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Abstract: Information entropy and interclass separability are adopted as the evaluation criteria of
dimension reduction for hyperspectral remote sensor data. However, it is rather single-faceted to
simply use either information entropy or interclass separability as evaluation criteria, and will lead to
a single-target problem. In this case, the chosen optimal band combination may be unfavorable for
the improvement of follow-up classification accuracy. Thus, in this work, inter-band correlation is
considered as the premise, and information entropy and interclass separability are synthesized as
the evaluation criterion of dimension reduction. The multi-objective particle swarm optimization
algorithm is easy to implement and characterized by rapid convergence. It is adopted to search for
the optimal band combination. In addition, game theory is also introduced to dimension reduction to
coordinate potential conflicts when both information entropy and interclass separability are used
to search for the optimal band combination. Experimental results reveal that compared with the
dimensionality reduction method, which only uses information entropy or Bhattacharyya distance as
the evaluation criterion, and the method combining multiple criterions into one by weighting, the
proposed method achieves global optimum more easily, and then obtains a better band combination
and possess higher classification accuracy.

Keywords: multi-objective particle swarm optimization; game theory; hyperspectral remote sensor
data; dimension reduction; band selection

1. Introduction

With the development of high-resolution optical sensors, hyperspectral remote sensing images
(HSIs) are achieved, which consist of hundreds of different spectral bands of the same remote sensing
scene. A HSI is different from general multispectral remote sensing image. A HSI can express
the two-dimensional spatial information of the Earth’s surface and increase its one-dimensional
spectral information. Therefore, the entire HSI can be regarded as an “image cube.” As the band
number increases, the magnitude of the hyperspectral data increases geometrically. The HSI has
the characteristics of a high spectral resolution, large number of bands, large amount of data, and
high information redundancy [1,2]. These characteristics pose considerable challenges to the storage,
transmission, and processing of HSIs. Dimension reduction can effectively reduce the amount of HSIs,
and then speed up the processing of hyperspectral sensor data. In addition, it can also extract important
features of hyperspectral sensor data at the same time. Thus, dimension reduction is necessary
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before hyperspectral image processing is performed. It is of great significance to further promote
the development of the hyperspectral sensor’s application topics, such as vegetable, agriculture, oil,
geology, urban, land use, water resources, and disaster [3]. The dimension reduction method can be
divided into the feature extraction method and feature selection method. The band selection method
can reduce some unnecessary bands, which can reduce the computation cost of classification and
effectively avoid the Hughes phenomenon [4,5]. However, commonly used feature extraction methods
involve the transformation of an original feature space through linear or nonlinear transformation
and its projection to a low-dimensional feature space [6]. These methods achieve the recombination
and optimization of spectral bands. These methods include principal component analysis [7,8] and
independent component analysis [9]. After projection is completed, the arrangement order of the
original band and the correlation among bands change. Consequently, the physical characteristics of
the spectrum are destroyed and spectral information is lost, thus affecting the improvement of the
classification accuracy.

Band selection is the most commonly used method for the dimension reduction of hyperspectral
images. Band selection mainly adopts information entropy or interclass separability as evaluation
criteria. Ge et al. [10] used mutual information as evaluation criteria, clustered the bands, and
selected the bands of each cluster center as the best band combination. Liu et al. [11] utilized the
Kullback–Leibler divergence to express information and proposed an unsupervised band selection
method. Padma et al. [12] used the Jeffries–Matusita (J–M) distance to select the optimal band
combination. Huang et al. [13] proposed a hyperspectral band selection method based on particle
swarm optimization (PSO) and sequential search in 2012. These band selection methods adopt
single criterion to search for the best band combination, which is unilateral. When the information
entropy is used as the evaluation criterion, the band combination with high information entropy is
selected. However, the statistical distance between categories in the selected band combination may
not be the largest; that is, the total interclass separability may not be the best. Similarly, when the
interclass separability is used as the evaluation criterion, the information entropy of the selected band
combination may not be the highest, but it may affect the classification accuracy. Gurram et al. [14]
proposed a band selection method based on an alliance game. This method divides all bands into
several band subsets and uses the Shapley value method in the alliance game theory (GT) to calculate
the contribution of each band subset to classification. The band subset with a large contribution to
classification can be selected by setting a threshold to participate in classification and achieve the
dimension reduction of HSI. However, it requires to traverse all band subsets as much as possible,
thereby causing high computation complexity.

Considering the one-sided nature of the band selection method with single evaluation criterion,
some scholars proposed a band selection method based on multiple criteria (hereinafter referred to as
the multi-criteria band selection method). Wang et al. [15] adopted the J–M distance and the best index
factor as the evaluation criteria and combined the two evaluation criteria by using the weighting method.
Gao et al. [16] used the Choquet fuzzy integral to combine information entropy, the correlation between
bands, and interclass separability to select bands. Multi-criteria band selection can be considered a
multi-objective optimization problem. Multiple evaluation criteria correspond to multiple targets to be
optimized. Band selection aims to find the band combination that can optimize multiple targets. The basic
strategy of these multi-criteria band selection methods is to convert multiple targets into a single target,
and then use a single-target-based search algorithm to determine the optimal band combination.

However, a multi-objective optimization problem is different from a single objective optimization
problem. It has a remarkable characteristic, that is, the various subgoals of the multi-objective
optimization problem are conflicting. The improvement of one subgoal may cause the performance
degradation of another subgoal or other subgoals. That is, making multiple subgoals achieve
the optimal simultaneously is impossible. Each subgoal can be optimized by coordinating and
compromising the subgoals. Lee et al. [17], Lee et al. [18], and Zamarripa et al. [19] proposed to
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combine GT with the multi-objective optimization problem and applied GT to solve optimization
problems [20] with constraints, multiple goals, and different objective functions.

In this case, this work proposes to adopt the correlation between bands as a constraint and apply
GT to optimize two targets, namely, information entropy and interclass separability. The optimal band
combination is determined by constructing and combining a game model with multi-objective PSO.
Finally, the experiments are designed to verify the effectiveness of the proposed method.

2. Multi-Objective PSO Algorithm and GT for Dimension Reduction of Hyperspectral Images

In this section, the multi-objective optimization problem, PSO algorithm, and GT are briefly
introduced. Then, the multi evaluation criterion function of the proposed method is provided. Finally,
the implementation steps of the proposed method are described in detail.

