( ∂2y(x,t)
∂x2 + d2(y1(x)+y2(x))

2dx2 )

+ ε0εrb[Vdc+Vac cos(Ωt)]2

2(d−y1(x)+ h
2−y(x,t))

2 − ε0εrbVdc
2

2(d+y2(x)+ h
2 +y(x,t))

2

(4)

The boundary conditions are

y(0, t) = 0,
∂y
∂x

(0, t) = 0, y(l, t) = 0,
∂y
∂x

(l, t) = 0, (5)

where c is the damping coefficient, and E and ρ are the elastic modulus and density, respectively.
In Equation (4), N is the residual stress, the integral term is the tension and deformation of

neutral plane.
For the convenience of calculation, consider following dimensionless:

_
x =

x
l

,
_
y =

y
d

,
_
y 1 =

y1

d
,
_
y 2 =

y2

d
,
_
A(

_
x ) =

A(x)
A0

,
_
I (

_
x ) =

I(x)
I0

,
_
t =

t
T

, ω =
Ωt
_
t

. (6)
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Substituting Equation (6) into (4) and (5) yields the dimensionless bending vibration equation:

∂2

∂
_
x

2 (I(
_
x ) ∂2_y (x,t)

∂
_
x

2 ) + A(
_
x ) ∂2_y (x,t)

∂
_
t

2 + c′ ∂
_
y (x,t)

∂
_
t
− (

_
N

+ α2

1∫
0

A(
_
x )(( ∂

_
y (x,t)
∂
_
x

)
2
+ ∂

_
y (x,t)
∂
_
x

d(
_
y 1(x)+

_
y 2(x))

d
_
x

)d
_
x )( ∂2_y (x,t)

∂
_
x

2

+
d2(

_
y 1(x)+

_
y 2(x))

2d
_
x

2 ) = α1(
1

(1−_
y 1(x)+ h

2d−
_
y (x,t))

2 − 1

(1+
_
y 2(x)+ h

2d +
_
y (x,t))

2 )

+ 2α1ρ cos(ω
_
t )

(1−_
y 1(x)+ h

2d−
_
y (x,t))

2 +
α1ρ2 cos2(ω

_
t )

2(1−_
y 1(x)+ h

2d−
_
y (x,t))

2

(7)

The corresponding boundary condition becomes

_
y (0,

_
t ) = 0,

∂
_
y

∂
_
x
(0,

_
t ) = 0,

_
y (1,

_
t ) = 0,

∂
_
y

∂
_
x
(1,

_
t ) = 0, (8)

where

T =

√
l4ρA0

EI0
; c′ =

cl4

EI0T
; α1 =

ε0εrbl4Vdc2

2EI0d3 ; ρ =
Vac

Vdc
, α2 = 6(

d
h
)

2
.

In the following figure, the “ _ ” symbol has been removed from the dimensionless parameters
for convenience.

The fringing fields of electrostatic force are not taken into account in the above calculation.
In order to observe the accuracy of electrostatic force, the electrostatic force in Equation (7) is compared
with the electrostatic force considering edge effect. The results are shown in Figure 2. It can be found
that the two results are consistent. Therefore, the infinite plate model is applied for convenience.
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2.2. Galerkin Expansion

The deflection of the microbeam is defined as follows:

y(x, t) =
∞

∑
i=1

ui(t)φi(x). (9)

The boundary conditions are

φi(0) = φi(1) = φi
′(0) = φi

′(1) = 0, (10)

ui(t) is the i-th modal coordinate amplitude, and φi(x) is the i-th order undamped linear orthogonal
mode function. According to results from the literature [29], a model with a single degree-of-freedom
can sufficiently capture all key nonlinear aspects in the Galerkin approximation when studying the
primary resonance. Assuming y(x, t) = u(t)φ(x), the existing conventional calculation is usually
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based on a Taylor expansion of the electrostatic force or by multiplying the denominator term of the
electrostatic force [30]. The first method is a simple calculation, but the higher order displacement
terms will be eliminated after Taylor expansion, which decreases the accuracy of the results. In order to
accurately describe the electrostatic force while retaining the nonlinear characteristics of the electrostatic
force as much as possible, a second calculation scheme is adopted in this paper. The denominator

term is eliminated by multiplying (1− y1(x) + h
2d − y(x, t))

2
(1 + y2(x) + h

2d + y(x, t))
2

at vibration
equation. Since Vac is much smaller than Vdc in the micro-resonator, the following calculation omits
the ρ2 term. Substituting Equation (9) into (7), multiplying by φ(x), and integrating from x = 0 to 1
yields the following equation:

g
..
u + µ

.
u + k0 + k1u + k2u2 + k3u3 + k4u4 + k5u5 + k6u6 + k7u7 = 2α1ρ(vac1 + vac2u + vac2u2) cos(ωt), (11)

where,
.
u = du/dt. Expressions for g, µ, k1, k2, k3, k4, k5, k6, k7, vdc1, vdc2, vac1, vac2, and vac3 are shown

in Appendix A.
The static equilibrium equation can be written as follows:

k0 + k1u + k2u2 + k3u3 + k4u4 + k5u5 + k6u6 + k7u7 = 0. (12)

Without considering damping and AC disturbances, the following Hamiltonian system
corresponding to the dimensionless dynamic equation can be obtained:{ .

u = v
.
v = − 1

g (k0 + k1u + k2u2 + k3u3 + k4u4 + k5u5 + k6u6 + k7u7)
. (13)

The potential energy function is

V(ξ) =
∫ ξ

0
vdu, (14)

and the corresponding Hamiltonian is

H(u, v) = V(u) +
1
2

v2. (15)

One should note here that the maximum lateral displacement of the microbeam is at the midpoint viz.,
ymax = φ(0.5)u ∈ [−1− λ2δ, 1− λ1δ]. The value of the modal function is φ(0.5) = 1.59, thus the range
of u is u ∈ [−1−λ2δ

1.59 , 1−λ1δ
1.59 ].

