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Abstract: Mobile crowdsensing is a powerful paradigm that exploits the advanced sensing capabilities
and ubiquity of smartphones in order to collect and analyze data on a scale that is impossible
with fixed sensor networks. Mobile crowdsensing systems incorporate people and rely on their
participation and willingness to contribute up-to-date and accurate information, meaning that such
systems are prone to malicious and erroneous data. Therefore, trust and reputation are key factors that
need to be addressed in order to ensure sustainability of mobile crowdsensing systems. The objective
of this work is to define the conceptual trust framework that considers human involvement in mobile
crowdsensing systems and takes into account that users contribute their opinions and other subjective
data besides the raw sensing data generated by their smart devices. We propose a novel method
to evaluate the trustworthiness of data contributed by users that also considers the subjectivity in
the contributed data. The method is based on a comparison of users’ trust attitudes and applies
nonparametric statistic methods. We have evaluated the performance of our method with extensive
simulations and compared it to the method proposed by Huang that adopts Gompertz function
for rating the contributions. The simulation results showed that our method outperforms Huang’s
method by 28.6% on average and the method without data trustworthiness calculation by 33.6% on
average in different simulation settings.

Keywords: data trustworthiness; human involvement; mobile crowdsensing; opinions; opportunistic
sensing; participatory sensing; reputation systems; subjectivity; trust attitude; trust framework

1. Introduction

Smartphones and other smart devices have become an influential part of our everyday lives and
one of the most powerful pervasive technologies. According to the Ericsson Mobility Report 2018 [1],
there were 7.9 billion mobile subscriptions in Q1 2018, which is more than one for every person in
the world. Around 60 percent of all mobile phone subscriptions are associated with smartphones,
wherein each active smartphone has, on average, 3.4 GB monthly data traffic.

Smartphones are not only ubiquitous, they also have powerful processors, integrated
high-resolution cameras, a large number of different sensors, such as accelerometer, gyroscope, GPS,
light sensors, proximity sensors, etc. Advanced sensing capabilities and the ubiquity of smart devices
are the basis for the mobile crowdsensing paradigm. Mobile crowdsensing systems employ ordinary
users (or citizens) to collect, monitor, process, store and share large amounts of data [2,3]. It extends
participatory sensing approach with implicit data contribution and data extraction from other widely
used applications [4]. User-generated content include opinions or experiences, which add knowledge
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to observed phenomenon importantly, but require additional consideration in data analysis. Collected
data are certainly valuable to their owners for their own specific purposes (e.g., health monitoring),
while providing benefits to the entire community. The most commonly proposed mobile crowdsensing
systems scenarios are related to smart city services implementation (e.g., environmental pollution
monitoring, smart traffic applications, trip planning, crime monitoring, noise monitoring, etc.) [5–12].
It requires different level of user involvement: implicit data capture, where data is collected through
general, widely used applications (e.g., social media) and then extracted, or explicit data capture,
where data are collected through purpose-made crowdsensing applications [13]. Furthermore, explicit
data collecting can employ a participatory sensing approach, where individuals contribute sensor data
actively, or the opportunistic sensing approach, where individuals participate in the capture of sensor
data in the crowd-sensing system passively [14,15].

Since the success of mobile crowdsensing systems is based on a large number of voluntary
participants who contribute data, such systems are exposed to erroneous or malicious data. Participants
can post bad data inadvertently (for example, carrying a smartphone in a pocket when sampling data
about street noise), or even deliberately (for example, posting fake reviews in order to get rewards).
Both behaviors result in untrustworthy data, which need to be handled to ensure the reliability of
applications and predictions that rely on the mobile crowdsensing approach. Trust and reputation
management systems are common tools for assessing the trustworthiness of other participants and their
contributions prior to using them for further analysis, used widely in online communities and mobile
crowdsensing systems [16,17]. Despite the availability of different trust and reputation management
systems proposals, they do often not consider human involvement properly and there remains a
missing gap in this research area.

The objective of this work is to define a conceptual trust framework that considers human
involvement in mobile crowdsensing systems and takes into account that users contribute their
opinions and other subjective data besides the raw sensing data generated by their smart devices.
Such users’ trust assessments are subjective and directly related to and affected by an individual’s
perspective and situational factors [18–20]. The users are not aware neither what the other users’
factors, criteria or motivations are for their assessments and opinions, nor their own. Additionally,
the users can tamper with their observations before submitting them to a mobile crowdsensing system
platform. Therefore, when collecting, analyzing and reporting data, mobile crowdsensing systems
should take into account human factors and propose a suitable method that supplements methods for
device generated data analysis. We take advantage of the fact that today’s smartphones are almost
always and everywhere connected to the Internet and users can contribute data in an opportunistic way.
We then combine the opportunistic and participatory sensing approaches and propose a novel trust
framework and a method to evaluate the trustworthiness of data contributed by users, which focuses
on an appropriate consideration of subjectivity in the contributed trust assessments and behavioral
specifics of people.

The proposed conceptual framework and method are based on the findings derived
from behavioral psychology and consider trust properties, such as irrationality and trust
differentiation [21,22], and present a new approach to model trust in mobile crowdsensing systems.

The contributions of this paper can be summarized as follows:

• A novel conceptual trust framework for mobile crowdsensing systems that considers
factors stemming from behavioral psychology and allows the proper treatment of subjective
user contributions.

• An application-agnostic method for computing the trustworthiness of users’ contributions with
data subjectivity consideration that uses nonparametric statistics instead of classifying users and
does not require any explicit involvement of participants.

• An evaluation of the method’s efficiency under various settings in scenarios with different number
of malicious users and in scenarios with different distributions of users’ personality types to show
that the proposed method achieves lower error rate than the most relevant method for evaluating
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the trustworthiness of participants’ contributions in mobile crowdsensing systems, which also
models dynamic human trust perception, proposed by Huang et al. [23].

The rest of the paper is organized as follows. The following section discusses related work.
Section 3 describes our proposed trust framework for mobile crowdsensing systems, including a
method for filtering untrustworthy user contributions. Section 4 describes the simulation environment
and the design of our experiments. It also presents the obtained results and discusses further properties
of the proposed trust framework. We provide concluding remarks in the last section.

2. Related Work

Trust and reputation management systems have been studied and used in different domains,
such as online markets [16,24], peer-to-peer networks [25], wireless sensor networks [18,26] and
Internet of Things [27,28]. However, the mobile crowdsensing paradigm has specific characteristics,
such as the involvement of humans in the sensing loop, which dictates the need for more adapted
approaches. In recent years, several trust and reputation systems in the domain of mobile crowdsensing
systems there have been proposed. However, the concept of trust in mobile crowdsensing systems
is ambiguous and there is a variety of divergent trust models in different contexts, which is why
challenges related to trust in mobile crowdsensing systems still remain unsolved [19]. Most common
formalizations of trust and reputation frameworks that are designed for mobile crowdsensing systems
adopt the Bayesian model, Gompertz function, vote-based mechanisms, majority voting, fuzzy logic
models, or various other customized methods [17,29].

