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Abstract: Electroencephalography (EEG) signals may provide abundant information reflecting the
developmental changes in brain status. It usually takes a long time to finally judge whether a brain
is dead, so an effective pre-test of brain states method is needed. In this paper, we present a hybrid
processing pipeline to differentiate brain death and coma patients based on canonical correlation
analysis (CCA) of power spectral density, complexity features, and feature fusion for group analysis.
In addition, time-varying power spectrum and complexity were observed based on the analysis of
individual patients, which can be used to monitor the change of brain status over time. Results
showed three major differences between brain death and coma groups of EEG signal: slowing,
increased complexity, and the improvement on classification accuracy with feature fusion. To the best
of our knowledge, this is the first scheme for joint general analysis and time-varying state monitoring.
Delta-band relative power spectrum density and permutation entropy could effectively be regarded
as potential features of discrimination analysis on brain death and coma patients.

Keywords: EEG; brain death; power spectrum density; entropy; CCA

1. Introduction

The generally accepted definition of brain death is the irreversible loss functions of the whole brain
(including hemisphere and brain stem) [1,2]. The procedure of brain death determination normally
takes a long time and has certain dangerous operations (e.g., in apnea test, the respirator needs to be
removed) [3] (see Figure 1). Electroencephalography (EEG) is frequently used to analyze and auxiliarily
diagnose brain death clinically with the features of high time resolution and relative potable [4,5].
Since the characteristics of irreversible coma were first defined by the ad hoc Committee of Harvard
Medical School, most countries have made their own legal provisions on brain death [6,7]. But the
current criterion from EEG focuses on the amplitude value but is lacking in machine learning, signal
processing, and statistical analysis investigations. In this paper, we aimed to use less electrodes to
explore more distinctive results from EEG for brain death determination, specifically differentiating
brain death from coma.
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Figure 1. Procedure of brain death diagnosis.

Power spectrum density (PSD) estimation is a signal processing measure to calculate a signal’s
averaging power distributed across frequency. At present, quantitative analysis studies have indicated
that neurology disorders cause power spectrum density to change in EEG signals [8–10]. For instance,
Sury et al. have found that infants more than three months old had a higher power of EEG signal
existing in the interval 5–20 Hz [11]. In Alzheimer’s patients the alpha EEG power is significantly
decreased but the theta power is increased [12]. Myers et al. have discovered that the high-frequency
brain activity in the beta-gamma range is preserved in the Cerebral Hypothermia population [13].
In addition, it consists of non-parameter and parameter-based methods [14]. Thereinto, the parametric
autoregressive (AR) Yuler method is applied in our EEG PSD with the advantages of decreased spectral
losses and better frequency resolution [15,16] compared to the classical Fast Fourier Transform (FFT).
Another measure of signal processing is entropy, which characterizes the nonlinear dynamics in
signals. The value of entropy represents the predictability of the signal and, specifically, the higher
value means lower predictability [17,18]. Entropy measures have been used to learn the EEG behaviour
in different neural disorder states, like anesthesia [19], schizophrenia [20], obsessive compulsive [21],
epilepsy diagnosis [22], and Alzheimer’s disease [23]. Additionally, from different views of calculation,
various entropy measures have been generated [17]. Thereinto, permutation entropy (PE) describes
complexity through a phase space reconstruction with strengths of simplicity, robustness, constantness,
and extremely computational efficiency [24,25]. Liang et al. have found that PE outperforms the other
nine entropy measures in anesthesia EEG states detection [26]. To our best knowledge, PE has not been
applied to brain death determination.

We hypothesize that a joint feature using both PSD and PE measures may improve the
classification accuracy in brain death and coma patients. They represent the power energy distributions
in patients in frequency domain and the complexity of EEG signals in time domain, respectively.
The feature-based fusion method would combine the two features to improve the classification
compared to the common concatenation EEG features. Such a hybrid system would be useful to
design a computer-aided diagnosis system to address solutions germane to differentiating coma and
brain death EEG. In this paper, our contributions are summarized as follows:
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1. We developed a hybrid system for distinguishing between brain death and coma EEG of six
symmetrical frontal electrodes that would be easier to implement with a computer-aided system.

2. We revealed the complementary characteristics of relative PSD and PE. PE is first introduced in
studying such populations. And we obtained better performance by using CCA feature fusion.