3. Static Analysis

First, a static analysis of the system is conducted. The safe region of the micro-resonator can
be obtained from static analysis. Only by guaranteeing that the device can operate safely under
the selected parameters can the research presented here be meaningful. Here, the accuracy of
the electrostatic force obtained from theoretical analysis is verified. All possible microbeam cases
are selected. The capacitance the between plates and microbeam was simulated using COMSOL
Multiphysics, and the simulation model is shown in Figure 3. A voltage was applied at d on the
clamped end of the microbeam while the microbeam was grounded. The entire model was placed
in air. Assuming L = 400 µm, b = 45 µm, d = 3 µm, ρ = 2.33 × 103 kg/m3, E = 165 Gpa,
and ε0 = 8.85× 10−12 F/m, and the thickness of the clamped-clamped ends is h = 2 µm. The entire
simulation was performed using the steady state solver.
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Figure 3. COMSOL simulation model.

The results from two methods are compared in Figure 4. This comparison shows that the two
results are consistent. Although there is a slight deviation at larger voltage, the effect is insignificant.
At this time, the voltage may have exceeded the pull-in voltage. Thus, high voltage cannot be used
during operation. The specific pull-in voltage will be calculated later. Overall, the simulation results
verify the correctness of theory.
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The results from two methods are compared in Figure 4. This comparison shows that the two 
results are consistent. Although there is a slight deviation at larger voltage, the effect is insignificant. 
At this time, the voltage may have exceeded the pull-in voltage. Thus, high voltage cannot be used 
during operation. The specific pull-in voltage will be calculated later. Overall, the simulation results 
verify the correctness of theory. 
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Figure 4. The relationship between the DC voltage and potential energy for different values of section
parameters. Lines show the analytical solutions and symbols show the finite element solutions.

The theoretical results shown in Figure 4 are used to determine the influence of section variation
on the electrostatic forces. The middle thickness of microbeam becomes thinner and the thickness
of clamped-clamped ends becomes thicker when λ1 is held constant and λ2 decreases. The system
potential can be reduced by decreasing λ2, as shown in Figure 5. This indicates that the potential
energy is larger when the microbeam is thinner at the midpoint for a given voltage due to the greater
electrostatic force.
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Figure 5. The relationship between the DC voltage and potential energy for different values of section
parameters. (a) the case of λ1 = −0.2; (b) the case of λ1 = 0.2.

Next, the influence of the section parameters on static pull-in behaviors will be studied. In order
to facilitate observation, the special case of a rectangular microbeam is added as a comparison, where
the pull-in behavior is indicated with the black curve in Figure 6a,b. The physical parameters of
the microbeam are L = 400 µm, b = 45 µm, d = 3 µm, h0 = 2 µm, E = 1.65× 1011 Pa, and ρ =

2.33× 103 kg/m3. Figure 6a,b shows the case where the upper section parameters are λ1 = 0.2 and
λ1 = −0.2. The lower section moves gradually from −0.3 to 0.3. At this time, the middle of the
microbeam becomes thinner and the ends become thicker. The red curve corresponds to λ1 = 0.2 and
λ2 = −0.2, while the green curve corresponds to λ1 = −0.2 and λ2 = 0.2. The microbeam is symmetric
in the neutral plane in these two cases. Figure 6 shows that the static pull-in position gradually increases
as the microbeam becomes thinner, eventually leading to secondary pull-in. Figure 6b shows the
case where λ2 = 0.2 and λ2 = 0.3. Asymmetry of the microbeam will cause the static equilibrium
point shift to the side with larger λ1 and −λ2. Greater asymmetry leads to a larger migration distance.
When λ1 = −λ2, the microbeam is symmetric around the neutral plane and the equilibrium point
position is symmetric around the x-axis. If λ1 = −λ2 > 0, the midpoint of the microbeam is thicker
than at the ends, and vice versa if λ1 = −λ2 < 0. Comparing the three curves of red, black, and green
in Figure 6a,b shows that the range of pull-in voltage will increase and secondary pull-in phenomenon
will be more likely when the midpoint is thinner than the ends.Sensors 2019, 19, x FOR PEER REVIEW 9 of 25 
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Figure 6. Influence of the section parameters on static pull-in: (a) λ1 = 0.2 and (b) λ1 = −0.2.
Solid lines show stable solutions and dashed lines show unstable solutions. Blue lines indicate
asymmetry, while red and green lines indicate symmetry. The black line indicates the case where the
section parameters are λ1 = λ2 = 0.