Huang et al. [23] proposed a system for evaluating the trustworthiness of participants’
contributions in mobile crowdsensing systems. They have proposed a trust and reputation framework
that considers the fact that human users (ordinary citizens) carry sensors and produce information
in mobile crowdsensing systems. The framework consists of a watchdog module and a reputation
module. The watchdog module produces a rating of each user contribution using an outlier detection
algorithm based on majority voting or robust average algorithm, depending on the type of input data.
The ratings of the contributions are then used in the reputation module that computes a reputation
score based on Gompertz function, which is well-suited to model dynamic human trust perception that
is typical for mobile crowdsensing systems. In contrast, we use nonparametric statistics for comparison
of participants’ attitudes. We evaluated performance of the method proposed by [23] and compared it
with our proposed framework in Section 4.

Different trust and reputation frameworks that leverage online social networks to derive and
model trust properties have been proposed [30–36], which differ in their approach to calculate
trust values:

• Amintoosi and Kanhere [30] proposed an application agnostic framework to evaluate trust
in social participatory sensing systems based on fuzzy logic and the PageRank algorithm.
They leveraged existing online social networks and used friendship relations to identify and
select suitable participants for certain tasks. They considered human involvement in mobile
crowdsensing systems with the introduction of a subjective evaluation that enables the requester to
indicate how much the contribution is compatible with his/her needs and expectations. It implies
the trustworthiness of a contribution from the requester’s point of view. They utilized the
PageRank algorithm to calculate a reputation score for each participant. They proposed another
solution [31] that leverages social networks and proposes multi-hops, i.e., selection of friends of
friends, in order to select the most appropriate and trustworthy participants for a task recruitment.
Such multi-hop selection offers an access to a larger group of suitable participants, and increased
the probability of accessing well-suited participants who are able to offer new perspectives and
provide trustworthy contributions. In [31], the authors defined a suitability as an acceptable match
between a participant’s trust factors and the task requirements, and assumed the requester may
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desire to add a subjective evaluation (as described above), which coincides with the assumptions
used in our model.

• Another social network-based solution for assessing the trustworthiness of users was presented by
Kantarci et al. [32]. They proposed Social Network-Aided Trustworthiness Assurance (SONATA)
crowdsensing framework that is a recommendation-based approach that adopts vote-based
trustworthiness analysis to identify malicious users. Later, they introduced “anchor” users in
their model in order to avoid situations when malicious users collaborate, and they cast negative
votes for the reputable users and positive votes for malicious users [33,34]. Anchor users are
considered as fully trustworthy and fully capable of voting for the trustworthiness of other users
in a mobile crowdsensing system.

• Nitti et al. [35] defined a subjective trust model for trustworthiness evaluation in the social
Internet of Things, where each node computes the trustworthiness of its friends on the basis of
its own experience, and on the opinion of the friends in common with the potential service
provider. In their model, the trustworthiness of a node depends on who computes it, i.e.,
for example, the trustworthiness of node X as seen by node Y. They assume that trust is
personal and asymmetric, since every participant has its own opinion about the other participants
based on its personal experiences. The proposed model employs a feedback system and combines
the credibility and centrality of the nodes to evaluate the trust level. Later, they extended a
subjective model with an objective model [36], where a node’s trustworthiness is global for the
entire network, and analyzed how the proposed subjective and objective models work with
different dynamic behaviors of the nodes.

The solutions that leverage online social networks are close to our framework and idea behind
it, as they compute trust value according to who requests it and not as a global value. In contrast to
our work, the proposed trust frameworks require usage of social networks. Therefore, they are better
suited to incentive users to contribute data or to perform other sensing tasks, since social friendship
relations have positive effect on data contribution [30]. Furthermore, our proposed framework does
not require an underlying social network and does not compare users based on their social relations or
properties, such as common interests, eduction, etc. In the proposed framework, we compare users
based on their trust evaluation dispositions. However, the proposed social network-based solutions
and our proposed framework are complementary and could extend the functionalities of each other.

SACRM [37] is a Social Aware Crowdsourcing with Reputation Management model to select the
well-suited participants for a specific sensing task and reward the participants adaptively, based on
the quality of their sensing reports. The model considers social attributes, task delay and reputation
for participants’ selection, whereas the trustworthiness of the sensing report is based on its similarity
with other sensing reports, i.e., the amount of supports and conflicts it obtains from other sensing
reports. The SACRM system is designed to maximize the crowdsourcing utility and to provide
economical stimulations. In our work, a focus is on selecting well-suited participants to use their
sensing contributions, but we have not addressed issues related to limited budget and platform utility.
In contrast to SACRM, we proposed a high-level framework, which can be applied to broad spectre
of mobile crowdsensing scenarios. Furthermore, we included trust differentiation in trust reasoning
process, which is not considered in SACRM.

Yang et al. [38] proposed a framework for calculating reputation information and use it to select
trustworthy participants and data. The model proposes indirect and direct measures of reputation,
coupled with personal information in order to classify individuals as trustworthy or not. Direct
reputation considers previous data quality records and participants’ past performance (objective
information), whereas indirect reputation includes community trust and organizer’s trust (subjective
information). According to the calculated trust value, they rank the participants and classify them as
very trustworthy, trustworthy, untrustworthy, or very untrustworthy. The idea behind the proposed
framework in similar to ours, however they presented the framework in a descriptive way and they
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did not include a method to evaluate the trustworthiness of users’ contributions. Therefore, it is
impossible make a more precise comparison with our proposal.

A framework to define the most trusted participants for certain tasks based on geographic and
temporal availability as well as participation habits was proposed by Reddy et al. [39]. They proposed
“typical behavior” of the participants that relates to their collected location traces. Similar approach
was proposed by Kalidindi et al. [40]. They proposed a model that evaluates the trust of a
participant considering personal and community opinion. The personal opinion is derived from the
number of positive and negative interactions between participants. The assessment of the interaction
(positive/negative) is defined by response time, time gap, familiarity, reciprocity and relevance.
Relevance is assumed as a subjective parameter and presents the usefulness of the response. Personal
and community opinions are then aggregated to derive a trust value of a participant. They assume
that nodes (users) interact with each other, while our proposed framework does not. Proposed
models [39,40] apply Beta distribution and custom mappings, which are suitable to measure the
quality and quantity of contributions that are expected from users, but they lack the ability to capture
dynamic and non-deterministic patterns as the result of an assortment of human behavior. In contrast
to our work that presents an application agnostic trust framework, their solution is designed for
specific scenarios and includes domain specific parameters such as response time, which may not be
deployable in other mobile crowdsensing scenarios.