2.1. An Overview of Multi-Objective Optimization Problems

In reality, many research and engineering problems should simultaneously optimize multiple
targets. However, many targets have mutual constraints. In the optimization of one target, other
targets become affected and worsen because optimizing multiple targets is difficult. The solution of
multi-objective optimization problems is often standard, but a compromise solution set, which is called
a Pareto-optimal set or nondominated set, exists. The general representation of the multi-objective
optimization problem is as follows:

A multi-objective optimization problem is assumed to be a maximization problem, which is
composed of N decision variables, m objective functions, and K constraints:

Maximize y = F(x) = ( f1(x), f2(x), . . . , fm(x))
s.t. e(x) = (e1(x), e2(x), e3(x), . . . , ek(x)) ≤ 0
where x = (x1, x2, x3, . . . , xn) ∈ X

y = (y1, y2, y3, . . . , ym) ∈ Y

(1)

where x is the decision vector, y is the target vector, X is the decision space, Y is the target space, and
the constraint condition, e(x), is the range of the decision volume.

In the early stage, the multi-objective optimization problem is usually converted into a single
objective optimization problem through the weighting method and solved through mathematical
programming. However, objective and constraint functions may be nonlinear and discontinuous,
and mathematical programming cannot achieve ideal results. The intelligent search algorithm has
self-organizing, self-adaptive, and self-learning characteristics and is non-restricted by the nature of
the problem. The intelligent search algorithm can be used to solve the multi-objective optimization
problem, which is high dimensional, dynamic, and complex. In 1967, Rosenberg proposed to use the
intelligent search algorithm to solve multi-objective optimization problems, but it was not implemented.
After the birth of the genetic algorithm (GA), Schaffer proposed a vector evaluation GA, which was
the first time that the intelligent search algorithm was combined with the multi-objective optimization
problem. The intelligent search algorithm has been developed into the mainstream algorithm for
multi-objective optimization problem solving. Moreover, a number of classical algorithms have
been designed.

2.2. PSO Algorithm

PSO shows a simple concept, provides easy programming, and requires few parameter
adjustments. Some scholars confirmed that the multi-objective PSO algorithm has obvious advantages
in three aspects, namely, speed, convergence, and distribution [21,22].

A group with n particles is randomly initialized, assuming that the population is X =

(X1, X2, · · · , Xn) in a D-dimension search space. When particles fly at a certain speed in space, the
position state property of particle i is set as follows: Vector: Xi = (xi1, xi2, · · · , x1D)

T . The fitness
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values corresponding to each particle position can be calculated based on the objective function.
The speed vector of particle i is Vi = (Vi1, Vi2, · · · , V1D)

T , and the individual optimal position vector is
Pi = (Pi1, Pi2, · · · , P1D)

T . At the same time, another important attribute of the population is the group
extremum. The group extremum position vector is Pg =

(
Pg1, Pg2, · · · , PgD

)T .
Each particle updates its speed and position through the following iteration formula:

Vk+1
id = ωVk

id + c1r1(Pk
id − Xk

id) + c2r2(Pk
gd − Xk

id) (2)

Xk+1
id = Xk

id + Vk+1
id (3)

where ω is the inertia weight; d = 1, 2, · · · , D; i = 1, 2, . . . , n; k is the number of current iterations;
Vid is the speed of the particle; c1 and c2 are nonnegative constants, also called acceleration factors;
and r1 and r2 are random numbers in the (0,1) interval. Particles are usually restricted to a certain
range, where Xk

id ∈ [Ld, Ud] and Ld, Ud are the lower and upper limits of the search space, respectively,
and Vk

id ∈ [Vmin,d, Vmax,d] and Vmin,d, Vmax,d are the minimum and maximum velocities, respectively.
In general, these velocities are defined as Vmin,d = −Vmax,d, where 1 ≤ d ≤ D, 1 ≤ i ≤ n.

The PSO algorithm has formed specific theoretical and experimental systems, which have been
verified by many scientists. Thus, the PSO algorithm has a flowchart and steps. With in-depth research,
its specific flowchart has been widely recognized and investigated. The specific steps of the process of
the standard PSO algorithm [23] are as follows:

Initialize the particle population, and customize the initial speed and position of the particles.

(1) According to the fitness function, determine the fitness function value of each particle initialized.
(2) Compare the fitness value of each particle in the old position with that in the new position to

determine the best position of the particle with high fitness. If the value of the particle in the new
position is better, then the optimal position, Pid, of the particle, i, is replaced by the new location.
If the fitness value of the new position is not as good as the fitness value of the original position,
then retain Pid as the optimal position.

(3) Compare the fitness value of each particle with that of other particles to determine the best
position of particles with high fitness. If the new position is good, that is, the fitness value of the
new particle is optimal, then the position of the new particle becomes Pgd. If the fitness value of
the particle in the original global optimal position, Pgd, is better, then Pgd remains as the global
optimal position.

(4) According to Formulas (1) and (2), update the speed and position of each particle.
(5) If the termination condition is not satisfied, then return to Step 2. Otherwise, terminate

this algorithm.

The flowchart of the specific standard PSO algorithm is shown in Figure 1.
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2.3. Game Theory

GT proposes that two or more people change their countermeasures according to the tactics
chosen by other people in an equal game and ultimately achieve the goal of winning or maximizing
their interests [24,25]. A basic game model consists of three basic elements, namely, the participants,
strategy sets, and utility functions. The definitions of these three basic elements are as follows:

(1). Participants. The participants, also known as the board member, are the decision-makers in the
game. The participants choose their actions reasonably in the game process to maximize their
interests. P = {1, 2, 3, · · ·, n} is set to represent n decision-makers involved in the game.

(2). Strategy sets. The strategy set stipulates the action plan for participants to respond to other
participants. sp is used to represent a specific strategy for the participant, p. Sp =

{
sp
}

is utilized
to indicate all possible strategies for the participant, p. Then, n participants choose one strategy
to form the n-dimensional vector, S = {s1, s2, s3, · · · , sn}. The vector is a strategy combination,
where sp represents the strategy selected by the participant, p.

(3). Utility functions. The utility function is the benefit obtained by the participant after the game
under a particular strategy combination, S, which can provide a more rational decision basis
for the participants to continue to participate in the game. up is used to represent the utility
function of the participant, p. Under the influence of n participants’ actions, the final income of
the participant, p, is up = up(s1, s2, s3, · · · , sn). U = {u1, u2, u3, · · · , un} is used to represent the
income of n participants in one game.