3. We performed the AR-based time-frequency analysis and proposed the time-varying PE
method to monitor the dynamical variations of the two features covering both frequency and
time domains.

This paper is structured as follows: Section 1 describes the background of the paper. Section 2
reveals the methodologies in detail. Section 3 presents the experimental results. Finally, discussion
and conclusion are given in Sections 4 and 5.

2. Materials and Methods

2.1. Participants

The sample consisted of 53 patients’ EEG signals. The patients were from two groups, namely
brain death and coma (in China, data recording of brain death patients is allowed). Of these, sixteen
patients were diagnosed as brain dead (9 females and 7 male), with ages rangin from 17 to 85 years
old. Thirty-seven patients were in coma status (9 females and 28 males), aged 23 to 65 years old. The
diagnoses were made independently by two experienced clinicians, based on a rigorous diagnostic
process. All patients were recruited from a Chinese hospital’s ICU from June 2004 to May 2012.

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of Huashan hospital. In addition, given the coma state of the
patient, the needed informed consent was obtained by the patient’s family, in order to perform the
EEG recordings and to publish results based on their anonymized data.

2.2. EEG Recordings and Preprocessing

EEG data were recorded continuously, based on the patients’ health conditions. Particularly,
the participants were recorded with different number sessions. EEGs were sampled at 1000 Hz using
the NeuroScan ESI-64 system. During recording, the patients were laying on the ICU beds, and it was
not safe to move them. So, we used forehead electrodes to avoid more hairy areas and touching of
patients. The layout of nine electrodes is shown in Figure 2A. We segmented each EEG dataset into five
1-min non-overlapping epochs. Moreover, we used the ICA (independent component analysis)-based
MARA plug-in in EEGLAB to remove the artifacts, and then filtered the denoised EEG into six
sub-bands: γ2 (41–100 Hz), γ1 (30–40 Hz), β (13–30 Hz), α (8–12 Hz), θ (4–7 Hz), and δ (0.5–4 Hz). We
explored the higher γ2 frequency as: (1) The bands of interest 0.5–100 Hz and (2) the potential effect of
such bands in these populations.
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Figure 2. Processing pipe of classification between brain death and coma participants, using various
features. (A) The lay of electroencephalography (EEG) electrodes and one patient’s EEG segmented
with five non-overlapping windows. (B) The block diagram of discriminative analysis for these patients.

2.3. Power Spectrum Density Estimation

2.3.1. Relative PSD

The techniques can generally be divided into non-parametric and parametric methods. The parametric
methods were proposed to increase the frequency resolution due to the windowed leakage effect
suppression [14]. In EEG analysis, AR-based is the most common parametric method [27,28]. To obtain a
better PSD estimation, we calculated it through a 250-points length sliding Hamming window with half
overlapping. The function of AR(p) is as [8,29]:

x(n) =
p

∑
k=1

akx(n− k) + σ2, (1)

where p is order of the model and ak is the coefficient.
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We used the Yule-Walker method with minimization of a predictor error to estimate ak. Then,
the PSD is calculated as [30]:

p̂( f ) =
σ̂2

ε

|1 + ∑
p
t=1 â(i)e−j f i2π |

, (2)

where â(i) are estimations of AR parameters obtained from the Levinson–Durbin recursions and
p = 10. The relative PSD is obtained as:

Prelative =
∑

f= f2
f= f1

P( f )

∑
f= fh
f= fl

P( f )
, (3)

where [ fl , fh] = [0.5, 100] and [ f1, f2] is the interval of specific sub-frequency band.

2.3.2. Time-Varying Power Spectrum Estimation

Based on the power spectrum estimation by AR model, we applied the multi-taper approach to
grasp the time-varying power spectrum estimation, which has been proven to be able to decrease
variance further. The K orthogonal tapers divided the data into K AR models to obtain the spectrum
estimation P̂( f ), so the average spectrum p( f ) is given by [31]:

p( f ) =
1
K

K

∑
k=1

P̂k( f ). (4)

2.4. Entropy

2.4.1. Permutation Entropy

PE was first proposed in 2002, which has been applied to data analysis in various fields.
PE produces a time series into ordinal patterns that are coded by permutations [32]. PE has advantages
of low computational complexity, stability, and simplicity [26]. For a given time series with N points
x(1), x(2), ..., x(N), the time series is reconstructed firstly:

Xi = x(i), x(i + τ), ..., x(i + (n− 1)τ), i = 1, 2, ..., N − (n− 1)τ. (5)

So, we can get a group of symbol sequence from each row of the reconstructed matrix:

s(l) = (j1, j2, ..., jm), (6)

where l = 1, 2, ..., k and k ≤ m!. There are m! permutations, and the reconstructed Xi corresponds to
one of those permutations. Suppose Pj(j ∈ [1, k]) is the probability of jth symbol sequence. PE entropy
is defined as:

S(s)
1 = −

m!