The described trust models have made some attempts to include human factors and elements of
subjectivity in trust reasoning and are suitable for mobile crowdsensing systems. They include factors
related to human involvement in mobile crowdsensing systems, i.e., personal opinions, subjective
evaluations, personal needs and expectations, etc. However, in contrast to our work, they have not
considered trust forming factors stemming from behavioral psychology such as irrationality and trust
differentiation [21,22], which we have included in our proposed trust model. The referred solutions
do not propose collecting two types of data for the same event as opposite to our proposed trust
framework. Additionally, most of them are designed for a specific context or a particular use-case,
in contrast to our trust framework, which is proposed in a general way and widely deployable for
various mobile crowdsensing scenarios.

3. Proposed Conceptual Trust Framework and Method for Detecting Untrustworthy
User Contributions

We propose a novel trust framework that formalizes trust-related factors in mobile crowdsensing
systems. The objectives of the proposed framework are to identify key elements, properties and
relations for managing trust in mobile crowdsensing environments and to define a novel method
for trustworthiness evaluation of users’ contributions considering human aspects of trust reasoning,
which is more efficient than the existing models in terms of error rate, minimal human involvement
and wide applicability.

Trust formalization is an extension of our previous work on Qualitative Assessment Dynamics
(QAD) [22,41,42]. The QAD considers trust as an expression of thinking and judgement processes
originating in psychology [21]. It takes into account certain psychological facts and findings [22,43]
and assumes the following trust forming factors:

1. User’s trust is driven by rational and irrational factors (rationality and irrationality).
2. Trust is a basis for a user’s actions and his/her ways of interaction with the environment

(action binding).
3. Trust is not merely the product of an independent user’s thinking, but also influenced by the

environment (feed-back dependence).
4. Trust is reflected in various forms due to various linguistic abilities of users to express trust and

different perceptions of the ability of the evaluated entities (trust differentiation).
5. A user’s trust relation towards the object/subject is changing dynamically over time

(time dynamics).
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The previous extensions of the QAD include solutions to use sensors as a supportive element for
evaluation of trust assessments and show its applicability for sensor-supported environments [43].
In this paper, we present further extensions of the QAD that support trust management in
human-centric mobile crowdsensing systems, where users contribute data explicitly and implicitly,
as well as evaluate the contributions. The proposed extensions of the QAD include introduction
of events and the events’ trust values (assessments) that consist of a subjective and an objective
part. Two parts of the assessments reflect the properties of the mobile crowdsensing paradigm that
aims to exploit both: (1) pervasiveness of smart devices with advanced sensing capabilities; and (2)
willingness of users to contribute content. Based on that, we propose definitions of trust matrix,
personal assessment vector, trust vector, trust value of the event, a user’s attitude and adjusted trust
vectors. Using the proposed extensions, we define a method for data trustworthiness computation in
mobile crowdsensing systems.

Figure 1 shows elements of the proposed trust framework, which are described in
following subsections.

request event value

objective assessment of event

subjective assessment of event

EK

Events

Mobile crowdsensing platform

Trust matrix 
(personal assessment vectors, trust vectors) 

 

Event's trust value

sense events

Applications Data transmission

Users

Data collection

User's attitude

Data processing and aggregation

Adjusted trust value

Method for
computing the
trustworthiness

of users’
contributions

Figure 1. Trust framework architecture.

3.1. User

A mobile crowdsensing system consists of a set of users U = {u1, u2, u3, . . . , un} that presents
smartphone owners who contribute sensing data to the system. In mobile crowdsensing systems, users
are often referred to as prosumers, since they act as both consumers and producers of crowdsensing
data [44]. Another common notation is a participant. We use all three notations interchangeably.

3.2. Event

Users are present in an environment where different events from event set E = {e1, e2, e3, . . . , em}
can occur. Users collect data about the events and may contribute data to a mobile crowdsensing
platform. The platform aggregates the data from multiple users and uses them to analyze the
characteristics of the observed phenomenon (for example, to optimize public transport routes
and timetables).
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3.3. Event’s Assessment

A user captures two parts of data about a certain event—objective value (sensor readings, such as
noise measurement) and/or subjective value (personal opinions or judgements, such as posted review)
of the event. Acquiring objective and subjective values about sensing events requires different levels
of user involvement and different sensing approaches:

1. Participatory sensing approach requires active involvement of individuals to contribute data,
for example, posting an opinion, filling a questionnaire, etc. related to an observed phenomenon.
With the participatory sensing approach we capture subjective event values.

2. Opportunistic sensing is more autonomous and user involvement is minimal. For example,
a smartphone can sample location continuously without explicit action from the user.
The opportunistic sensing approach is used to capture objective event values, obtained from the
available sensors in a smartphone or other mobile device.

In our proposed framework, an event’s assessment consists of a subjective and an objective part.
It is represented by ωi,j = (ω

subj
i,j , ω

obj
j ), which denotes user ui’s assessment of event ej. The subjective

part of the assessment ω
subj
i,j is contributed explicitly by the user with participatory sensing approach,

while the objective part ω
obj
j is captured implicitly via opportunistic sensing approach. We refer to

the subjective part of the event’s assessment as “subjective assessment” and to the objective part as
“objective assessment” throughout the paper.

The subjective assessment ω
subj
i,j is taken from set Ωsubj = {−2,−1, 0, 1, 2}, where the numbers

symbolize distrusted, partially distrusted, undecided, partially trusted and trusted values for the
event description. Assessment values could be given in other textual representation, such as strongly
disagree, disagree, neutral, agree and strongly agree, depending on an application-specific context and
content. Independently of the selected formulation, our model proposes a qualitative and ordinal data
set of assessment values, since such data set is understood and manipulated by humans easily. If a
user has not assessed an event yet, then the subjective part of the event assessment is not defined and
denoted with symbol “/”.

The objective assessment ω
obj
j has a real number value on the interval Ωobj ∈ [0, 1]. It is used for

comparison of events and their classification. We define a group of same events as set Ek = {ek ∈ E |
ω

obj
k − τ ≤ ω

obj
k ≤ ω

obj
k + τ}, where τ denotes events classification threshold. For example, events that

happen at the same time and at the same geographic location would have the same objective value in
a mobile crowdsensing application that collects data about traffic conditions. In real-case scenarios,
it is highly unlikely that two events have exactly the same objective value. Therefore, throughout the
paper we use the terminology same events, which describes that the events are in the same group.
Similarly, a notion “an event” can refer to an event or a group of same events, interchangeably.

Event assessments are stored in trust matrixM. A general form of the trust matrix is as follows:

M =


(ω

subj
1,1 , ω

obj
1 ) (ω

subj
1,2 , ω

obj
2 ) . . . (ω

subj
1,m , ω

obj
m )

(ω
subj
2,1 , ω

obj
1 ) (ω

subj
2,2 , ω

obj
2 ) . . . (ω

subj
2,m , ω

obj
m )

...
...

. . .
...

(ω
subj
n,1 , ω

obj
1 ) (ω

subj
n,2 , ω

obj
2 ) . . . (ω

subj
n,m , ω

obj
m )

 .

Row k in the trust matrixM represents user uk’s personal assessment vector. It contains user
uk’s assessments of events and is denoted as Mk,m = {(ωsubj

k,1 , ω
obj
1 ), (ωsubj

k,2 , ω
obj
2 ) . . . (ωsubj

k,m , ω
obj
m )}.