The ultimate goal of GT is to achieve a balanced state of interest by letting many people start a
game. In the process of hyperspectral image dimension reduction, information entropy and interclass
separability are the commonly used index evaluation criteria for measuring band selection. These two
evaluation criteria should be optimized to achieve the best effect of dimension reduction. However,
in fact, these two evaluation criteria cannot reach the optimum at the same time. Thus, we need to
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balance these evaluation criteria through GT. In this work, the dimension reduction method combining
multiple evaluation criteria is considered a multi-objective optimization problem, and a conflict of
interest exists in the process of multi-objective optimization. Therefore, this work introduces GT to
coordinate the interest relationship between multiple targets, achieve the equilibrium state, and identify
the band combination that ensures the best possible information entropy and interclass separability.

2.4. Evaluation Criterion Function

In this work, information entropy and B distance are selected as evaluation criteria.

(1) Information Entropy Between Bands

According to Shannon theory [26], entropy can be used to represent the information quantity
and reflect the abundance of average information in images. For HSIs, assuming that their data are
quantized as L bits, the entropy value of the i band images is derived as follows:

E(i) = −
2L−1

∑
i=0

Pi(r) log2 Pi(r) (4)

where E(i) represents the entropy of the i band, i = 1, 2, . . . , l, l is the total number of bands in the
image, r represents the gray value of the pixel, and Pi(r) indicates the probability that the gray value of
the i band is r. The greater the entropy is, the more the information. By calculating the entropy value
of hyperspectral images, we can select the band combination with the greatest information entropy.

(2) B Distance between Classes

The B distance [27] represents the separability between two categories. The greater the B distance
is, the stronger the separability between two categories. The B distance can consider the two statistical
variables at the same time and is expressed as follows:

Bij =
1
8
(µi − µj)

T
(

∑i +∑j

2

)−1

(µi − µj) +
1
2

ln


∣∣∣∑i +∑j

2

∣∣∣(
|∑i|

∣∣∣∑j

∣∣∣) 1
2

 (5)

where µi and µj are the spectral mean of the two corresponding regions in the specified samples and
∑i and ∑j are the spectral covariance of the corresponding regions.

2.5. Dimension Reduction Steps

From the perspective of combining multiple evaluation criteria, this work considers dimension
reduction as a multi-objective optimization problem because conflicts exist in the optimization process
of multiple targets and optimizing multiple targets at the same time is difficult. GT is introduced
to coordinate the relationship between multiple targets to make the goals as optimal as possible.
The specific algorithm steps are as follows:

(1) Subspace Division

Some of the most important characteristics of hyperspectral image data are the large number
of spectral bands and the high correlation and redundancy between adjacent bands. If the selection
bands from all bands are bound to lose some of the key local characteristics, then the selected
band combination may not help in improving the classification accuracy. The basic idea of
solving these problems is to divide all bands into several subspaces and conduct band selection.
Many subspace partitioning methods have been commonly used. This work adopts the adaptive
subspace decomposition (ASD) method based on correlation filtering. This method was proposed by
Zhang Junping et al. [28]. The method calculates the correlation coefficient, Ri,j, between two bands,
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where i and j denote the i and j bands, respectively. The range of Ri,j is −1 ≤ Ri,j ≤ 1. The greater the
absolute value of the correlation coefficient is, the stronger the correlation between bands. The closer
the value is to 0, the weaker the correlation. The definition of Ri,j is expressed as follows:

Ri,j =
E
{
(xi − µi)(xj − µj)

}√
E
{
(xi − µi)

2
}√

E
{(

xj − µj
)2
} (6)

where µi and µj are the mean values of xi and xj, respectively, and E(·) represents the mathematical
expectation for the functions in brackets. According to the correlation coefficient matrix, R, obtained
using Formula (5), the corresponding threshold, T, is set, and the continuous wave band satisfying
Ri,j ≥ T is combined into a new subspace. By adjusting T, the number of bands and the number of
subspaces in each subspace can be adaptively changed. With the increase in T, the number of bands
in each space decreases and the number of subspaces increases. The correlation between the spectral
bands of hyperspectral images has a partitioned feature, and the correlation coefficient matrix, R,
can quantitatively reflect this block feature, thus dividing the strong continuous band in a subspace
according to the feature of the block. Then, bands are selected in each subspace to form a band
combination to reduce the correlation between bands.

(2) Initialization of Particle Swarm

Each particle consists of a hyperspectral image band combination, inertia weight, ω, and
acceleration factor, C. In the initial population, the three parts of the particles mentioned previously
are randomly generated, and the initial velocity and location of the particles are defined. The initial
population size is reasonably set according to the complexity of the calculation to ensure that the initial
population contains more possible solutions. The total number of individuals in the population is
assumed to be m, and N subspace is divided under the subspace division method in Step (1). Then, the
M bands are randomly selected in each subspace, and the band combination of N ×M bands is used
as the individual in the population. In this manner, m individuals can be initialized randomly under
the constraint of subspace partition.

(3) Establishing an Elite Solution Set

The fitness values of the particles in the population are compared, the eligible particles are detected,
and the qualified particles are placed in the non-inferior solution set. In solving multi-objective
optimization problems, the most important thing is to solve non-inferior solutions and non-inferior
solution sets. The so-called non-inferiority solution is the existence of a problem solution in the feasible
domain of the multi-objective optimization problem, so that other feasible solutions are not inferior to
the solution. Then, the solution is called a non-inferior solution, and the set of all non-inferior solutions
is a non-inferior solution set. In the process of reducing the dimension, the band combination with
large information entropy and a large B distance between the selected classes, a and b, at the same time
is a non-inferior solution and is placed in the non-inferior solution set. The solution in a non-inferior
solution set is the optimal location of the individual history. In the zeroth generation, a global optimum
is selected from the individual historical optimal location.

An elite solution set is set up. The elite solution set is initialized as empty sets, and at the beginning
of the algorithm, a solution extracted from the zeroth generation is stored in the elite solution set.
The non-inferiority hierarchy of the new species group is calculated by the non-dominated solution
sorting method presented in the literature [29]. The band combination that is non-inferior and a high
level is the elite solution band combination and is added to the elite solution concentration. The elite
solution set is used to preserve the band combination of these elite solutions. Then, in the process of
algorithm iteration, the band combination of these elite solutions is added to the algorithm population
to participate in an iterative search. The competition of the elite band combination and the algorithm
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population in the subsequent iteration to produce the next-generation population and maintain the
excellent population is advantageous.