In addition, static displacement jump will occur in the asymmetric microbeam. One can see from
the case where λ2 = 0.3 in Figure 6b that the static displacement jumps from positive to negative when
the DC voltage amplitude increases to Vdc = 87 V. A comparison of Figure 6a,b shows that the static
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pull-in voltage mainly depends on the larger side of λ1 and −λ2. As shown in Figure 6a, the static
pull-in position of λ2 from −0.3 to −0.2 varies greatly when λ1 = 0.2, but the increasing trend in the
static pull-in position decreases significantly when λ2 ranges from −0.2 to 0.3. This arises because the
static suction position at this time is mainly determined by λ1.

In order to discuss this phenomenon more intuitively, Assume Vdc = 82.5V and draw the potential
energy of λ1 = −0.2 and λ2 = 0.2 to observe the influence of another section variation on system
safe area. When λ1 = −0.2, the pull-in points of λ2 = 0.19, λ2 = 0.2, and λ2 = 0.21 correspond
to green, red, and blue points in Figure 7a, respectively. The lowest barrier energy is significantly
lower when compared to the case when λ2 = 0.2, λ2 = 0.21. Similarly, in Figure 7b, when λ2 = 0.2,
the phenomenon of λ1 = −0.21, λ1 = −0.2 and λ1 = −0.19 is same as that of Figure 7a. The static
pull-in position primarily depends on the larger of λ1 and −λ2. Meanwhile, Figure 7a,b is symmetric
around the y-axis, indicating that the corresponding pull-in voltages are equal and the pull-in positions
are opposite when the section parameters of two cases are opposite to each other.
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Therefore, reducing λ1 or increasing λ2 in the design can improve the working range and stability
of the resonator. On the other hand, static pull-in voltage primarily depends on the larger of λ1 and
−λ2. When one section of the microbeam is determined, the two fixed ends become thicker and more
energy is lost at the ends when the other section is closer to the neutral plane, but the position of pull-in
voltage does not change much. Therefore, taking λ1 = −λ2 can increase the pull-in voltage.

Residual stress may occur in the process of fabrication or operation of devices and the mechanical
properties will be influenced. In order to accurately predict the safe working area of the device,
the influence of residual stress on pull-in voltage and secondary pull-in will be discussed below.
As shown in Figure 8, the pull-in voltage increases with the increase of residual stress. Figure 8a
shows that when λ1 = 0.2, the pull-in voltage increases with the increase of λ2 and before λ2 < −0.2,
the pull-in voltage increases faster than after λ2 > −0.2. This proves once again that the static pull-in
voltage primarily depends on the larger of λ1 and −λ2. Figure 8b shows the case of λ2 = 0.2, It can be
seen that the pull-in voltage decreases as λ1 increases. Secondary pull-in phenonemon occurs in yellow
and blue regions. Each λ2 corresponds to three voltage values in this region. The dotted line indicates
that the voltage on each line corresponds to the position in the static displacement picture. When
λ1 < −0.2, the secondary pull-in region is close to the lower plate and when λ1 > −0.2, the secondary
pull-in region is close to upper plate. In addition, the larger the yellow and blue areas, the larger the
secondary pull-in range is. Therefore, the increase of residual stress will reduce the range of secondary
pull-in area.
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4. Dynamic Analysis

It is very important to conduct dynamic analysis of MEMS devices. The influence of section
variation on the frequency response and bifurcation behavior can be observed through dynamic
analysis, so as to optimize micro-resonator. MMS is used in the following to calculate small amplitude
vibrations of the micro-resonator in the stable region. Here, we define u = uD + uA, where uD is the
response under DC voltage and uA is the response under AC voltage.

First, uD can be obtained from Equation (12). Substituting u = uD + uA into Equation (11),
ignoring the nonlinear terms above third order and nonlinear damping in Equation (11),
and eliminating the term corresponding to the equilibrium position yields the small vibration equation
at the equilibrium position:

..
uA + c ∗ .

uA + ω2
nuA + aquA

2 + acuA
3 + amuA

..
uA + anuA

2 ..
uA = f cos(ωt). (16)

The meaning of each coefficient is shown in Appendix B.
Because Vac is much smaller than Vdc in the micro-resonator, we consider the cases Vdc = O(1)

and Vac = O(ε3), where ε is a small dimensionless parameter. Equation (16) can be rewritten as

..
uA + ε2c ∗ .

uA + ω2
nuA + aquA

2 + acuA
3 + amuA

..
uA + auA

2 ..
uA = ε3 f cos(ωt). (17)

In order to describe the primary resonance accurately, a tuning parameter σ is introduced and
defined as

ω = ωn + ε2σ. (18)

The approximate solution to Equation (17) is expressed as follows:

uA(t, ε) = εuA1(T0, T1, T2) + ε2uA2(T0, T1, T2) + ε3uA3(T0, T1, T2), (19)

where Tn = εnt, n = (0, 1, 2).
Substituting Equations (18) and (19) into (17) and gathering like powers of ε yields:

O(ε1) : D2
0uA1 + ω2

nuA1 = 0, (20)
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O(ε2) : D2
0uA2 + ω2

nuA2 = −2D0D1uA1 − acu2
A1 − amD2

0uA1, (21)

O(ε3) : D2
0u3 + ω2

nu3 = −2D0D1uA2 − 2D0D2uA1 − D2
1uA1 − c∗D0uA1 − 2amuA1D0D1uA1

−anuA1D2
0uA2 − amuA2D2

0uA1 − anu2
A1

D2
0uA1 − 2acu1u2 − acu3

1 + f cos(ωnT0 + σT2)
(22)

where Dn = ∂
∂Tn

, n = (0, 1, 2).
The general solution to Equation (20) can be written as

uA1(T0, T1, T2) = A(T1, T2)eiωnT0 + A(T1, T2)e−iωnT0 . (23)