Furthermore,Mk,mk
= {(ωsubj

k,1 , ω
obj
1 ), (ωsubj

k,2 , ω
obj
2 ) . . . (ωsubj

k,mk
, ω

obj
mk )} denotes user uk’s assessments of

the events where undefined values “/” are omitted. Furthermore, notationsMsubj
k,m andMsubj

k,mk
denote

vectors that contain only subjective parts of the assessments, whereasMobj
k,m andMobj

k,mk
mark vectors

that contain only objective parts of the assessments.
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3.4. Event’s Trust Value

In the trust matrix M, column k represents trust vector about event ek. It holds
assessments (given by users) about particular event ek and is denoted as Mn,k =

{(ωsubj
1,k , ω

obj
k ), (ωsubj

2,k , ω
obj
k ) . . . (ωsubj

n,k , ω
obj
k )}. We denote a trust vector with omitted “/” values with

Mnk ,k = {(ω
subj
1,k , ω

obj
k ), (ωsubj

2,k , ω
obj
k ) . . . (ωsubj

nk ,k , ω
obj
k )}. NotationsMsubj

n,k andMsubj
nk ,k denote vectors that

contain only subjective parts of the assessments, andMobj
n,k andMobj

nk ,k represent vectors that contain

only objective parts of the assessments.
The trust value of an event ek is defined as follows:

ρek =
1
nk

∑
ω

subj
i,k ∈M

subj
nk ,k

ω
subj
i,k . (1)

3.5. Users’ Attitudes

The success of mobile crowdsensing systems depends on a large number of participating users.
The openness of the mobile crowdsensing paradigm allows anyone to contribute the data, including
malicious users. Malicious users post erroneous and malicious data, inadvertently or deliberately.
In the first case, we assume that users are inexperienced or careless in generating and reporting
event assessments to the platform, which results in an assessment of an event that has a different
value than the actual assessment of the event. In the latter case, we assume that the users report false
values deliberately in order to achieve a certain benefit, such as gaining a reward for large numbers of
contributions, or to decrease the trust value of a competitive service. A mobile crowdsensing platform
aggregates contributed data. If users contribute data that do not reflect true values, then the data
aggregation results are useless.

For this reason, it is essential that the trust framework include mechanisms to evaluate the
trustworthiness of the user contribution in order to provide users with results that are useful to them.
With the proper method, the mobile crowdsensing platform is able to provide more reliable information
that can be used in further analysis. Our proposed method takes into account different user behaviors
that also affect the quality and trustworthiness of reported data.

We derive the characteristics of a user’s assessment disposition from their subjective assessments
of the events obtained from their personal assessment vector. In our model, a user’s attitude is an
estimation of the true underlying cumulative distribution function of the subjective assessments in
their personal assessment vector, obtained with an empirical cumulative distribution function. User
ui’s attitude Fi,mi (ω

subj) is represented with an empirical cumulative distribution function of a data set

Mi,mi = (ω
subj
i,1 , ω

subj
i,2 , . . . ω

subj
i,mi

) and is obtained as:

Fi,mi (ω
subj) =

1
m

mi

∑
j=1

(I(ωsubj
i,j ) ≤ ω), (2)

where (I(ωsubj
i,j ) ≤ ωsubj) is the indicator function equal to 1 if (ωsubj

i,j ) ≤ ωsubj and equal to 0 otherwise.

3.6. Event’s Adjusted Trust Value

In our proposed model, users with different behavioral patterns are not classified in distinct
groups, but each can be treated independently with regard to their attitudes. As such, we can
compare each user with other users separately and find similar users, which means users with similar
attitudes, as defined above. The comparison of attitudes means comparison of two independent
subjective event assessment distributions, which can be performed with different statistical tests.
A mobile crowdsensing platform typically has no knowledge about parameters that describe users’
event assessment distributions. For this reason, we use nonparametric statistics. The nonparametric
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statistical tests make no assumption about the population distribution or sample size, which make
them suitable for attitude comparison. We use the Kolmogorov-Smirnov (KS) test for two samples,
which is more appropriate and more powerful than the other comparable nonparametric tests, i.e.,
the Wilcoxon signed-rank test, the Mann-Whitney test, the Kruskal-Wallis test. The two-sample
Kolmogorov-Smirnov test has less power to detect a shift in the median, but more power to detect
changes in the shape of the distributions. Therefore, it is entirely appropriate for a comparison of
assessment distributions, i.e., the comparison of the users’ attitudes, and powerful enough to detect
changes in the shape of distribution that occurs due to false data posted by malicious users.

We compute the similarity between the users by applying the two-sample KS test. Let Fi,mi (ω
subj)

and Fj,mj(ω
subj) be the attitudes of users ui and uj. The similarity between the users ui and uj is

defined as:

sim(ui, uj) = 1− supωsubj |Fi,mi (ω
subj)− Fj,mj(ω

subj)|, (3)

where sim(ui, uj) = {x ∈ R | 0 ≤ x ≤ 1}.
Furthermore, we derive a trust vector about event ek, adjusted to user ui’s perspective. An ordered

trust vector is defined as:

←−Mi
[nk ],k

= [ω
subj
[1],k, ω

subj
[2],k, ..., ω

subj
[nk ],k

], ∀[p] < [r] : sim(ui, u[p]) ≥ sim(ui, u[r]) (4)

We define a user ui-adjusted trust vector about the event ek as follows:

←−Mi
[ns ],k = [ω

subj
[1],k, ω

subj
[2],k, ..., ω

subj
[ns ],k

], ∀ω
subj
[j],k : [j] ≥ [simTh]. (5)

A user ui-adjusted trust vector contains assessments about a certain event, where it includes only
those assessments contributed by the other users that are sufficiently similar to ui and do not post false
or unsuitable data. An adjusted trust vector contains simTh best fitting values, according to similarities
with the other users in the mobile crowdsensing system. A user ui-adjusted trust value of the event ek
is derived as:

ρi
ek
(
←−−−−
Mi

[ns ],k) =
1

[ns]
∑

ω
subj
i,k ∈

←−Mi
[ns ],k

ω
subj
i,k . (6)

3.7. Method for Computing the Trustworthiness of Users’ Contributions

Based on the proposed formalization, we define the method that filters users’ contributions that
are recognized as untrustworthy. The purpose of the proposed method is to determine the trustworthy
assessments of a particular (or user unknown) event given by other participants, and to compute the
trust value of a reported event. Adjusted trust value of an event allows each individual user to make
an unbiased comparison and make decisions. Algorithm 1 describes the proposed method.