(4) Game Decision Making

In the literature [30], a clonal selection algorithm is proposed to solve preference multi-objective
optimization. Inspired by this algorithm, this work constructs a finite repeated game model based
on goal preference. The information entropy and B distance are regarded as the participants of the
game. The two participants perform a limited repeated game in the iterative process of the algorithm.
Given that the game repeats many times, the rational participants need to weigh the immediate and
long-term interests when they select the strategic action at the current game stage. The participants
may give up their immediate interests for achieving the long-term interests. Then, the strategy that
can maximize the profits may not be selected in the current game. Therefore, in the game process,
cooperation and confrontation exist among the participants. According to the earnings of the previous
stage, deciding whether to select cooperation or confrontation in the subsequent stage of the game is
possible. The specific game model is as follows:

The fitness values of the entire population in information entropy and the B distance are expressed
as (E1(t), E2(t), · · · , Em(t)) and (B1(t), B2(t), · · · , Bm(t)), respectively. In the subsequent iteration of
T, the fitness matrix, FITS(t), can be expressed as follows:

FITS(t) =

[
E1(t), E2(t), · · · , Em(t)
B1(t), B2(t), · · · , Bm(t)

]
(7)

where m is the total number of individuals in the population. Then, a utility matrix is established and
is used to represent the income of each participant in the strategy. The utility matrix, U(t), is expressed
as follows:

U(t) =

[
u11(t), u12(t)
u21(t), u22(t)

]
(8)

where upq(t) represents the income value brought by participant p to participant q. The ultimate goal
of each participant is to obtain maximum benefits. The maximized benefit in dimension reduction is to
determine the maximum entropy or B distance in the band combination.

At the beginning of the game, the participants attempt to make some strategic actions and expect
their own and the game’s final strategic actions to make their own gains as much as possible. If the
strategic action made in the previous stage makes the income increase, then the follow-up stage selects
the reward strategy as much as possible in the strategic action choice. Otherwise, the penalty strategy
is selected. Therefore, the policy set, S = {s1, s2}, is defined. Two participants share a strategy set,
where s1 indicates reward and s2 indicates punishment. A reward selection probability matrix, PRI(t),
is set up as follows:

PRI(t) =

[
P11(t), P12(t)
P21(t), P22(t)

]
(9)

where Ppq(t) indicates that the probability value of the reward selection strategy for participant q is
selected by participant p. Accordingly, the probability value of the punishment strategy is 1− Ppq(t).
The participant, q, can adjust the reward selection probability matrix value of participant p to Ppq(t)

according to his actual income. If upq(t)− 1
2

2
∑

p=1
upq(t) > 0 indicates that the strategic action taken

by participant p eventually increases the benefit obtained by participant q, then participant q adjusts
the PRI(t) matrix and increases the reward selection probability, Ppq(t), for participant p. Conversely,
participant q reduces Ppq(t).
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Based on the previously presented definition, a weight matrix, W(t), of the preference degree is
established to reflect the strategic actions taken by the participants and expressed as follows:

W(t) =

[
w11(t), w12(t)
w21(t), w22(t)

]
(10)

where wpq(t) indicates the degree of preference of participant p to participant q. If participant p selects
the reward strategy for participant q, then the value of wpq(t) increases; otherwise, it decreases. Given
that the information entropy and B distance may be different, the normalization method is used
to return the fitness values of each target to [0,1] to prevent the small numerical information from
being flooded by large numerical information. Therefore, the mapping fitness function value of the
multi-objective fitness function value of individual k on participant i is expressed as Fi

k(t), as follows:

Fi
k(t) = wi1E′k(t) + wi2B′k(t) (11)

where E′k(t) denotes the normalized information entropy and B′k(t) denotes the normalized B distance.
After a game is completed by two participants, the subsequent iteration process of the multi-objective
PSO is performed with the mapping fitness function values of the two participants.

(5) Iteration of Multi-Objective PSO

According to Formula (1), the velocity of the particles in a population is calculated. The velocity
of the particles is affected by the global and individual optimum particles. Among them, the global
optimum particle is a randomly selected particle from the non-inferior solution set. After the particle
velocity is updated, the new speed of the particle is observed to exceed the speed limit. Thus, the
speed changes according to Formula (1). According to Formula (2), the position of the particles in
the population is updated, so that the location of the new particles exceeds the location band. In the
updating process, we determine whether the new position exceeds the range of the band group in
which it is located, for example, the velocity of a particle is moved to the boundary. Moreover, the
velocity and direction of the particle are rearranged, the velocity direction of the particle is changed,
and the velocity of the particle is reduced to make the particle move in the opposite direction. During
the line search, the individual historical optimal location and group historical location of the population
are updated. The updating process can be divided into two steps. First, the new non-inferior solution
set is combined with the old non-inferior solution set. Then, the new non-inferior solutions are
removed from the newly generated non-inferior solution set, and the new set of non-inferior solutions
is selected. The non-inferiority level of the set is computed and added to the elite solution set if it is an
elitist solution.

(6) Check the End Condition

If the check satisfies the termination condition (such as the maximum number of iterations), then
it satisfies, terminates, and outputs the non-dominated band combination solution in the external set.
The process of the proposed hyperspectral image dimension reduction method based on multi-objective
PSO and GT is shown in Figure 2.
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3. Experiments and Result Analysis

This work selects two hyperspectral images to verify the effectiveness of the proposed method.
The experimental program is implemented by MATLAB (R2009b), and the support vector machine
(SVM) classifier is implemented by the LIBSVM toolbox developed by Professor Lin Zhiren
(Lin Chih-Jen) of the National Taiwan University. (http://www.csie.ntu.edu.tw/~cjlin/libsvm/).
In this section, the details of the experimental data will be introduced first. Then, the subspace
decomposition and experimental results will be given.

3.1. Experimental Data

The first image is captured by the AVIRIS (Airborne Visible Infrared Imaging Spectrometer) sensor
in the remote sensing experimentation area in Northwest Indiana, USA in June 1992. The AVIRIS
sensor was flown for the first time in 1986 (first airborne images), first science data in 1987. Its data can
provide a spatial resolution of 20 m and 224 spectral bands, covering a spectral range of 0.4 µm–2.5 µm,
with a spectral resolution of 10 nm. The polluted bands, such as water vapor noise (bands 1–4, 78,
80–86, 103–110, 149–165, 217–224), are removed from the original bands, and the remaining 179 bands
are used for the experiments. Figure 3 displays the false color image synthesized by band 89, 5, and
120 and the label map of the ground truth. Seven kinds of ground truth were used for the classification
experiment. In each class, there are 25% of the samples used for the training set and 75% used for the
test set. Table 1 shows the details of the AVIPIS dataset.

