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Abstract: In order to monitor and manage vessels in channels effectively, identification and
tracking are very necessary. This work developed a maritime unmanned aerial vehicle (Mar-UAV)
system equipped with a high-resolution camera and an Automatic Identification System (AIS).
A multi-feature and multi-level matching algorithm using the spatiotemporal characteristics of
aerial images and AIS information was proposed to detect and identify field vessels. Specifically,
multi-feature information, including position, scale, heading, speed, etc., are used to match between
real-time image and AIS message. Additionally, the matching algorithm is divided into two
levels, point matching and trajectory matching, for the accurate identification of surface vessels.
Through such a matching algorithm, the Mar-UAV system is able to automatically identify the
vessel’s vision, which improves the autonomy of the UAV in maritime tasks. The multi-feature
and multi-level matching algorithm has been employed for the developed Mar-UAV system, and
some field experiments have been implemented in the Yangzi River. The results indicated that the
proposed matching algorithm and the Mar-UAV system are very significant for achieving autonomous
maritime supervision.

Keywords: Unmanned Aerial Vehicle (UAV); vision; Automatic Identification System (AIS); vessel
identification; maritime monitoring

1. Introduction

As we know, UAV technology has been developed to be more independent and intelligent.
Unmanned aerial vehicles (UAVs) have low cost, good flexibility, low risk and high efficiency.
Therefore, UAVs have been widely used in various tasks, such as modern maritime supervision [1,2],
information collecting [3,4], search and rescue [5,6], environmental monitoring [7,8], exploration and
mapping [9,10], etc.

In typical maritime supervision, live monitoring from the UAV carrying a camera not only
provides a broad and steady view but also has excellent mobility. In general, only vessel detection
could be achieved depending on the onboard vision. However, more information such as load,
goods, power system, etc., need to be acquired for maritime supervision. For example, the vessels
carrying dangerous chemicals should be approached by a more careful operation. The AIS (Automatic
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Identification System) of each vessel can provide the information by broadcast. As a result, combining
vision and AIS can achieve identification and tracking. Aniceto et al. [11] presented a study based
on field trials using UAVs to carry out the image-based monitoring of cetaceans in two fjords in
northern Norway. Comba et al. [12] proposed using the unmanned aerial vehicle (UAV) multi-spectral
generated 3D point cloud image to accurately detect vineyards, which plays a vital crop monitoring
function in the viticulture process. Ribeiro et al. [13] presented a dataset with surveillance imagery
over the sea that was captured by a small size UAV. This dataset presents object examples ranging
from cargo ships, small boats, life rafts to hydrocarbon slick. Zhang et al. [14] used a low-altitude
unmanned aerial vehicle (UAV) remote-sensing platform equipped with an optical digital camera to
inspect power line corridors. Freitas et al. [15] addressed the use of a hyperspectral image system to
detect vessels in maritime operational scenarios. The developed hyperspectral imaging classification
methods are based on supervised approaches and allow for the detection of the presence of vessels
using real hyperspectral data. We implemented two different methods for comparison purposes: SVM
(Support Vector Machine) and SAM (Spectral Angle Mapper).

The real-time images of vessels and monitoring environment are captured sequentially by a
camera mounted on the UAV. The detection or tracking could be achieved through some image
segmentation and matching techniques. However, these detected vessels cannot be identified using
only because their real names or IDs are unknown. It is not beneficial to maritime law enforcement.
Alternatively, the vessel information involving name, current heading, speed and other attributes can
be obtained from an onboard AIS receiver. Through the collaboration of vision and AIS, the vessels
could be detected and identified.

In recent years, there has been a wealth of research and various vision-based methods made
available for Maritime UAV applications. The related research includes the design and control of UAV
research [16], business application mode and method research [17], task-oriented path planning and
collaborative operation research [18,19]. Ross et al. [20] introduced a ship detection and identification
system based on the fusion of multiple sensors (including vessel AIS equipment, satellite imagery
and radar images). Habtemariam et al. [21] proposed a radar and AIS information fusion algorithm
based on the joint probability data protocol framework. The uncertainty of the AIS identification
number is solved by assigning multiple AIS identification numbers to the target and updating the
identification number probability according to Bayesian inference. This algorithm combines radar and
AIS information.