Substituting Equation (23) into (21) yields:

D2
0uA2 + ω2

nuA2 = −2iωn
∂A
∂T1

eiωnT0 − aq(A2e2iωnT0 + AA) + amω2
n(A2e2iωnT0 + AA) + cc, (24)

where cc denotes the complex conjugate.
To eliminate the secular term, one needs

− 2iωn
∂A
∂T1

eiωnT0 = 0, (25)

which indicates that A is only a function of T2. Thus, Equation (24) becomes

D2
0uA2 + ω2

nuA2 = (amω2
n − aq)(A2e2iωnT0 + AA) + cc. (26)

The solution uA2 can be written as follows:

uA2(T0, T2) =
(aq − amω2

n)A2

3ω2
n

e2iωnT0 −
(aq − amω2

n)AA
ω2

n
+ cc. (27)

Substituting Equations (23) and (27) into Equation (22) yields the secular terms

2iωn
∂A
∂T1

+ c ∗ iωA−
(10aq − amωn

2)(aq − amωn
2)A2 A

3ωn2 + 3(ac − anωn
2)A2 A− f

2
eiσT2 = 0. (28)

At this point, it is convenient to express A in polar form:

A =
1
2

a(T2)eiβ(T2) + cc. (29)

Substituting Equation (29) into Equation (28) and separating the imaginary and real parts yields:

Da
DT2

= − c∗
2

a− f
2ωn

sin ϕ, (30)

a
Dϕ

DT2
= σa + a3(

(10aq − amω2
n)(aq − amω2

n)

24ω3
n

− 3(ac − anω2
n)

8ωn
) +

f
2ωn

cos ϕ, (31)

where ϕ = σT2 − β.
The steady-state response can be obtained by imposing the condition Da

DT2
= Dϕ

DT2
= 0. Finally,

the frequency response equation can be derived as follows:

a2((
c∗
2
)

2
+ (σ + a2ξ)

2
) = (

f
2ωn

)
2
, (32)

where ξ =
(10aq−amω2

n)(aq−amω2
n)

24ω3
n

− 3(ac−anω2
n)

8ωn
.
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The peak vibration amplitude and backbone curve are amax = f /(µωn) and ω = ωn − κamax,
respectively. The stability of the periodic solution can be determined using a method found in the
literature [29,31].

4.1. Parameter Optimization

In the previous section, the stable region of the micro-resonator is optimized by static analysis,
followed by conducting dynamic analysis. Previous research [29] has shown that the section parameter
λ changes the softening and hardening behavior of the frequency response. It is noteworthy that there
will be a moment of linear vibration in the transformation between softening and hardening, which
is an ideal condition for micro-resonators. Therefore, the MEMS resonator is designed based on this
condition. Assume d = 2 µm. First, one finds by calculation that the microbeam vibration is linear and
rectangular when Vdc = 23.95 V. The sectional parameters λ1 and λ2 under linear vibration are shown
in Figure 9.
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Figure 9. The relationship between λ1 and λ2 under linear vibration when Vdc = 23.95 V.

The coordinates of these special points listed in Table 1 are shown in Figure 9. The frequency
response in nine cases was studied using MMS. In order to verify the above theoretical results,
the long-time integral method (LTI) is used to calculate Equation (11) and the numerical solution is
obtained. First, the frequency responses of D, H, and I are shown in Figure 10. Adjusting the AC
voltage amplitude to a frequency response maximum amplitude of 0.1 shows that the vibration inside
the curve exhibits hardening while the outer side exhibits softening. The point D corresponds to linear
vibration in the special case of λ1 = 0 and λ2 = 0.

Table 1. Section parameter corresponding to nine special points.

Special Points λ1 λ2

A −0.18 0.55
B 0 0.419
C 0.061 0.225
D 0 0
E −0.225 −0.061
F −0.419 0
G −0.55 0.18
H −0.1 0.1
I 0.1 −0.1
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stable solutions and dashed lines represent unstable solutions. The dotted line shows the stable 
solution without physical meaning. 

The equivalent frequency and amplitude of the microbeam in different conditions are also 
important for studying the micro-resonator. Figure 12 shows the frequency response curves in 
different conditions. It is found that the equivalent frequencies and amplitudes of various points in 
Figure 9 are different. In addition, the points that are symmetric about y x=  in Figure 12 have the 
same equivalent frequency and different amplitudes. The vibration amplitude in region I is relatively 
large. 

Figure 10. Frequency response curves for D (a), H (b), and I (c). The solid line shows the theoretically
stable solution and the dotted line shows the theoretically unstable solution.

Next, points A, B, C, and F in Figure 9 are analyzed to determine the influence of section variation
on static pull-in so as to increase the working range of the micro-resonator, where point B and F are
symmetric about y = x. Figure 11a shows that the maximum static suction voltage is obtained when
λ1 = −0.18 and λ2 = 0.55. This also verifies the conclusion in Section 3, namely that the pull-in
voltage is determined by the larger value out of λ1 and −λ2. The static pull-in curve is symmetric
around x = 0 when the point in Figure 7 is symmetric about y = x, where the static pull-in voltage is
equal and pull-in position is the opposite, as shown in Figure 11b.
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Figure 11. The relationship between the DC voltage and the static equilibrium point. (a) Static
equilibrium point for A, B, C, and D. (b) Static equilibrium point for B and F cases. Solid lines represent
stable solutions and dashed lines represent unstable solutions. The dotted line shows the stable solution
without physical meaning.