The second image is captured by HYDICE (Hyperspectral digital imagery collection experiment)
in Washington DC Mall. It contains 307 × 1280 pixels and 191 spectral bands in the wavelength range
400–2400 nm. Figure 4 displays the false color image synthesized by band 63, 27, and 17 and the
ground truth of this data. The spatial resolution of HYDICE is high and can reach about 1 m. Therefore,
some objects can be distinguished by visual measurement from Figure 4a. This dataset has seven
classes. Table 2 shows the number of train samples and test samples in the HYDICE dataset. As can be
seen, the ratio of the number of training samples to the number of test samples is 1:3.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 2. The number of train samples and test samples in the HYDICE dataset.

Class Name Train Test

c1 Water 306 918
c2 Trees 101 304
c3 Grass 482 1446
c4 Path 44 131
c5 Roofs 959 2875
c6 Street 104 312
c7 Shadow 24 73

Total 2020 6059

3.2. Subspace Decomposition

The ASD based on relevance filtering is adopted. The correlation coefficients between various
bands are obtained. The correlation coefficient matrix grayscale diagram of the AVIRIS dataset is shown
in Figure 5 (the abscissa and ordinate denote the band numbers of the HSIs). In Figure 5, the brighter
the point is, the higher the correlation coefficient. The brightest points represent a correlation coefficient
of 1. The correlation coefficients of the points in the diagonal lines of the matrix are all 1. As can be
seen from the correlation coefficient matrix, the hyperspectral image has a distinct block characteristic.
Therefore, subspace decomposition based on the correlation between bands can reasonably divide
the bands into groups. The subsequent processing in the subspace can also effectively improve the
processing speed of hyperspectral data. Thus, the efficiency of dimension reduction and classification
can be improved.
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The number of subspaces is set to 5 to make the grouping characteristics of the hyperspectral
images more obvious. The band sets contained in each subspace are shown in Table 3.

Table 3. Subspace decomposition dimension and its band.

Subspace 1 2 3 4 5

bands 5–35 36–76 77,79,87–97 98–102 111–148,166–216
band number 31 41 13 5 89
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3.3. Classification Accuracy Evaluation

In this work, an error matrix is used for the classification accuracy evaluation. Table 4 shows
a typical error matrix, which is used to evaluate the classification accuracy of k classes. The error
matrix is a square array of k × k. Assuming that xi,j is the number of observation points in column j of
line i, xi+ and x+j denote the sum of row i and column j, respectively, and N is the total number of
test samples.

Table 4. Error matrix.

Ground Reference Information Total per Row

Classification results

Class 1 2 3 . . . k

1 x1,1 x1,2 x1,3 . . . x1,k x1+

2 x2,1 x2,2 x2,3 . . . x2,k x2+

3 x3,1 x3,2 x3,3 . . . x3,k x3+

...
...

...
...

...
...

...

k xk,1 xk,2 xk,3 . . . xk,k xk+

Total per column x+1 x+2 x+3 . . . x+k N

The main diagonal element, xi,i, of the matrix indicates the number of pixels that are classified
correctly. The elements outside the diagonal line are the number of misclassified samples. According
to the error matrix, the evaluation index used to measure the classification accuracy can be obtained.
These indexes include the producer’s accuracy (PA), user’s accuracy (UA), and overall accuracy (OA).

The PA refers to the ratio of the number of pixels correctly classified into a certain class to the total
number of actual pixels that belong to that class. It can be expressed as follows:

PAi =
xi,j

x+i
(12)

The UA refers to the ratio of the number of pixels correctly classified into a certain class to the
total of pixels classified into that class. It can be expressed as follows:

UAi =
xi,j

xi+
(13)

The OA refers to the ratio of the number of pixels correctly classified to the total number of all
labeled pixels. It can be derived as follows:

OA =

k
∑

i=1
xi,i

N
(14)

3.4. Dimension Reduction and Classification Experiment

The proposed method considers three basic criteria, namely, the inter-band correlation,
information entropy, and interclass separability. Four groups of comparative experiments, namely,
groups A, B, C, and D, are designed to verify the advantage of the proposed method. Group A uses the
dimension reduction method in [31], where information entropy is adopted as the evaluation criterion.
Group B adopts the dimension reduction method using the Bhattacharyya distance as the evaluation
criterion [24]. Group C transforms the information entropy and interclass separability into a single
evaluation criterion by weighting. Group D adopts the proposed method. The SVM [13] classifier is
used for classification to verify the effect of dimension reduction. The parameters of the multi-objective
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PSO algorithm in this work are set as follows: The particle dimension is 5, the population number is
50, the acceleration factors, C1 and C2, are 0.8, and the maximum iteration number is 1000. The inertia
weight ranges from 0.1 to 1.2, which changes in accordance with Formula (15):

ω = ωmax −
ωmax −ωmin

imax
× i (15)

where i is the number of current iterations and imax is the maximum number of iterations. Each particle
represents a band combination. The particles in the initial population are randomly generated from
the band combination, and the initial velocity of the particles is 0.

The parameters of the SVM classifier are set as follows: The SVM selects the RBF (Radial
Basis Function) kernel function. The penalty parameter, c, and kernel parameter, γ, are selected.
After half-off cross-validation, c = 16 and γ = 2.2974.

The multi-objective optimization problem usually has more than one optimal solution sets.
Therefore, from the experimental results of four groups, five optimal band combinations are extracted
and compared. Tables 5–8 lists the details of the experimental results of each group.

Table 5. Experimental results of group A.

Group Band Combination Information Entropy Accuracy

A

(25,37,42,89,133) 12.0544 80.1292
(25,37,38,88,120) 12.0523 77.7605
(27,37,41,90,124) 12.0385 78.2630
(24,37,38,90,125) 12.0363 77.8323
(21,37,38,88,123) 12.0192 78.6697

Table 6. Experimental results of group B.

Group Band Combination B Distance Accuracy

B

(29,37,72,98,137) 194.4588 80.9068
(28,37,69,99,139) 193.7285 80.8948
(30,37,72,98,141) 193.0367 80.7991
(29,37,69,98,134) 192.8221 81.2657
(30,37,73,96,138) 192.7607 80.4163

Table 7. Experimental results of group C.