The proposed method for computing the trustworthiness of users’ contributions mitigates their
possible misinterpretations. The method does not require the explicit involvement of the participants,
except sharing assessment of the events. These are stored in a trust matrixM, held by the mobile
crowdsensing platform that collects user contributions. A user’s sharing of subjective values about the
events requires their active involvement on the mobile application level, while contributing objective
values of the events uses the opportunistic sensing approach with no or minimal user involvement.
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Algorithm 1 Method for computing a trust value of an event
Input: user ui, event ek, simTh, evtnSim

Output: ρi
ek

: trust value of ek

1: A ← {}
2: Derive attitude of user ui // Equation (2)
3: Find eK ∈ EK : ω

obj
K = ω

obj
k ± evtnSim

4: for each uj do

5: if ω
subj
j,K 6= “/” then

6: Derive attitude of user uj // Equation (2)
7: Put ω

subj
j,k toMsubj

nk ,k
8: Compute sim(ui, uj) // Equation (3)
9: end if

10: end for
11: SortMsubj

nk ,k // Equation (4)
12: Set j = 1
13: while j ≥ simTh do

14: Put ωi
[j],k to a A // Equation (5)

15: j = j + 1
16: end while
17: Compute ρi

ek
(A) // Equation (6)

4. Evaluation

In the previous section we described our conceptual trust framework for mobile crowdsensing
systems and a novel method to evaluate the trustworthiness of participants’ contributions. In this
section, we present the results of the experimental evaluation of the proposed framework and further
discuss its properties.

4.1. Experimental Evaluation

In recent years, several research facilities and experimental frameworks have been developed in
order to facilitate real-world mobile crowdsensing scenarios and to collect massive amounts of useful
data [45–47]. Furthermore, more advanced solutions were proposed that integrate various tools into
a large-scale platform and enable consolidation of data from different sources [48,49]. These efforts
produced real-world datasets that are available for further processing and analysis [50,51]. However,
the available datasets contain data in a form that is not applicable for an evaluation of the conceptual
trust framework that is proposed in this work. The proposed framework differs from existing trust
management solutions in that it proposes to collect two types of the data (i.e., directly expressed
assessment by humans and sensing reports captured by smart device sensors) describing the same
event, which are related to each other but are used separately in further data analysis. The available
datasets include data collected through realized experiments, such as mobility traces of buses, social
interaction and propinquity data, accelerometer samples, social networking data, etc., but do not
contain assessments expressed by users.

Therefore, we designed a simulation tool that implements scenario that is presented later in this
section. The simulation tool implements three different methods for an event’s trust value computation:

• Firstly, the simulation tool implements the proposed method, described in Section 3 (denoted
as Subj.).
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• Secondly, a method proposed by Huang et al. [23] is implemented in the simulation tool (denoted
as Gomp.). In their proposal [23], trust and reputation management system is made up of
two components—(i) watchdog module and (ii) reputation module. The watchdog module
implements the majority-voting algorithm in order to detect outliers and evaluates trustworthiness
of each contribution. In this step, candidates of events’ assessment values’ are defined, which act
as input to the reputation module. The reputation module builds a long-term view of the
trustworthiness of contributed events’ assessments. It applies Gompertz function in order
to define the trust value of the assessments that are recognized as solution candidates in the
watchdog module. In each configuration with Huang’s method we used the following parameter
values, a = 1, b = −2.5, c = −0.85 and threshold = 0.5, which are the same values as used in the
authors’ evaluation of the method [23].

• Thirdly, to provide a baseline for comparing methods, simulation tool also implements a
calculation of a trust value of an event without considering the trustworthiness of the data
(denoted as W/O).

In this case, the event’s trust value is computed as an average value of all subjective assessments
of the event previously reported by users, as defined in Equation (1).

Although several solutions that address trustworthiness of contributed data in mobile
crowdsensing systems have been proposed in the literature and research has been performed regarding
trust and reputation systems in mobile crowdsensing systems people-centric factors and factors related
to dynamism in human behavior have not been formalized. Nevertheless, [23] proposed a reputation
system that uses Gompertz function, whose mathematical construct is well-suited to model the
asymmetry in managing reputation for people-centric devices. Their method is suitable to handle
differences and transitions in a user’s trust behavior. Therefore, we have compared our method with
Huang’s method, which, to our best knowledge is closest to our work and suitable for a comparison.

The simulation tool has been developed in Java JDK 8 using Eclipse IDE. The simulations were
conducted on MacOS 10.13 with 3,1 GHz Intel Core i5 processor and 16 GB RAM and carried out
in a controlled environment, with all background processes stopped. The simulation tool has been
extensively tested, verified and validated to assure that the simulated results are conformed with
each method. To achieve this, we have verified the output of each simulation step and compared the
results using manual calculations and calculations computed with Mathematica tool. We have also
implemented automated tests using JUnit.

The implemented simulation tool allows to set parameters, such as number and type of events,
number and personality types of users, number of malicious users, Gompertz function parameters,
threshold values, etc. Setting the parameters to different values allows to execute the scenario
anticipating different circumstances. We have set parameters for each configuration, as follows.

The simulation environment consists of n = 100 users and m = 30 events. At the beginning,
all events are not assessed yet, i.e., ω

subj
i,j = “/‘’, ∀i, j. An event has an objective value that remains

unchanged during the simulations. Events have defined objective values with uniform distribution,

such that ω
obj
1 =

1
m

, ω
obj
2 =

2
m

, ω
obj
3 =

3
m

, etc.
We define six basic personality types in order to simulate different human behaviors. Personality

types are elements of set Ψ = {⇑,⇓,∼,↔, ↑, ↓}, where the symbols denote optimistic, pessimistic,
centralistic, opportunistic, moderately optimistic and moderately pessimistic personality types,
respectively. The personality type is a function ψ ∈ Ψ that defines how a user with a certain personality
type evaluates an event. The functions of the particular personality types are defined as follows:

⇑i : ω
subj
i,j (ω

obj
i ) =


0; ω

obj
i < 0.25

1; 0.25 ≤ ω
obj
i < 0.5

2; 0.5 ≤ ω
obj
i
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⇓i : ω
subj
i,j (ω

obj
i ) =


−2; ω

obj
i < 0.5

−1; 0.5 ≤ ω
obj
i < 0.75

0; 0.75 ≤ ω
obj
i

∼i : ω
subj
i,j (ω

obj
i ) =



−2; ω
obj
i < 0.2

−1; 0.2 ≤ ω
obj
i < 0.4

0; 0.4 ≤ ω
obj
i < 0.6

1; 0.6 ≤ ω
obj
i < 0.8

2; 0.8 ≤ ω
obj
i

↔i : ω
subj
i,j (ω

obj
i ) =


−2; ω

obj
i < 0.25

−1; 0.25 ≤ ω
obj
i < 0.5

1; 0.5 ≤ ω
obj
i < 0.75

2; 0.75 ≤ ω
obj
i

↑i : ω
subj
i,j (ω

obj
i ) =



−2; ω
obj
i < 0.1

−1; 0.1 ≤ ω
obj
i < 0.3

0; 0.3 ≤ ω
obj
i < 0.5

1; 0.5 ≤ ω
obj
i < 0.7

2; 0.7 ≤ ω
obj
i

↓i : ω
subj
i,j (ω

obj
i ) =



−2; ω
obj
i < 0.3

−1; 0.3 ≤ ω
obj
i < 0.5

0; 0.5 ≤ ω
obj
i < 0.7

1; 0.7 ≤ ω
obj
i < 0.9

2; 0.9 ≤ ω
obj
i

Users with different personality types perceive and subjectively evaluate events with the same
objective value differently. For example, an event e1 has an objective value ω

obj
1 = 0.65. A user

with optimistic personality type subjectively evaluates the event as trusted, a user with pessimistic
personality type as partially distrusted, a user with centralistic, opportunistic or moderate optimistic
personality type as partially trusted, while a user with moderate pessimistic personality type evaluates
the trust value of the event as undecided. The subjective evaluations conflict due to different personality
types of users and do not impose that one of them reports true assessment of an event, while other are
malicious and report false trust assessments of an event.