The equivalent frequency and amplitude of the microbeam in different conditions are also
important for studying the micro-resonator. Figure 12 shows the frequency response curves in different
conditions. It is found that the equivalent frequencies and amplitudes of various points in Figure 9 are
different. In addition, the points that are symmetric about y = x in Figure 12 have the same equivalent
frequency and different amplitudes. The vibration amplitude in region I is relatively large.
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Figure 12. Frequency response curves for A, B, C, D, E and F cases: (a) the case of D; (b) the cases of A
and G; (c) the cases of B and G; (d) the cases of C and E.

The variation in the resonance frequency and amplitude with the sectional parameters λ1 and λ2

are studied based on the results in Figure 9. Figure 13a shows that the resonance frequency is largest
at point A, and the resonance frequency first decreases and then increases from point A to point B.
From point B to point D, the resonance frequency decreases rapidly, reaching point λ1 = 0, λ2 = 0,
and the resonance frequency is smallest. The trends of G, E, and F are the same as those of A, B, and C,
and the corresponding equivalent frequency is equal at the point where y = x is symmetric. As shown
in Figure 13b, the resonance amplitude increases from point A to point C. For the point corresponding
to the y = x symmetry in Figure 9, the amplitude is larger when λ1 is larger. The maximum amplitude
appears between C and D.
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4.2. Dynamic Analysis with Large Amplitude

Since traditional MMS is only suitable for small vibrations, the traditional MMS will produce
incorrect results when vibration amplitude exceeds a certain value [32]. In order to study the
mechanical properties of the system when the vibration exceeds a certain amplitude, a new multi-scale
method (NMMS) is introduced by combining the homotropy idea with the multi-scale method [33].
Equation (11) is solved using a Simulink dynamics simulation in order to verify the accuracy of
the results.

It is assumed that the final vibration frequency is equal to the excitation frequency. A scaling
parameters ε can be used to convert Equation (11) into the following form

..
u + ω2u = ε

{
− c′C22

B22

.
u + (ω2 − k1

B22
)u− k0

B22
− k2

B22
u2 − k3

B22
u3 − k4

B22
u4 − k5

B22
u5 − k6

B22
u6 − k7

B22
u7

+ 2B12−2B21
B22

u
..
u + 4B11−B20−B02

B22
u2 ..

u + 2B10−2B01
B22

u3 ..
u− B00

B22
u4 ..

u

+ 2α1ρ
B22

(vac1 + vac2u + vac2u2) cos(ωt)
}

(33)
The approximate solution to Equation (33) is expressed as follows:

u(t, ε) = u0(T0, T1, T2) + εu1(T0, T1, T2) + ε2u2(T0, T1, T2) + · · · . (34)

Substituting Equation (34) into (33) and equating coefficients of like powers of ε yields the
following equations:

O(ε0) : D2
0u0 + ω2u0 = 0. (35)

O(ε1) : D2
0u1 + ω2u1 = −2D0D1u1 − c′C22

B22
D0u + (ω2 − k1

B22
)u0 − k0

B22
− k2

B22
u0

2 − k3
B22

u0
3

− k4
B22

u0
4 − k5

B22
u0

5 − k6
B22

u0
6 − k7

B22
u0

7 + 2B12−2B21
B22

u0D2
0u0 +

4B11−B20−B02
B22

u0
2D2

0u0

+ 2B10−2B01
B22

u0
3D2

0u0 − B00
B22

u0
4D2

0u0 +
2α1ρ
B22

(vac1 + vac2u0 + vac2u0
2) cos(ωt)

(36)

where: Dn = ∂
∂Tn

, n = (0, 1, 2).
The general solution to Equation (35) can be written in the following form:

u0 = A(T1) cos(ωT0 + β(T1)), (37)

where A(T1) is vibration amplitude and β(T1) is the vibration phase.



Sensors 2019, 19, 1348 16 of 24

The secular term derived from MMS is expressed as:

∫ 2π
0

(
−2D0D1u1 − c′C22

B22
D0u + (ω2 − k1

B22
)u0 − k0

B22
− k2

B22
u0

2 − k3
B22

u0
3 − k4

B22
u0

4 − k5
B22

u0
5 − k6

B22
u0

6

− k7
B22

u0
7 + 2B12−2B21

B22
u0D2

0u0 +
4B11−B20−B02

B22
u0

2D2
0u0 +

2B10−2B01
B22

u0
3D2

0u0 − B00
B22

u0
4D2

0u0

+ 2α1ρ
B22

(vac1 + vac2u0 + vac2u0
2) cos(ωt)