Group Band Combination Information Entropy B Distance Accuracy

C

(29,37,72,97,139) 11.8069 194.6254 80.7632
(30,37,55,97,136) 11.7785 194.2067 80.7034
(29,37,74,99,137) 11.7858 194.0661 80.9547
(28,37,70,96,136) 11.7269 193.3245 81.1461
(27,37,57,98,140) 11.8559 193.0160 80.5838

Table 8. Experimental results of group D.

Group Band Combination Information Entropy B Distance Accuracy

D

(25,37,65,96,135) 11.7025 185.9396 81.2537
(30,37,73,98,132) 11.7740 191.0403 81.1341
(20,37,70,98,123) 11.6766 184.1740 81.0145
(31,37,71,97,136) 11.8158 192.1826 81.0025
(30,37,52,97,133) 11.8732 188.7685 80.7513

As can be seen from Table 5, the accuracy obtained by the first band combination is obviously
higher than that obtained by the remaining band combination. It should be noted that all the



Sensors 2019, 19, 1327 15 of 20

band combinations in Table 5 are optimal band combinations in Group A. In other words, only
one band combination is quite close to the global optimum solution. Additionally, the remaining band
combination only achieves the local optimum. Similarly, the same conclusion can be drawn from
Tables 6 and 7. Therefore, these methods used in Group A, B, and C easily fall into the local optimum.
However, the accuracies shown in Table 8 are quite close each other and four accuracies exceed 81%,
which are very close to the global optimum. Overall, the accuracies in Table 8 are higher than those in
Tables 5, 6 and 8. To sum up, the proposed method more easily achieves the global optimum compared
to both the method based on a single evaluation criterion and the method based on multiple evaluation
criterions, but without combing GT. Furthermore, the proposed method provides better adaptability
and can provide higher accuracy for hyperspectral sensor data classification.

Figure 6 shows the game process of group D. Figure 6a shows the changes of the information
entropy of the optimal individual. Figure 6b shows the changes of the B distance of the optimal
individual. Taking Figure 6a as an example, in the early stage of the game, participant E (information
entropy) observed that the information entropy of the optimal individual detected by participant B
(B distance) is often slightly larger than that found by itself. This finding indicates that participant B
can help participant E in identifying the individual with more information entropy. Therefore, in the
subsequent game, participant E’s preference for participant B is enhanced; that is, reward strategies
are chosen to ensure that participant B identifies the individuals with better information entropy.
The corresponding probability value, Ppq(t), of the selection reward strategy in the reward selection
probability matrix, PRI(t), increases. Thus, the value of the preference degree, wpq(t), in the weight
matrix, W(t), increases. By contrast, when participant E determines that the information entropy of the
optimal individual detected by participant B is often slightly smaller than that found by itself during
the game, and under the condition of maintaining the original preference, the entropy value of the
optimal individual identified by participant E is reduced by the shadow of participant B. This finding
indicates that participant B at this time cannot help participant E identify the individual with better
entropy, but it can “hinder” participant E in finding the optimal individual. Then, in the subsequent
game, participant E weakens the preference for participant B; that is, by reducing the corresponding
probability value, Ppq(t), of the selection reward strategy in the reward selection probability matrix,
PRI(t), under the reward strategy. Thus, the value of the preference degree, wpq(t), in the weight
matrix, W(t), is decreased to reduce or weaken the “hindrance” to finding the optimal individual,
which is caused by participant B. Then, individuals with good information entropy can be possibly
identified under the existing conditions. In addition, participant B requires an individual that can
make the B distance more valuable. At this time, the two participants assume that the strategies they
adopted are optimal, thus achieving a balanced state.

Figure 7 displays the classification results corresponding to the band combination with the highest
classification accuracy in groups A, B, C, and D. The error points shown in Figure 7a,b are more than
those shown in Figure 7c,d. This finding indicates that the classification effect under a single evaluation
criterion is not as good as that under comprehensive multiple evaluation criteria. Through careful
observation, we determine that the error points in (c) are slightly more than those in (d), and the
classification accuracy of (c) is slightly worse, which demonstrates the effectiveness and superiority of
the proposed method.

The experiments show that, compared with the band combination obtained by a single criterion
or multiple criteria without a game, the band combination obtained by the proposed method is
better, because the proposed method adopts the GT to coordinate the two evaluation criteria, that is,
information entropy and interclass separability. This work proposes a hyperspectral image dimension
reduction method based on PSO and GT (PSO-GT). To further evaluate the performance of the
proposed method, the proposed method is compared with several methods, which combine existing
intelligent algorithms with GT. These methods include the method based on GA and GT (GA-GT), the
method based on simulated annealing GA and GT (SAGA-GT), and the method based on a differential
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evolution algorithm and GT (DE-GT). The experimental results on two datasets under the best band
combination are shown in Tables 9 and 10, respectively.
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Table 9. Results of classification experiments for the AVIRIS dataset.

Method GA-GT SAGA-GT DE-GT PSO-GT

Class PA UA PA UA PA UA PA UA

c1 0.8082 0.3787 0.7941 0.3886 0.7933 0.3874 0.7907 0.7907
c2 0.8229 0.8047 0.8035 0.8316 0.8054 0.8126 0.8008 0.8145
c3 0.8141 0.8412 0.7951 0.8252 0.8034 0.8097 0.8573 0.8344
c4 0.8218 0.5724 0.8260 0.6493 0.8246 0.6225 0.8104 0.7845
c5 0.7784 0.8713 0.8034 0.8543 0.8047 0.8413 0.8065 0.8001
c6 0.8054 0.8687 0.7957 0.8645 0.7998 0.8378 0.8089 0.8208
c7 0.8255 0.6041 0.8105 0.7492 0.8025 0.8486 0.8358 0.8391

OA 79.54% 80.08% 80.48% 81.25%

Table 10. Results of classification experiments for the HYDICE dataset.