∑
j=1

Pjlog(Pj). (7)

2.4.2. Time-Varying Permutation Entropy

To monitor the EEG’s complexity variation over time, we transferred the PE into the time-varying
form. The values of PE are calculated in a set of consecutive time windows. We used N-1 windows to
divide the EEG data XN into N intervals xi(n), and then calculate the PE in each x. For a given EEG,
the definition of time-varying PE we made as:

PE(XN , m)t = [PE(x1(n), m), PE(x2, m), ..., PE(xN(n), m)] = −
m!

∑
j=1

Pjtlog(Pjt), (8)
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where Pj(j ∈ [1, k])t is the probability of jth symbol sequence at t interval and m is the order of
PE. As a result, if the denoted variable t ranges from t1 to t2 with a step length t′, the values of
PE are obtained in dynamic non-overlapping windows. We can use this PE entropy to monitor the
time-varying PE values, with the state variation for clinical data.

2.5. Feature Selection

2.5.1. Principle Component Analysis

Principle component analysis (PCA) is a feature selection method that projects the original
feature matrix onto new space with lower dimension to avoid as much as the variation present in the
original data [33]. These projections are called the principal components (PC) of the original dataset.
In our study, only the first (Na) and (Nb) PCs that explain at least 70% of the variance were retained for
the relative PSD metrics and the PE metrics, respectively.

2.5.2. Canonical Correlation Analysis

The reduced datasets given by the PCA output for the relative PSD matrices (A ∈ R) and PE
matrices (B ∈ R) were combined to obtain a single set of features, which was realized by CCA-based
feature fusion. We computed the canonical correlations of matrices A and B using the linear algebraic
formulation presented in [34]. First, we performed a compact singular value decomposition (SVD) of
matrices A = UA ∑A V T

A and B = UB ∑B V T
B . Then the canonical projective matrices were computed

as WA = VA ∑−1
A U and WB = VB ∑−1

B U, where U and V were found as UT
AUB = U ∑ VT . As defined

in Reference [34], feature fusion is achieved in the projected spaces by concatenation X = AWA and
Y = BWB:

Z =
(

X Y
)
=

(
WA 0

0 WB

)
, (9)

where Z ∈ RNp×2r with r = min(rank(A), rank(B)), are the canonical correlation discriminative
features (CCDF).

2.6. Statistical Analysis

One-way ANOVA and post-correction were used to assess differences between groups of the relative
PSD and PE for brain death and coma groups. Two observed returning values of ANOVA are f -value
and p-value. Bigger f -value and lower p-value mean more significant difference [8,35]. Additionally, to
minimize type I error, the strict statistical Bonferroni post-correction [36] was performed.

The final task was to apply the classifier to evaluate the performance of relative PSD and PE features
on distinguishing between brain death and coma patients in a specific sub-band with significantly
difference. The classifier adopted here was the support vector machine (SVM) implemented based on
the LIBSVM library [37] and evaluated its performance by leave-one-out cross validation. The SVM was
trained using a Gaussian Kernel. The kernel width and regulation parameter C in the SVM were tuned
for each fold separately using a nested cross-validation 3-stage grid search. We quantify the performance
of classifier based on the cross-validation stage results as:

Sensitivity =
TP

TP + FN
× 100%

Speci f icity =
TN

FP + TN
× 100%

Acc =
TP + TN

TP + FN + FP + TN
× 100%,

where TP is the number of brain death patients right classification; TN is the number of coma patients
right classification; FP is the number of coma recognized into brain death; and FN is the number of brain
death recognized as coma. Further, we also investigated the area under receiver operating characteristic



Sensors 2019, 19, 1342 7 of 15

(ROC) curve (AUC), which also indicates the performance of a classifier [38,39]. Additionally, Figure 2
shows the processing pipe for differentiating brain death and coma patients in EEG.