4.2. Simulation Scenario

We simulate a mobile crowdsensing environment where different kinds of events happen and
participants contribute the assessments of the events to the platform using a simulation tool. In the
simulation tool, the platform stores both subjective and objective values of the events and uses those
values to evaluate event trust value. In each time step of the simulation, we execute the following
simulated scenario:

1. User uS requests a platform for a trust value of an event eR.
2. The platform computes the trust value of the event eR based on users’ contributions considering

their trustworthiness. The platform computes the trustworthiness level of the (previously)
contributed data using:

• Our proposed method (Subj.); or
• Huang’s method (Gomp.); or
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• Without trustworthiness computation (W/O).

3. The event eR happens and user uS perceives it.
4. The objective value of the event eR is stored by the platform (without user involvement).
5. User uS assesses the event.
6. User uS sends a subjective assessment to the platform.

• A good user sends a true value.
• A malicious user sends a false value.

7. Evaluation step: Comparison of the computed trust value of the event and actual assessment of
the event.

In the first step of the simulated scenario, a user uS requests a platform for a trust value of an
event eR. We use the phrases “same events” or “an event” throughout the paper, which both refer to a
group of same events, as defined in Section 3. In the executed simulations, the events classification
threshold is τ = 0.05.

Then, we compute the trustworthiness of the user contributions in three different ways (using
Subj., Gomp. or W/O) in order to compare results and to evaluate the effectiveness of our proposed
approach. In Steps 3–6 of the simulated scenario, the user perceives and assesses the event.
The subjective assessment of an event is defined with the personality type of the user, which does not
change during the simulation. The above defined personality types are used to calculate the subjective
value of an event, regardless of which method to calculate the events’ trust value is used.

However, we assume that a user may contribute a false assessment of an event to the platform
(Step 6 of the simulated scenario). In the simulations we define a good user as a user who always
contributes correct data. Furthermore, we define a malicious user as a user who reports false data.
Malicious users may report false data inadvertently or deliberately. We do not differentiate between
them, since both contribute untrustworthy data. In this work and simulations performed, a malicious

user reports an assessment that has lower value, such that ω
subj
M,j = max(ωsubj

M,j − 2, 2), where ω
subj
M,j

denotes a real subjective value of an event as perceived in Step 3.
Step 7 of the simulated scenario is an additional step to evaluate the performance of the selected

method for data trustworthiness computation. After each transaction, i.e., a user’s request for an event
trust value, a platform’s response and an actual assessment of the event, we check if the platform
provided the correct trust value (in Step 2 of the simulated scenario). A correct value is considered to
be the same value as how the user evaluates the event (in Step 5 of the simulated scenario).

In each time step of the simulation, the above scenario (Steps 1–7) executes with a random user
and a random event. We describe the simulated scenario with an algorithm chart in Figure 2.

We have run simulations for 1000 steps. In real case scenarios users do not have knowledge about
all events (otherwise, there would be no need for trust management systems), meaning the trust matrix
is sparse. In 1000 steps we collect ~33% of possible event assessments in a configuration with n = 100
users and m = 30 events, while other elements (~67%) in the trust matrix are undefined (“/”).

We calculated the error rate for each method. The error rate is the number of incorrect values
over the total number of all computed values. The event’s value is computed upon the user’s request.
The method computes the event’s trust value using previous users’ contributions about events that
have already happened. The evaluated methods differ in how they define the trustworthiness of the
users’ contributions and how they use them for the calculation of the event’s trust value. A low error
rate indicates that a method is effective in computing an event’s trust value.

We carried out two series of experiments in order to evaluate the efficiency of our proposed
method compared to Huang’s method and method without trustworthiness computation. First,
we evaluated the methods depending on the number of malicious participants in a simulated mobile
crowdsensing environment. Second, we compared them in environments with different distributions
of users’ personality types.



Sensors 2019, 19, 1326 14 of 23

START

User us

What is trust value of
event eR?

Compute trust value  
without

trustworthiness
computation.

Compute trust value  
using Huang's

method.

Compute trust value  
using our proposed

method.

Crowdsensing
platform

Trust value  
of event eR  

(W/O)

Trust value  
of event eR  

(Gomp.)

Trust value  
of event eR  

(Subj.)

Event eR happens.Objective value  
of event eR 

User uS assesses  
eR subjecitvely.

Subjective
assessment of  

event eR

EVALUATION STEP:
Compare computed

trust value with acutal
assessment.

Is user uS  
malicious?No Yes

END

True assessment 
 of event eR

False assessment 
 of event eR

Figure 2. Algorithm chart for simulated scenario.

4.3. Efficiency of Methods Depending on the Number of Malicious Users

In the first series of experiments, we evaluated the efficiency of the methods depending on the
number of malicious users in the community. We ran the simulations with n = 100 users, with a uniform
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personality type distribution, i.e., there are 16.67% optimistic users, 16.67% moderately optimistic
users, 16.67% users with a centralistic personality type, 16.67% moderately pessimistic users, 16.67%
pessimistic users and 16.67% users with an opportunistic personality type.

We designed the simulation configurations with different percentages of malicious participants in
the environment: 0% (only good users), 10%, 20%, 30%, 40% and 50%. We assume that a malicious user
acts individually and reports false values for 30% of events. For the other 70% of events the malicious
user reports true values. Every malicious user has his/her own “targets”, i.e., events for which the
false values are reported.

We do not consider colluding attack scenarios, where a malicious user colludes with other users
to create a false evaluation of a particular event, since the possibility of realizing such a scenario
in real cases is small. Namely, mobile crowdsensing systems have some unique features. Typically,
they involve location dependency, temporal continuity and participation in micro-tasks [52]. Mobile
crowdsensing systems are based on and designed for micro-tasks, which results in micro-payments
or micro-rewards [39,53,54] or no rewards at all [17]. The organization of a group attack requires
effort, implying that the execution of a collusion attack may be uneconomic and unrewarding for
their long-term reputation. Additionally, sensing reports in mobile crowdsensing systems typically
include spatio-temporal constraints, which makes it difficult to organize and carry out a collusion
attack. Therefore, we have not considered colluding attacks in the simulations.