)
exp(−iϕ)dϕ

(38)

where ϕ = ωT0 + β(T1).
Substituting Equation (37) into Equation (38) and separating the imaginary and real parts yields:

da
dT1

= ac′C22
2B22

− vac1α1ρ
B22ω sin(β)− a2vac3α1ρ

4B22ω sin(β)

a dβ
dT1

= − ak1
2B22ω + 3a3k3

8B22ω + 5a5k5
16B22ω + 35a7k7

128B22ω −
aω
2 −

3a3B20ω
8B22

− 3a3B02ω
8B22

+ 3a3B11ω
2B22

− 5a5B00ω
16B22

− vac1α1ρ
B22ω cos(β)− 3a2vac3α1ρ

4B22ω cos(β)

. (39)

The steady-state response can be obtained by applying the condition Da/DT1 = Dϕ/DT = 0.
The ultimate frequency response can be deduced as follows:

4a2c′2C2
22ω2/(4vac1 + a2vac3)

2
α2

1ρ2 + (64ak1 + 48a3k3 + 40a5k5 + 35a7k7 − 48a3B20ω2

−48a3B02ω2 + 192a5B11ω2 − 40a5B00ω2 − 60aB22ω2)2/1024(4vac1 + 3a2vac3)
2
α2

1ρ2 = 1
(40)

The micro-resonator vibration amplitude increases as the AC voltage amplitude increases.
The physical parameters of the microbeam are L = 400 µm, b = 45 µm, d = 3 µm, h0 = 2 µm,
Vdc = 60 V, E = 1.65× 1011 Pa, and ρ = 2.33× 103 kg/m3. Select the upper section parameters
λ1 = −0.2 and λ2 = 0.2. The results from MMS, NMMS, and the Simulink dynamics simulation
are compared in Figure 14, and the results from the three methods are found to be consistent when
Vac = 0.05 V. However, the MMS results begins to exhibit errors when Vac = 0.1 V as the vibration
amplitude increases, while the NMMS results are still consistent with the simulation results. The system
vibration appears to transition from hardening to softening when Vac = 0.2V. The new behavior can
be obtained with NMMS. It is worth noting that the frequency response curve is composed of high
and low energy branches when the vibration amplitude is small. As the amplitude increases, the two
branches gradually converge. Since the main purpose of this chapter is to discuss the nonlinear
softening-hardening transition behavior, it will not be discussed in further detail here. A detailed
discussion can be found in literature [28].
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Figure 14. Influence of the AC voltage on the frequency response curve when (a) Vac = 0.05 V,
(b) Vac = 0.1 V, (c) Vac = 0.15 V, and (d) Vac = 0.20 V. The green straight line shows the theoretically
stable solution obtained with MMS. The green dotted line shows the theoretically unstable solution
obtained with MMS. The red straight line shows a theoretically stable solution obtained with NMMS.
The red dotted line shows the theoretically unstable solution obtained with NMMS. Circles show the
numerical solution obtained with the Simulink dynamics simulation (NS).

Two kinds of motion can occur at the transition point: dynamic pull-in and jump to a higher
stable branch. The energy output is higher in the second case. Changes in the softening-hardening
transition point can be observed as the vibration amplitude increases from Vac = 0.2 V to Vac = 0.25 V,
Vac = 0.3 V, and Vac = 0.35 V, and the corresponding frequency response curve can be drawn. One can
see from Figure 15 that the displacements corresponding to nonlinear softening-hardening transition
points in the four cases are almost the same. It can be inferred that the position of the transition point
does not change as the vibration amplitude increases or the change is negligible at the transition point.

According to previous studies, the location of the transition point is related to the microbeam
thickness and DC voltage. The location of the transition point can be obtained by calculating
du/dω = 0, yielding the relationship between the thickness, DC voltage, and transition point.
The transition point can only be obtained numerically because the resulting equation is more
complicated. Curve fitting is used here to determine the transition point. There are two transition
points in each frequency response curve. Figure 16 shows that the amplitudes corresponding to the
two transition points are nearly equal. Therefore, only one curve can be used for the two positions.
As can be seen from Figure 14, the position of softening-hardening transition point decreases with the
increase of residual stress. Figure 16a shows the relationship between the thickness and the transition
point position, and Figure 16b shows the relationship between the DC voltage and the transition
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point position. The straight line shows the solution drawn with the fitted equation, and the circle
shows the numerical solution obtained by the Newton iteration. The green and blue circles show the
left and right transition points, respectively. A comprehensive analysis of the two curves yields the
following equation:

u = 0.499− 0.0057Vdc − 1.1613(λ1 − λ2)− 0.4846(λ1 − λ2)
2. (41)
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Figure 16. The relationship between the transition points and physical parameters of the system under
different residual stresses. (a) The relationship between the transition points and λ1 − λ2. (b) The
relationship between the transition points and DC voltage. The straight line shows the result obtained
with Equation (41). Circles show the exact position of the transition point obtained by the Equation (40).

Next, the relationship between the DC voltage, microbeam thickness, and transition point position
is verified. Table 2 shows the case where the voltages are Vdc = 30 V, Vdc = 40 V, Vdc = 50 V,
and Vdc = 60 V. Each case considers four different thicknesses to account for the breadth of the data.
ue is the transition point position obtained from empirical equation, un l and un r are the positions of
left and right transition points obtained by setting du/dω = 0, respectively, un l is the left transition
point, and un r is the right transition point. The “/” symbol indicates no transition point, i.e., there is
no softening-hardening transition. Table 2 shows that the error between the transition point position
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and the actual transition point obtained from Equation (41) is small, which verifies the accuracy of
the equation.

Table 2. The comparison of transition points obtained with two methods.