Lang et al. [22] proposed an adaptive multi-sample transfer learning method by combining
Synthetic Aperture Radar (SAR) and AIS for ship detection and tracking. There is insufficient data in
existing ship classification samples in SAR images, but the classification of ships in the AIS information
is clear with sample-rich data. SAR is a high-resolution microwave imaging radar using the principle
of synthetic aperture. The AIS dataset is used to train the SAR image, which reduces the ship detection
and classification error rates. Pelich et al. [23] and Zhao et al. [24] selected the minimum distance
matching between the feature information such as the position, heading and ship length and the AIS
information whilst considering the incident angle, polarization, frequency and spatial resolution of the
SAR sensor. In this way, the false alarm rate is reduced, improving ship detection and identification.

Satellite imagery, radar imagery, ship AIS data detection and identification are mature compared
to aerial imagery and ship AIS data detection and recognition. It is an important research direction to
improve the autonomy of UAVs in current maritime supervision applications, especially for realizing
the automatic recognition and tracking of targets based on unmanned aerial sensors (such as cameras
and laser radars) [25]. Currently, UAVs use onboard vision to capture maritime scenes and send
real-time images to the ground station. All further processing, especially vessel identification, has to be
done manually by the staff. Once the matching between image-based detection and the AIS message is
confirmed, vessel identification could be achieved automatically by UAVs. In this paper, a Mar-UAV
system was developed by a large-scale multi-rotor aerial vehicle equipped with a high-resolution
camera and a customized AIS receiver. For the purpose of autonomous vessel identification,



Sensors 2019, 19, 1317 3 of 19

a multi-featured and multi-level matching algorithm was proposed to match the image-based vessel
detection with the AIS message. Except for the features including position, vision-based localization,
heading, speed, etc., a hierarchical structure using point to trajectory matching has been considered in
the algorithm. Depending on such a matching algorithm, the Mar-UAV system has the ability to detect
and identify vessels automatically instead of manually. In the end, by using the Mar-UAV system,
some field experiments were implemented over the Yangzi River. The results were also displayed
to illustrate the proposed algorithm and the Mar-UAV system. The proposed matching algorithm is
beneficial in improving the autonomy of UAVs in maritime supervision.

The rest of the work is organized as follows. Section 2 introduces the design and development
of the Mar-UAV system. Section 3 describes the proposed multi-featured and multi-level matching
algorithm. Section 4 presents the experimental results and the performance analysis of vessel detection
and identification. Finally, the conclusion is given in Section 5.

2. Systematic Design

The developed Mar-UAV (maritime unmanned aerial vehicle) system is based on a multi-rotor
copter platform. With a 2 Degree-Of-Freedom (DOF) camera mount, a high-resolution camera and
an AIS transceiver as the main payload, the Mar-UAV can fly over the river, acquiring videos of
the water target. The real-time vision and AIS data are transmitted wirelessly to the ground control
system, in which all the algorithms are processed. Additionally, the ground system is responsible
for the visualization and supervision of all the acquired data. The multi-featured and multi-level
matching algorithm proposed in Section 3.2 can be used to detect and identify the vessels in the
view. The Mar-UAV can be operated in a semiautonomous mode or a fully autonomous mode,
depending on the field and the specified task. The semiautonomous mode is suitable for searching in a
specified short-range region, which can be improved with human supervision. The superior flight
maneuverability of the Mar-UAV makes it the most suitable platform for low-altitude remote sensing
and evaluation tasks. Figures 1 and 2 show the overall system.
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Figure 1. The ground control system, onboard Automatic Identification System (AIS) transceiver and
imagery device.
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2.1. System Architecture

The goal of the Mar-UAV system in this work is to find a target’s GPS coordinates and identify
the target, which requires a suitable type of aircraft frame. The aircraft needs enough fuselage space to
accommodate the necessary payload for the task. The vehicle configuration and material exhibit good
aerodynamic performance and a reliable structural strength for the missions. The propulsion system
for the aircraft is calculated once the Mar-UAV’s configuration and requirements are known.

Next, a communication system, including a telemetry system, is used to connect the ground
station to the Mar-UAV. After adding the flight control system, the aircraft takes off, following the
designed route autonomously. Finally, with the help of the mission system, targets’ and their GPS
coordinates can be found. Figure 3 shows the systematic framework of the Mar-UAV system, with
the details in the following sub-sections. The whole system weighs 9.45 kg and takes off via hand
launching. In order to resist the wind over the Yangzi River, the Mar-UAV system was designed with
a strong airframe and a powerful dynamic. Therefore, except for its airframe (1.25 kg), six brushless
motors (0.45 kg × 6) and two LiPo battery (2 kg × 2) take up most of the total weight.