Each configuration with a different percentage of malicious users in the environment was executed
for 1000 time-steps. We repeated each configuration 100 times and computed the average error rate
for each simulation configuration with different percentage of malicious users, and executed with
every method (W/O, Gomp. and Subj.). The mean value and Standard Deviation for the error rate,
calculated after 100 repetitions of each simulation configuration, are presented in Figure 3.
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Figure 3. Mean value and Standard Deviation for error rate achieved with different methods for
simulation configurations with different percentages of malicious users.

Error rate increases with an increased number of malicious users in the community. In all
configurations with different percentages of malicious users, the error rate achieved with our method
is lower than the error rate achieved with Huang’s method or the method without data trustworthiness
computation. The error rates vary from 0.35 (configuration with good users only) to 0.42 (configuration
with 50% of malicious users) for our method, and from 0.53 (configuration with good users only) to
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0.56 (configuration with 50% of malicious users) for Huang’s method. When computing the reputation
of an event without considering the trustworthiness of users’ contributions, the error rate varies
between 0.55 and 0.60. With the proposed method we improved the error rate by 32.6%, 28.5%, 22.1%,
22.9%, 24.6% and 24.8% over Huang’s method for configurations with 0%, 10%, 20%, 30%, 40% and
50% of malicious users, respectively. Compared to calculating the reputation of the events without
considering data trustworthiness level, our proposed method improved error rate by 35.2%, 34.7%,
32.5%, 29.5%, 30.7% and 27.4% in configurations with 0%, 10%, 20%, 30%, 40% and 50% of malicious
users, respectively.

Huang’s method calculates the reputation of users based on past experience with this user,
depending on how trusted his/her contributions were in the previous interactions. The user’s
reputation has a global value, which means that this value is the same for all users. For example, if
user uX asks for an event’s eQ trust value (Step 1 in the simulated scenario), the calculation of the
event’s eQ trust value is the same as if user uY would ask for this event assessment. Similarly, the trust
value of the event is also global in a method without data trustworthiness consideration. In this case,
it is considered that all participants previously contributed assessments that are equally trustworthy.

Our method handles it in a different way. Namely, our method does not calculate a global (general)
trust value, but a trust value that is adjusted according to who it is computed for. For example, user
uP is an extreme pessimist who evaluates events with low values, although they are objectively
good. In this case, the trust value of the event eQ is not automatically low, because the user uP’s
assessments are not in accordance with the majority. Conversely, if a requesting user uS (in Step 1
in the simulated scenario) is also inclined to evaluate events with low values, the trust value of the
event eQ is comparatively high. Our model suggests that user uS perceives the considered event in
the same way as user uP and evaluates it with the same value as user uP. The calculated and the
real assessment of the considered event is, thus, very likely the same, which results in a lower error
rate. In an alternative case where user uS is inclined to different event assessments than user uP (for
example, if the user is an optimist), data contributions are considered as untrustworthy for user uP
and are not used in the computation of the trust value of the event in this case.

4.4. Efficiency of Methods Depending on Distribution of Personality Types

In the second set of experiments we assessed the performance of our proposed method depending
on the distribution of participants with different personality types. We ran simulations with n = 100
users with the following distributions of personality types, as given in Table 1.

Table 1. Distributions of personality types.

Distribution/Personality Type Uniform Bipolar Moderate Extreme

⇑ (optimistic) 16.67% 0.00% 0.00% 33.33%
⇓ (pessimistic) 16.67% 0.00% 0.00% 33.33%
∼ (centralistic) 16.67% 0.00% 33.34% 33.34%
↔ (opportunistic) 16.67% 0.00% 0.00% 0.00%
↑ (moderate optimistic) 16.67% 50.00% 33.33% 0.00%
↓ (moderate pessimistic) 16.67% 50.00% 33.33% 0.00%

In the uniform distribution configuration there is the same number of users with each
defined personality type. In the bipolar distribution configuration there are only two types of
users—moderately pessimistic and moderately optimistic users. The first ones tend to assess events
with higher values, whereas the others tend to provide lower assessments of the events. However,
their assessments deviate in a positive/negative direction only to a small extent in comparison with the
centralistic personality type. In the configuration with moderate distribution of personality types, there
are the same number of centralistic, moderate optimistic and moderate pessimistic users. All three
types assess events relatively evenly, with the assessments of the moderate optimistic users somewhat
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diverging upwards and the assessments of the moderate pessimistic users diverging slightly in a
negative direction. Therefore, assessments of the same event, calculated by each type of user, are close.
On the contrary, assessments of the same event differ more in configuration with extreme distribution
of personality types. In the extreme distribution configuration, the simulated community consists of
users with optimistic, pessimistic and centralistic personality types. The assessments computed by
centralistic users are evenly distributed (assuming events have an even distribution of objective values).
The assessments of optimistic and pessimistic users are extreme, compared to those computed by
centralistic users. The optimistic users tend to give assessments with extremely high values compared
to the majority of the assessments; and the pessimistic users tend to assess the event with extremely
low values. Therefore, in the configuration with the extreme distribution of personality types, the
assessments of the same event, calculated by each type of user, differ considerably.

In each configuration there are 20% of malicious users who report false assessments of events.
The same as in the previous set of experiments, we assume that a malicious agent acts individually
and reports false values for 30% of events.

We repeated each configuration 100 times and computed the average error rate for each simulation
configuration. The mean value and Standard Deviation for the error rate calculated after 100 repetitions
of each simulation configuration are presented in Figure 4.
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Figure 4. Mean value and Standard Deviation for error rate achieved with different methods for
simulation configurations with different distributions of personality types.

In all configurations, our method achieved the lowest error rate that was improved by 22.1%,
32.7%, 19.6% and 50.5% over Huang’s method for configurations with Uniform, Bipolar, Moderate and
Extreme distribution, respectively. Compared to the baseline method, which does not consider data
trustworthiness, we improved the error rate by 32.5%, 34.6%, 14.5% and 60.3% in Uniform, Bipolar,
Moderate and Extreme configurations, respectively.

In Extreme configuration, there are optimistic, centralistic and pessimistic participants in the
simulated mobile crowdsensing environment. In that case, computing a trust value of the event
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as average (method W/O) is not suitable for a requesting user. For example, if a requesting user
is a pessimist, then the computed trust value of the event is lower than the optimist user would
assess it. The computed and the real value differ, resulting in a high error rate. Huang’s method
performs well in Extreme configuration when a requesting user has a centralistic type of personality,
since majority opinion converges to centralistic values. If the requesting user is pessimistic, then the
solution candidates (i.e., assessments of the event) have, on average, higher values than the pessimistic
user’s opinion. Similarly, if the requesting user is optimistic, then the majority-based opinion is lower.