Vdc (V) λ1−λ2 ue un l un r Error

60

−0.6 0.6793 0.6882 0.6905 −1.29%/−1.62%
−0.5 0.6165 0.6133 0.6156 0.52%/0.15%
−0.4 0.5440 0.5306 0.5326 2.53%/2.14%
−0.3 0.4618 0.4364 0.4373 5.82%/5.60%

50

−0.5 0.6735 0.6729 0.6757 0.09%/−0.33%
−0.4 0.6010 0.5927 0.5958 1.40%/0.87%
−0.3 0.5188 0.5045 0.5070 2.83%/2.33%
−0.2 0.4269 0.4046 0.4049 5.51%/5.43%

40

−0.4 0.6580 0.6546 0.6585 0.52%/−0.08%
−0.3 0.5758 0.5686 0.5722 1.27%/0.63%
−0.2 0.4839 0.4742 0.4767 2.05%/1.51%
−0.1 0.3823 0.3682 0.3674 3.83%/4.06%

30

−0.3 0.6328 0.6349 0.6412 −0.33%/−1.31%
−0.2 0.5409 0.5386 0.5439 0.43%/1.12%
−0.1 0.4393 0.4370 0.4390 0.53%/0.07%
0.0 0.3280 0.3254 0.3211 0.80%/2.15%

5. Finite Element Verification

5.1. Equivalent Natural Frequency Simulation

The microbeam resonator was explored and optimized using theoretical and numerical analysis.
The finite element method will be used to simulate the optimization results using COMSOL
Multiphysics software.

In COMSOL, the “solid mechanics” interface and “electrostatic” interface are combined with
a dynamic grid function. First, the steady state of the model and the eigenfrequency in the steady
state are studied. Here, finite element simulations are performed for the aforementioned seven cases,
and the calculated simulation results are shown in Figure 17. One can see that the theoretical and
simulation results are consistent, and the pull-in voltage at A, B, C, D, and G in Figure 17 are consistent
with those in Figure 11.

The seven cases correspond to linear vibration when Vdc = 23.95 V. The equivalent theoretical
frequency results are compared with the finite element equivalent frequency results when Vdc = 23.95 V
in Table 3. It is found that the maximum error is only 5.49%, which shows that the theoretical and
numerical methods are consistent.

Table 3. Comparison of the finite element simulation and theoretical results.

A/G B/F C/E D H I

Theoretical frequency 18.507 18.289 17.050 15.973 16.752 12.269
Simulation frequency 17.876 18.530 16.371 15.354 16.621 11.631

Error 3.51% −1.30% 4.15% 4.03% 0.79% 5.49%
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5.2. Equivalent Natural Frequency Simulation

The simulated equivalent natural frequency contains some error, although the error between the
finite element solution and the theoretical solution is relatively small. More simulated frequency
response curves are presented in this section. The physical parameters of the microbeam are
L = 400 µm, b = 45 µm, d = 3 µm, h0 = 2 µm, Vdc = 60 V, E = 1.65 × 1011 Pa, and
ρ = 2.33× 103 kg/m3. The simulated sectional parameters were λ1 = −0.2 and λ2 = 0.2. Figure 16
shows a comparison between the simulation and theoretical results.

One can see that the amplitude response is linear when the amplitude is small, while hardening
appears at higher amplitude. The red asterisk shows the results obtained from the frequency response
analysis in COMSOL. One can see that the simulated amplitude is consistent with the theoretical
amplitude when the AC voltage varies. When Vac = 0.02V, the simulated amplitude is 0.0409 and the
theoretical amplitude is 0.0406, yielding a relative error of −0.73%. When Vac = 0.1 V, the simulated
amplitude is 0.204 and the theoretical amplitude is 0.203, yielding a relative error of 0.49%. However,
because the frequency response analysis solver is a linear solver, the results do not exhibit hardening
or softening. Each frequency is selected separately in order to further simulate the nonlinearity.
After determining the frequency at a certain point, the corresponding amplitude is obtained with
the transient solver. This step was repeated with different frequencies in order to determine the
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corresponding amplitude. This result is shown in blue circles in Figure 18. One can see that the finite
element solution exhibits hardening. Moreover, the simulated natural frequency in the frequency
domain is the same as the natural frequency in the time domain. The two simulation results are very
consistent when the amplitude is small, but the maximum vibration amplitude from the time domain
is lower than the other two results as the amplitude increases. This phenomenon may arise because
the time interval corresponding to the highest point position is too short in the time domain analysis,
thus the displacement does not point near the peak.
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6. Conclusions

Static and dynamic analyses of electrostatically-driven microbeam resonators are presented in this
paper. Two parametric equations describing control over the upper and lower sections of microbeam
were introduced. The mechanical properties of the micro-resonator are strengthened by optimizing
the parameters in these equations. The neutral plane tension, neutral plane bending, and electrostatic
nonlinearity are considered in the mathematical model. First, the model is reduced and simplified by
Galerkin discretization. Then the relationship between two section parameters under linear vibration
is obtained by a Newton iteration. Finally, the vibration at small and large amplitudes were obtained
using MMS and NMMS. The results were verified with the Runge-Kutta method, Simulink dynamic
simulation and finite element method.

The key conclusions are as follows.