3. Results

3.1. Power Spectrum Density

3.1.1. Sub-Bands PSD Ratio

We investigated the relative PSD (rPSD) features in group analysis and the time-varying spectral
feature in special individual analysis over different frequency bands. Figure 3 shows the group feature
analysis results. As the frequency rises, the rPSD is getting lower and the rPSD of lower band is
accounting for large ratio between the two groups. For instance, rPSD values in δ band were at the
interval [0.75 0.83], and the values in γ band greatly decreased into the the interval [0.0005 0.009].
The specific results are summarized as follows: (1) Across different frequency bands, the rPSD of coma
group is higher only in θ band. (2) Across electrodes (Figure 3a,b) both in δ and θ bands, the rPSD
values and the changing trends are similar, except FP2, F8 in β, and FP2 in the θ band. (3) Across
electrodes in α and β bands (Figure 3c,d), the brain death’s rPSD values are much bigger, compared
to the coma group. (4) Across electrodes (Figure 3e,f) in γ band, the rPSD values are similar in both
groups with the increase of the frequency band.

Coma group
Brain death group

Coma group
Brain death group

Coma group
Brain death group

Coma group
Brain death goup

Coma group
Brain death group

FP1 FP2 F3 F4 F7 F8 FP1 FP2 F3 F4 F7 F8 FP1 FP2 F3 F4 F7 F8

FP1 FP2 F3 F4 F7 F8 FP1 FP2 F3 F4 F7 F8 FP1 FP2 F3 F4 F7 F8
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Figure 3. The total relative power spectrum density (rPSD) values of brain death and coma in (a) δ, (b)
θ, (c) α, (d) β, (e) γ1, and (f) γ2 bands with six EEG electrodes.

Further, we averaged all the electrodes across frequency bands to investigate a deep knowledge
of total rPSD characteristics. The results indicate that the dominate band is still δ band for both groups
and the coma’s rPSD is higer in δ band, while the brain death’s rPSD values are higher in other
bands like θ, α, β, γ1, and γ2. The rPSD values are very small for both groups in γ1 and γ2 bands
(see Figure 4). Moreover, the rPSD of these two groups are significantly differences in δ( fvalue = 21.52,
pvalue = 9.1532 × 10−5), α( fvalue = 15.86, pvalue = 0.0015), and β( fvalue = 17.10, pvalue = 0.0013)
frequency bands after post-hoc correction (see Table 1).
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Figure 4. Mean rPSD values over six electrodes for sub-bands for brain death and coma patients. Error
bars stand for standard deviations. Asterisk represents the significant difference with pvalue < 0.01
after ANOVA and post-correction.

3.1.2. Time-Varying Power Spectrum Estimation

With regard to one special patient who experienced coma status turning into brain death state,
four sessions of EEG data were recorded for this patient on 6 December 2011. Here, we took the
discriminative channel FP2 as an example, according to the Figure 3, and calculated the multi-taper
power spectrum estimation using the tapers in the range [2 3], 2 for window size and 0.1 for window
step, consistent with the sampling frequency. In Figure 5, we show that, during coma state period,
values of power spectrum are higher than brain death state period, especially in δ, θ and, α bands.
The time-frequency analysis showed the state transferring through the time axis. We concluded that this
previous coma participant’s state varied into quasi-brain death, in accordance with clinical diagnosis.

Figure 5. Comparison on time-varying power spectrum estimation for special case with coma and
brain death state.
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3.2. Entropy

3.2.1. Permutation Entropy

PE can be used to identify couplings between EEG series. The PE analysis results are indicated in
Figure 6 and Table 2 across electrodes with embedding dimension of 20. The statistical post-correction
is also used to show the significantly difference for the two groups with the marker asterisks for each
channel. Obviously, compared to coma population, the mean values of brain death PE are bigger,
while deviation values of brain death PE are smaller across electrodes. This indicates that: (1) The
brain death EEG signals were unpredictably higher than the coma EEG signals (2) The PE values of
the brain death group had a lower degree of dispersion than the coma group, even though there were
two outliers in the FP1 electrode of the brain death group. Table 2 reveals the significantly different
PE over all electrodes. The pvalues were so superbly low (≤0.0005) that the PE across electrodes were
discriminative features to classify brain death and coma patients’ EEG patterns.
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Figure 6. Comparisons of the permutation entropy (PE) across six electrodes for brain death and coma.
Asterisks represent statistical levels returned by ANOVA and post-correction *** pvalue < 0.001, ****
pvalue < 0.0001.