Our method takes in the calculation only assessments of the event that are posted by users with
similar attitudes. In Uniform configuration that consists of users with all possible types of personality,
who evaluate events in different ways, a group of users with the same (similar) attitude is small.
Therefore, if the user is a moderate optimist, the best fitting event assessment calculation would take
only assessments reported by other moderate optimists from the community—assuming they are not
malicious, since, in this case, the trust attitude does not match the trust attitude of the requesting
user. Because, in this case, the group of moderate optimists is small, data contributions of optimists
and centralists are taken into account, since they fall into the set of the most suitable users. The
events’ assessment values are more dispersed in this case, which leads to the differences between the
calculated and the true values and, consequently, to a higher error rate.

4.5. Discussion and Use Cases

The proposed framework assumes that an application uses both opportunistic and participatory
sensing approaches for collecting data. Collecting two types of data for the same event has certain
advantages that were already recognized. It exploits both high-performance sensors that are integrated
into smartphones and smartphone owners’ intelligence in order to gain a better knowledge of the
characteristics of the observed phenomena. Similar approaches to divide the captured sensing data in
different parts have been used [23,55]. Wang et al. [55] refer to data captured via participatory sensing
approach as “payload data”, which are obtained next to the contextual objective data and could be
of any format, e.g., text, voice, picture, video. Advantages of subjective event assessment include
human perception and understanding of the events in a specific contexts. Additionally, human users
can handle large amounts of data and derive semantically complex information that complement the
measurements of hardware sensors significantly. In the same work [55], an objective event value is
referred to as “provenance data” and includes meta-data that describe the origin of the report and other
contextual factors. It is assumed to be generated automatically by smart devices that users possess.
Huang et al. [23] do not introduce special notation for different parts of the sensed data, but also tag
reported data with additional information, such as time and location.

The proposed trust framework, which includes the method for detecting untrustworthy user
contributions is general and widely applicable to different kinds of mobile crowdsensing applications.
It can be used as an addition to existing mobile crowdsensing applications in order to improve
the interpretation of contributed data and their trustworthiness evaluation. Application of the
proposed framework for a specific domain requires that collected subjective and objective values
of the sensed data are mapped in the proposed domains, i.e., Ωsubj = {−2,−1, 0, 1, 2} and Ωobj ∈ [0, 1].
The mapping is context-specific, whereby the proper level of data granularity should be applied to
receive meaningful data contributions. For example, an event value ω

obj
j ∈ [0, 1] can denote noise

level between 30 dB and 100 dB in a room noise monitoring application, where the mapping is not
necessarily linear.

When applying the proposed trust framework as an extension of an application that already
uses two types of data, fewer modifications would be required. For example, QoWater [56] employs
a wireless sensor network to monitor water distribution network infrastructure through objective
measurements and collects feedback from users about the water quality (subjective measurements
about water taste, color, odor, appearance and pressure). In this system, we could apply the
proposed trust framework and derive prosumers’ trust attitudes based on comparing their subjective
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measurements and objective values obtained via wireless sensors. The proposed method for computing
the trustworthiness of contributed data could compare and adjust users’ subjective measurements
in order to get a more trustworthy overall water quality score. Another example includes Metro
Cognition application [57] that is intended to offer citizens personalized travel information to make
their journeys more convenient. The application gathers both passive sensory information and active
user-generated content. For example, the application collects users feedback about metro delays,
such that it asks users how long they have to wait for a metro and the users respond choosing one
of the following options: a lot, quite a bit, some time, not at all. In this case, an application of our
proposed framework is straightforward. Our framework would improve the interpretation of the
collected feedback considering users’ attitudes.

Furthermore, mobile crowdsensing applications that collect one type of data, i.e., sensor
measurements via smart devices, are widespread. In these cases, the applications could to be
extended with the possibility to collect the subjective values of the observed event in order to apply
proposed trust framework. Extensions in terms of creating relevant questionnaires or other ways
to submit subjective assessments of events raises questions related to mechanisms for promoting
users’ cooperation. In some cases, trust and reputation management mechanisms per se are used to
incentivize users to contribute trustworthy data, where data trustworthiness and user reputation are
used to determine a reward [29,52,58]. Other goals of incentive systems are to make a balance between
platform and user utility such that they maximize platform utility (i.e., payments to reputable users
contributing useful data and no payments to malicious users who provide bad data), while keeping
user utility at a satisfactory level to ensure their participation [59–62]. Although incentive mechanisms
are closely related to trust management in mobile crowdsensing systems, they are not the focus of
this work.

Sharing data to an application also raises privacy concerns, taking into consideration that there
are many types of attacks on privacy, such as monitoring and eavesdropping, traffic analysis, user
identification attacks, sensitive location tracking, sequential tracking attacks, task tracing attacks
and location-based inference attacks, for which different solutions have been proposed [63–65].
Since privacy and security concerns are not the focus of this work, we assume that participants
share data to a trusted application server with secured transmission techniques, as well as that the
sensing data is generated by a trusted middleware. We assume that communication between a user’s
smartphone and a mobile crowdsensing platform is secure and that privacy and security concerns
related to integrity, confidentiality and availability are sufficiently handled [66–68]. In our method,
we assume that the platform receives accurate and complete data, on the basis of which it can
derive precise user behavior profiles/attitudes and compare them with each other. Privacy-preserving
techniques that provide incomplete information in return for providing privacy are not used, or used
properly [55,69–71].

We also consider sensor readings as accurate. Namely, smartphones are presently equipped with
powerful hardware and are able to provide accurate sensor data. According to [72], the accuracy of
modern smartphone sensor readings is 97–98% for specific sensors, such as accelerometers, while the
measurement accuracy of temperature, noise levels or luminosity are affected by the location of the
smartphone. The smartphone sensors accuracy and reliability also depend on type of smartphone
(or smart device) and which hardware it uses. However, even low cost sensors are able to provide
accurate measurements [73]. Additionally, the measurements can be improved if sensors are calibrated
frequently. Based on that, in our proposed framework we assume that the sensor measurements with
sufficient accuracy are provided and we do not handle sensor measurements errors.

5. Conclusions

We have proposed a conceptual trust framework for mobile crowdsensing systems, including
a novel method for evaluating the trustworthiness of data contributed by users. The proposed trust
formalization takes into account that participants in mobile crowdsensing environments contribute
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their opinions and other subjective data besides the raw sensing data generated by their smart
devices. Our proposed method considers different user behaviors and is based on comparison of their
contributed assessments by applying nonparametric statistics. The aim of the proposed method is
to compute the trustworthiness of users’ contributions in order to use trustworthy and best fitting
assessments only for the computation of the event’s trust. We have evaluated our method with
extensive simulations and showed that our method achieves a lower error rate than the referenced
approaches, i.e., the method proposed by Huang et al. [23], and the simple average method that does
not consider data trustworthiness. In societies with different numbers of malicious users, we improved
the error rate by 25.9% on average over Huang’s method and by 31.6% on average over the method
where all data are considered equally trustworthy. In societies with different distributions of users’
personality types, our method outperformed Huang’s method by 31.2% on average, and the method
where all data are considered equally trustworthy by 35.5% on average. The proposed framework and
the method are generic and applicable to real-world use cases in different mobile applications that use
opportunistic and participatory sensing approaches.
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