1. The potential energy and electrostatic force are greater when the microbeam intermediate
thickness is thinner for a given applied voltage. Decreasing the thickness at the midpoint
of the microbeam will increase the pull-in voltage and increase the likelihood of secondary pull-in.
The pull-in position is biased toward the larger of λ1 and −λ2 when microbeam is asymmetric
about the neutral plane, and the pull-in voltage is primarily determined by the larger of λ1

and −λ2.
2. When the micro-resonator vibrates linearly, the relationship between λ1 and λ2 is symmetric

at y = x. The eigenfrequency and amplitude of the microbeam are studied when λ1 and λ2

correspond to linear vibration. Regarding the y = x symmetric point in Figure 7, the microbeams
have the same eigenfrequency and different amplitudes. The amplitude near the AC voltage
source is larger.
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3. The MMS should not be used as the amplitude increases. The frequency response obtained
with MMS will exhibit weaker nonlinear softening. If the initial vibration exhibits hardening,
the transition between hardening and softening will occur at a certain time as the vibration
amplitude increases. The position of the transition point does not change as the amplitude
continues to increase. At the transition point, the micro-resonator can jump to a higher stable
branch and output more energy.

It is found that the static and dynamic behaviors of micro-resonator can be changed by adjusting
the microbeam shape. Determining the appropriate geometry can improve the mechanical properties
for given raw materials.
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Appendix A

p =
∫ 1

0
A(x)φ′(x)2dx (A1)

q =
∫ 1

0
A(x)φ′(x)(y1(x) + y2(x))′dx (A2)

Aij =
∫ 1

0
(I(x)φ′′ (x))′′ (1− y1(x))i(1 + y2(x))jφ(x)5−i−jdx (A3)

Bij =
∫ 1

0
A(x)φ(x)(1− y1(x))i(1+y2(x))jφ(x)5−i−jdx (A4)

Cij =
∫ 1

0
φ(x)(1− y1(x))i(1 + y2(x))jφ(x)5−i−jdx (A5)

Dij =
∫ 1

0
φ′′ (x)(1− y1(x))i(1 + y2(x))jφ(x)5−i−jdx (A6)

Eij =
∫ 1

0
(y1(x) + y2(x))′′ (1− y1(x))i(1+y2(x))jφ(x)5−i−jdx (A7)

vdc1 =
∫ 1

0
(1 + y2(x))2 − (1− y1(x))2dx (A8)

vdc2 =
∫ 1

0
2(1 + y2(x)− y1(x))φ(x)dx (A9)

vac1 =
∫ 1

0
(1 + y2(x))2dx (A10)

vac2 =
∫ 1

0
2(1 + y2(x))φ(x)dx (A11)

vac3 =
∫ 1

0
φ(x)2dx (A12)

g = B22 + 2(B21 − B12)u(t) + (B20 + B02 − 4B11)u(t)
2 + 2(B01 − B10)u(t)

3 + B00u(t)4 (A13)

µ = c′(C22 + 2(C21 − C12)u(t) + (C20 + C02 − 4C11)u(t)
2 + 2(C01 − C10)u(t)

3 + C00u(t)4) (A14)
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k0 = −1
2

NF22 − α1vdc1 (A15)

k1 = A22 − N(D22 + E21 − E12)−
α2

2
qE22 − α1vdc2 (A16)

k2 = 2(A21− A12)−N(2D21− 2D12 +
1
2

E20 +
1
2

E02− 2E11)− α2(
1
2

pE22 + qD22 + qE21− qE12) (A17)

k3 = A20 + A02 − 4A11 − N(D20 + D02 − 4D11 + E01 − E10)− α2(pD22 + pE21 − pE12 + 2qD21

−2qD12 +
1
2 qE20 +

1
2 qE02 − 2qE11)

(A18)

k4 = 2A01 − 2A10 − N(2D01 − 2D10 +
1
2 E00)− α2(2pD21 − 2pD12 +

1
2 pE20 +

1
2 pE02

−2pE11 + qD20 + qD02 − 4qD11 + qE01 − qE10)
(A19)

k5 = A00 − ND00 − α2(pD20 + pD02 − 4pD11 + pE01 − pE10 + 2qD01 − 2qD10 +
1
2

qE00) (A20)

k6 = −α2(2pD01 − 2pD10 +
1
2

pE00 + qD00) (A21)

k7 = −α2 pD00 (A22)

Appendix B

χ = B22 + 2(B21 − B12)uD + (B20 + B02 − 4B11)uD
2 + 2(B01 − B10)uD

3 + B00uD
4 (A23)

am = (2(B21 − B12) + 2(B20 + B02 − 4B11)uD + 6(B01 − B10)uD
2 + 4B00uD

3)/χ (A24)

an = (B20 + B02 − 4B11 + 6(B01 − B10)uD + 6B00uD
2)/χ (A25)

ωn = ((k1 + 2k2uD + 3k3uD
2 + 4k4uD

3 + 5k5uD
4 + 6k6uD

5 + 7k7uD
6)/χ)

0.5
(A26)

aq = (k2 + 3k3uD + 6k4uD
2 + 10k5uD

3 + 15k6uD
4 + 21k7uD

5)/χ (A27)

ac = (k3uD + 4k4uD + 10k5uD
2 + 20k6uD

3 + 35k7uD
4)/χ (A28)

f = 2α1ρ(vac1 + vac2uD + vac2uD
2)/χ (A29)
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