Table 1. Statistical results of all sub-bands rPSD for these groups.

EEG Bands fvalue pvalue

δ 21.52 9.1532 × 10−5

θ 1.62 0.2094
α 15.86 0.0015
β 17.10 0.0013

γ1 2.04 0.1601
γ2 0.57 0.4543
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Table 2. Statistical results of PE across electrodes between the brain death and coma groups.

EEG Electrode fvalue pvalue

FP1 17.53 9.1721 × 10−5

FP2 14.17 0.0005
F3 19.92 5.3619 × 10−5

F4 19.11 7.1912 × 10−5

F7 17.60 0.0001
F8 18.19 0.0001

The statistical analysis results of PE for brain death and coma patients are further analyzed across
different frequency bands, as shown in Figure 7 and Table 3. From Figure 7, it is clear that the PE
values of brain death patients were found to be a little bit higher than that of coma group in δ, θ, and α

bands. However, for the higher frequency bands, β, γ1, and γ2, the PE values of the brain death group
are lower. And in Table 3, the statistical results indicate the PE significant differences between the two
groups are in the θ and α frequency bands.

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

Brain death 
Coma

**
***

δ θ α β γ1 γ2
Figure 7. Comparisons on different sub-bands’ mean values of PE across six electrodes for the brain
death and coma patients. Asterisks represent statistical significance levels returned by ANOVA and
post-correction (** pvlaue < 0.01, *** pvalue < 0.001). Error bars represent standard deviations.

Table 3. Statistical results of sub-bands’ PE across electrodes between the brain death and coma populations.

EEG Sub-Band fvalue pvalue

δ 0.08 0.772
θ 11.83 0.0013
α 16.57 0.0002
β 2.68 0.1089

γ1 0.87 0.3553
γ2 2.76 0.1036
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3.2.2. Dynamic Permutation Entropy

For the same special patient analyzed in Section 3.1.2, we averaged the PE values across six
electrodes to compare the patient in both brain death and coma states. From Figure 8b, the PE values of
the patient in coma state were much lower than the patient’s values in brain death, where the variation
is in accordance with the state transferring. We concluded that this previous coma participant’s state
varied into quasi-brain death, in accordance with clinical diagnosis.

-100

100

0

50 100

2.0

1.0

0

0

150

200

250 3000 50 100

150

200

250 300

coma state brain death state

Time (s)

Time (s)

A
m

pl
itu

de
 (μ

V
)

PE

a)

b)

average value：0.8 average value：1.8 

Figure 8. Time-varying PE averaged over the six electrodes for a special patient in two different states.
(a) The averaged EEG signal over the six electrodes (b) The time-varying PE of the states variation.
Dash lines indicate average value over duration.

3.3. Feature Selection and Classification

We defined two different sets of features. First, a 6-dimensional feature set comprised of the
overall rPSD in δ frequency band that yielded significant differences between groups in Table 1 and
Figure 4. The second set was a 6-dimensional set comprised of the six electrodes PE values. For each of
these feature sets, we performed PCA and retained the two first PC, as they explained at least 70% of
the variance. Then, the CCA was performed using the resulting PC matrices for rPSD (A) and the PE
(B) features.

To assess the performance of the proposed methodology, we used four reduced sets of
features as follows:

set1: Two first PC for the rPSD,
set2: Two first PC for the PE values,
set3: Concatenation of the two first PC for both rPSD and PE values, and
set4: CCDF from Equation (9).

To optimize the parameters of SVM, we performed a 3-level grid search using exponentially
growing sequences in the range [2−5 215] for C and [2−5 215] for gamma. Generalization of classification
performances was ensured from leave-one-out cross validation. Classification performances of SVM
classifier with each set of features are summarized in Table 4. The ROC curves for different classifiers are
given in Figure 9. The area under each ROC curve is shown in the fifth column of Table 4. When SVM
was trained using non-fused sets of features (set1 and set2), the classification rates were below 90% but
above 85%, and the AUC values went above 85%. When we trained with the concatenation sets (set3
and and set4), the classification rates were improved. The best classification rate (92.3%) was achieved
using the concatenation fusion of the features, yielding an AUC of 0.94. Compared with the accuracy
rate using the concatenation set, the accuracy rate was improved using concatenation fusion (set4),
which is related to the higher sensitivity.
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Figure 9. Comparison of the trade of between sensitivity and specificity. ROC curves are plotted to
objectively compare the specificity and sensitivity of each classifier.