Method GA-GT SAGA-GT DE-GT PSO-GT

Class PA UA PA UA PA UA PA UA

c1 0.7884 0.8213 0.8024 0.8543 0.8147 0.8413 0.8268 0.7968
c2 0.8054 0.8047 0.8027 0.8345 0.8078 0.8328 0.8187 0.8138
c3 0.8245 0.6648 0.8125 0.7692 0.8135 0.8474 0.8368 0.8248
c4 0.8278 0.8017 0.8125 0.8236 0.8132 0.8016 0.8135 0.8025
c5 0.8032 0.3587 0.7941 0.3896 0.7968 0.3984 0.8023 0.7912
c6 0.8148 0.5824 0.8236 0.6889 0.8328 0.6238 0.8136 0.7839
c7 0.8169 0.8312 0.8051 0.8152 0.8124 0.8037 0.8483 0.8214

OA 81.62% 82.05% 82.18% 83.46%
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As shown in Table 9, the PA and UA in the PSO-GT experiments are generally better than those
in the other experiments, which indicates that the omission error and commission error generated
by the proposed method are smaller. The OA of SAGA-GT is only 0.54% higher than that of GA-GT.
However, from the PA and UA of each class, the method based on SAGA-GT is better than the method
based on GA-GT. The OA, PA, and UA of SAGA-GT and DE-GT are close, and all of them are lower
than those of PSO-GT. Similarly, Table 10 demonstrates that the proposed method is equipped with
better performance than the comparison methods. In summary, the method proposed in this work is
an effective hyperspectral image dimension reduction method.

To better evaluate the performance of the proposed method, the works of Li et al. [27], Xu et al. [32],
and Shen et al. [33] are compared with the proposed method. In [31], a band selection method based
on a particle swarm dynamic with sub-swarm optimization was proposed for dimension reduction
of hyperspectral sensor data. According to the features of multiple bands and the strong mutual
correlation among these bands, the work of [32] improved the PSO algorithm for band selection of
hyperspectral sensor data. Table 11 displays the OA obtained by the comparison methods, and the
division of the training set and test set is the same as Tables 1 and 2. As can be seen from Table 11, the
performance of the proposed method obviously outperforms all comparison methods.

Table 11. Comparison with other methods (OA).

Dataset PSO-GT Li et al. [27] Xu et al. [32] Shen et al. [33]

The AVIRIS dataset 81.25% 79.16% 80.36% 79.58%
The HYDICE dataset 83.46% 80.28% 81.79% 81.02%

4. Conclusions

In this work, the correlation between bands was adopted as a constraint, both information
entropy and interclass separability were adopted as evaluation criteria, and the dimension reduction
of hyperspectral images was considered as a multi-objective optimization problem. In this way, PSO
was used to search for the best band combination that can result in optimal multiple objectives, and GT
was applied to coordinate the interests of all objectives. The experimental results demonstrated that
the proposed method can search for the better band combination that is more conducive to improving
classification accuracy than that searched by the dimension reduction method based on either interclass
separability or information entropy and the method based on multiple criteria, but without combining
GT. The dimension reduction method proposed in this work still has room for further optimization.
A possible limitation of the proposed method is the large computational cost caused by too much
evaluation criterion. Better results could be obtained if more evaluation criterions were considered.
However, a greater number of evaluation criterions also increases the computational cost of the game
process. Furthermore, in the game model, the probability change range of the choice reward strategy
and the preference weight value will affect the search for the optimal band combination. Therefore,
the game model will be improved in this regard.

Author Contributions: H.G. and Y.Y. conceived and designed the experiments; X.Z., Q.Y. and Y.W. presented
tools and carried out the data analysis; H.G. and Y.Y. wrote the paper. C.L. guided and revised the paper.

Funding: This research was funded by National Natural Science Foundation of China (No.61701166, No.
41601435), Fundamental Research Funds for the Central Universities (No. 2018B16314), China Postdoctoral
Science Foundation (No. 2018M632215), National Key R&D Program of China (No. 2018YFC1508106), Young
Elite Scientists Sponsorship Program by CAST (No. 2017QNRC001), National Science Foundation for Young
Scientists of China (No. 51709271), Science Fund for Distinguished Young Scholars of Jiangxi Province under
Grant (No.2018ACB21029), Projects in the National Science & Technology Pillar Program during the Twelfth
Five-year Plan Period (No. 2015BAB07B01).

Conflicts of Interest: The authors declare that there are no conflict of interest.

Data Availability: The data used to support the findings of this work are available from the corresponding author
upon request.



Sensors 2019, 19, 1327 19 of 20

References

1. Shaw, G.; Manolakis, D. Signal processing for hyperspectral image exploitation. IEEE Signal Process. Mag.
2002, 19, 12–16. [CrossRef]

2. Gao, H.; Yang, Y.; Lei, S.; Li, C.; Zhou, H.; Qu, X. Multi-branch fusion network for hyperspectral image
classification. Knowledge-Based Syst. 2019, 167, 11–25. [CrossRef]

3. Transon, J.; d’Andrimont, R.; Maugnard, A.; Defourny, P. Survey of Hyperspectral Earth Observation
Applications from Space in the Sentinel-2 Context. Remote Sens. 2018, 10, 157. [CrossRef]

4. Hughes, G.F. On the mean aecuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63.
[CrossRef]

5. Gao, H.; Yang, Y.; Li, C.; Zhou, H.; Qu, X. Joint Alternate Small Convolution and Feature Reuse for
Hyperspectral Image Classification. ISPRS Int. J. Geo-Inf. 2018, 7, 349. [CrossRef]

6. Gao, H. Research on Dimension Reduction and Classification Algorithms for Hyperspectral Remote Sensing
Image. Ph.D. Thesis, HoHai University, Nanjing, China, 2014.

7. Pu, R.; Gong, P. Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure
maping. Remote Sens. Environ. 2004, 91, 212–224. [CrossRef]

8. Mu, C.; Huo, L.; Liu, Y.; Liu, R.; Jiao, L. Change Detection for Remote Sensing Images Based on Wavelet
Fusion and PCA-Kernel Fuzzy Clustering. Acta Electron. Sin. 2015, 43, 1375–1381.

9. You, R.; Chen, Z. A fast algorithm for blind signal separation based on ICA. Acta Electron. Sin. 2004, 32,
669–672.

10. Ge, L.; Wang, B.; Zhang, L. Band Selection Based on Band Clustering for Hyperspectral Imagery. J. Comput.-Aided
Des. Comput. Graph. 2012, 24, 1447–1454.

11. Liu, X.S.; Ge, L.; Wang, B.; Zhang, L.M. An unsupervised band selection algorithm for hyperspectral imagery
based on maximal information. J. Infrared Millim. Waves 2012, 31, 166–176. [CrossRef]

12. Padma, S.; Sanjeevi, S. Jeffries Matusita based mixed-measure for improved spectral matching in
hyperspectral image analysis. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 138–151. [CrossRef]

13. Huang, R.; He, W. Hyperspectral band selection based on particle swarm optimization and sequential search.
J. Data Acquis. Process. 2012, 27, 469–473.