Table 4. Accuracy, sensitivity, and specificity related with the proposed methodology.

Feature Set ACC (%) Sensitivity (%) Specificity (%) AUC

1 88.40 91.55 75.00 0.89
2 87.20 90.63 73.33 0.88
3 90.10 93.93 81.81 0.91
4 93.50 94.28 84.62 0.94

4. Discussion

In this paper, we presented a methodological pipeline that aimed to differentiate the two groups
patients. From the perspective of group analysis, we identified the most discriminative features for
accurate classification with feature fusion technique using CCA over selected PC from EEG-based
rPSD and PE values. From the view of individual analysis, we extended the power spectrum and PE
to detect the power spectrum and complexity dissimilarity of patient’s EEG signals in different states.
We chose PE to estimate the complexity because it has been proven to be an efficient entropy measure
as it has less baseline variability and higher prediction probability [40].

Group analyses reveal that the dominate rPSD values of brain death (mean = 0.78, variance = 0.01)
and coma (mean = 0.82, variance = 0.01) are in δ frequency band across electrodes, which suggests
that brains in the two kinds of disorders show a slowing behavior. In addition, compared with the
coma group, the rPSD values of brain death were decreased in δ band and significantly increased
in α and β bands. The findings are in accordance with the PE values calculated in the time domain.
The higher the PE is, the higher the complexity is. The PE values of brain death were higher than the
coma group, so the distribution of different rhythm components was wider, whereas the dominate
rPSD values were in δ band for the two groups, and the rPSD values of brain death were higher in α

and β bands. Individual analysis showed that the time-frequency analysis and extended dynamic PE
measure could be used to monitor the changing states within the same brain. For the same patient,
the power spectrum values decreased and PE values increased when the patient moved into the brain
death period.

It has also been found that the complexity measures of brain death are increased. Related works
report similar results. For instance, Chen et al. discovered the significantly higher complexity values
of brain death patients across electrodes by the approximate and normalized singular spectrum
with time delay entropy measures [3]. Ni et al. have distinguished the quasi-brain death from
brain death patients by the complexity values and the values of the brain death group were higher
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than quasi-brain-death patients using sample entropy [41]. Meanwhile, Shi et al. analyzed the
power spectrum analysis and found the significant differences between coma and brain death groups.
Further, the same group reported on case study of the spectral energy [42–45]. However, the previous
works focus on one single feature analysis, like complexity and case study, without the classification
analysis. Here, we attempted to differentiate brain death and coma groups using different classifiers
and increasing the performance using concatenation rPSD with complexity PE, which is evaluated
by ROC curves. The accuracies of concatenated and CCDF-based concatenated features are 90%
(93.93% sensitivity; 81.81% specificity) and 93.5% (94.1% sensitivity; 84.62% specificity) respectively.
While using the separate feature, the accuracies achieved 88.4% (91.55% sensitivity; 75% specificity)
and 87.20% (90.63% sensitivity; 73.33% specificity) by rPSD and PE, respectively. Thus, the proposed
concatenated CCDF-based feature would be a good discriminative feature to differentiate brain death
patients from coma patients.

The limitations of our paper are illustrated as follows: (1) More classification verification needs
more data. Currently, however, the statistical analysis would be effective to differentiate brain death
and coma patients. (2) Most previous studies focused on comparing well-defined groups, such as
healthy controls versus clinical population. Here, the data came from two clinical groups, which were
only distinguishable based on whether they were brain dead.

5. Conclusions

This paper presented a system to differentiate brain death patients from coma patients. To our
best knowledge, this is the first scheme for both general analysis and time-varying state monitoring
based on relative PSD and PE processing in this population. In our experiments, we reached the
highest accuracy using a method of feature fusion based on canonical correlation analysis.

The rPSD values of α and β bands increased, but δ and γ bands extremely decreased. Moreover,
we investigated EEG signals’ complexity by PE across electrodes. It is shown that the complexity across
electrodes in brain death group would be remarkably increased and PE value is significantly increased
in θ and α bands. Finally, the best performance of classification was obtained by concatenated fusion
feature of rPSD and PE. Therefore, we suggest that rPSD in δ band and PE would be discriminative
EEG features for brain death and coma recognition.

If further validated, we would expect this approach to help in the estimation of brains in different
level of consciousness and to provide a new research approach to characterize problems in populations
with neurology disorders.
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