14. Gurram, P.; Kwon, H. Coalition game theory based feature subset selection for hyperspectral image
classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium,
Quebec City, QC, Canada, 13–18 July 2014; pp. 3446–3449.

15. Wang, L.G.; Wei, F.J. Artificial physics optimization algorithm combined band selection for hyperspectral
imagery. J. Harbin Inst. Technol. 2013, 45, 100–106.

16. Gao, H.M.; Xu, L.Z.; Li, C.M.; Shi, A.Y.; Huang, F.C.; Ma, Z.L. A new feature selection method for
hyperspectral image classification based on simulated annealing genetic algorithm and Choquet fuzzy integral.
Math. Probl. Eng. 2013, 2013, 537268. [CrossRef]

17. Lee, C.S. Multi-objective game-theory models for conflict analysis in reservoir watershed management.
Chemosphere 2012, 87, 608–613. [CrossRef]

18. Lee, D.; Gonzalez, L.F.; Periaux, J.; Srinivas, K.; Onate, E. Hybrid-game strategies for multi-objective design
optimization in engineering. Comput. Fluids 2011, 47, 189–204. [CrossRef]

19. Zamarripa, M.; Aguirre, A.; Mendez, C.; Espuna, A. Integration of mathematical programming and game
theory for supply chain planning optimization in multi-objective competitive scenarios. Comput. Aided
Chem. Eng. 2012, 30, 402–406.

20. Zhou, Y. Research on Multi-Objective Production Scheduling Problem Based on Game Theory. Ph.D. Thesis,
East China University of Science and Technology, Shanghai, China, 2013.

21. Zhao, Z. Experimental Analysis of Multi-Objective Particle Swarm Optimization. Ph.D. Thesis, China
University of Geosciences, Beijing, China, 2012.

22. Xie, C.; Zou, X.; Xia, X.; Wang, Z. A MuIti-Objective ParticIe Swarm Optimization AIgorithm Integrating
MuItipIy Strategies. Acta Electron. Sin. 2015, 43, 1538–1544.

23. Zhang, X. Research on the Principle and Application of Multiobjective Particle Swarm Optimization; Inner Mongolia
University of Science and Technology: Baotou, China, 2015.

24. Zhang, W. Game Theory and Information Economics; Shanghai People’s Publishing House: Shanghai, China, 2004.

http://dx.doi.org/10.1109/79.974715
http://dx.doi.org/10.1016/j.knosys.2019.01.020
http://dx.doi.org/10.3390/rs10020157
http://dx.doi.org/10.1109/TIT.1968.1054102
http://dx.doi.org/10.3390/ijgi7090349
http://dx.doi.org/10.1016/j.rse.2004.03.006
http://dx.doi.org/10.3724/SP.J.1010.2012.00166
http://dx.doi.org/10.1016/j.jag.2014.04.001
http://dx.doi.org/10.1155/2013/537268
http://dx.doi.org/10.1016/j.chemosphere.2012.01.014
http://dx.doi.org/10.1016/j.compfluid.2011.03.007


Sensors 2019, 19, 1327 20 of 20

25. Jia, Y.; Yue, D. Dynamic Resource Allocation Algorithm Based on Game Theory in Cognitive Small Cell
Networks. Acta Electron. Sin. 2015, 43, 1911–1917.

26. Yang, K.M.; Liu, S.W.; Wang, L.W.; Yang, J.; Sun, Y.Y.; He, D.D. An algorithm of spectral minimum Shannon
entropy on extracting endmember of hyperspectral image. Spectrosc. Spectr. Anal. 2014, 34, 2229–2233.

27. Li, C.M.; Wang, Y.; Gao, H.M.; Zhang, L.L. Band selection for hyperspectral image classification based on
improved particle swarm optimization algorithm. Adv. Mater. Res. 2014, 889–890, 1073–1077. [CrossRef]

28. Zhang, J.P.; Zhang, Y.; Zou, B.; Zhou, T.X. Fusion classification of hyperspectral image based on adaptive
subspace decomposition. In Proceedings of the IEEE International Conference on Image Processing,
Vancouver, BC, Canada, 10–13 September 2000; Volume 3, pp. 472–475.

29. Chen, B.L.; Zeng, W.H.; Lin, Y.B.; Zhang, D.F. A new local search-based multiobjective optimization algorithm.
IEEE Trans. Evol. Comput. 2015, 19, 50–73. [CrossRef]

30. Yang, D.D.; Jiao, L.C.; Gong, M.G.; Yu, H. Clone Selection Algorithm to Solve Preference Multi-Objective
Optimization. J. Softw. 2010, 21, 14–33. [CrossRef]

31. Luo, Y.; Shu, N. Method of determining main bands of remote sensing images based on information quantity.
Urban Geotech. Investing. Surv. 2002, 4, 28–32.

32. Xu, M.; Shi, J.; Chen, W.; Shen, J.; Gao, H.; Zhao, J. A Band Selection Method for Hyperspectral Image Based
on Particle Swarm Optimization Algorithm with Dynamic Sub-Swarms. J. Signal Process. Syst. 2018, 90,
1269–1279. [CrossRef]

33. Shen, J.; Wang, C.; Wang, R.; Huang, F.; Fan, C.; Xu, L. A band selection method for hyperspectral image
classification based on improved Particle Swarm Optimization. J. Mater. Eng. 2015, 43, 62–66. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4028/www.scientific.net/AMR.889-890.1073
http://dx.doi.org/10.1109/TEVC.2014.2301794
http://dx.doi.org/10.3724/SP.J.1001.2010.03551
http://dx.doi.org/10.1007/s11265-018-1348-9
http://dx.doi.org/10.14257/ijsip.2015.8.4.28
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Multi-Objective PSO Algorithm and GT for Dimension Reduction of Hyperspectral Images 
	An Overview of Multi-Objective Optimization Problems 
	PSO Algorithm 
	Game Theory 
	Evaluation Criterion Function 
	Dimension Reduction Steps 

	Experiments and Result Analysis 
	Experimental Data 
	Subspace Decomposition 
	Classification Accuracy Evaluation 
	Dimension Reduction and Classification Experiment 

	Conclusions 
	References