Sensors 2019, 19, x FOR PEER REVIEW  4 of 18 

2.1. System Architecture 

The goal of the Mar-UAV system in this work is to find a target’s GPS coordinates and identify 

the target, which requires a suitable type of aircraft frame. The aircraft needs enough fuselage space 

to accommodate the necessary payload for the task. The vehicle configuration and material exhibit 

good aerodynamic performance and a reliable structural strength for the missions. The propulsion 

system for the aircraft is calculated once the Mar-UAV’s configuration and requirements are known. 

Next, a communication system, including a telemetry system, is used to connect the ground 

station to the Mar-UAV. After adding the flight control system, the aircraft takes off, following the 

designed route autonomously. Finally, with the help of the mission system, targets’ and their GPS 

coordinates can be found. Figure 3 shows the systematic framework of the Mar-UAV system, with 

the details in the following sub-sections. The whole system weighs 9.45 kg and takes off via hand 

launching. In order to resist the wind over the Yangzi River, the Mar-UAV system was designed with 

a strong airframe and a powerful dynamic. Therefore, except for its airframe (1.25 kg), six brushless 

motors (0.45 kg × 6) and two LiPo battery (2 kg × 2) take up most of the total weight. 

UKF-based Navigation System

3-axis Accelerometer

3-axis Gyroscope

3-axis Magnetometer

GPS Module

Barometer

Ship Identification 

Based on Image 

Detection and Ship AIS 

Information

Image Acquisition Device

AIS Transceiver

Flight Controller Ground Control Station

 

Figure 3. The hardware architecture of the Mar-UAV. 

2.2. Airframe 

The Mar-UAV system is established to satisfy the diverse demands in real maritime supervision 

applications. The iNavA6-100, designed for surveillance, can be used for locating and target 

recognition with a camera and AIS transceiver as the main payload. The iNavA6-100 is the name of 

the Mar-UAV system. We developed the system by integrating a six-rotor drone with a high-

resolution motion camera and an AIS sensor. The main body of the fuselage adopts high-intensity, 

high-rigidity imported carbon fiber composite materials and advanced one-piece molding 

technology. According to the force analysis of the different parts of the fuselage, different processing 

techniques are used to achieve the lightest weight while ensuring rigidity and strength. The rain-

proof design of the entire fuselage is designed to fly in moderate weather. Moreover, the small scale 

and lightweight design of the iNavA6-100, convenient for maritime supervision, can conduct 

searches near the accident region. Table 1 shows the Specific parameters of the employed drone. 
  

Figure 3. The hardware architecture of the Mar-UAV.

2.2. Airframe

The Mar-UAV system is established to satisfy the diverse demands in real maritime supervision
applications. The iNavA6-100, designed for surveillance, can be used for locating and target recognition
with a camera and AIS transceiver as the main payload. The iNavA6-100 is the name of the Mar-UAV
system. We developed the system by integrating a six-rotor drone with a high-resolution motion
camera and an AIS sensor. The main body of the fuselage adopts high-intensity, high-rigidity imported
carbon fiber composite materials and advanced one-piece molding technology. According to the force
analysis of the different parts of the fuselage, different processing techniques are used to achieve the
lightest weight while ensuring rigidity and strength. The rain-proof design of the entire fuselage
is designed to fly in moderate weather. Moreover, the small scale and lightweight design of the
iNavA6-100, convenient for maritime supervision, can conduct searches near the accident region.
Table 1 shows the Specific parameters of the employed drone.
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Table 1. The specific parameters of the employed drone. http://www.keweitai.com/products_detail/
productId=38.html.

Types Parameter

Maximum size of the whole machine 1710 ± 20 mm
Motor wheelbase 955 ± 10 mm

Standard takeoff weight 8.1 kg
Maximum takeoff weight 10.7 kg

Task load ≤3 kg
No-load hover time ≥50 min

Maximum wind resistance Level 6 wind
Maximum flight speed 12 m/s
Maximum flight height 1000 m

GPS hover accuracy Vertical direction: ±1.5 m Horizontal direction: ±2 m
Remote maximum control distance 7 km

Ground station maximum control distance 10 km

2.3. Propulsion and Navigation

The UAV uses a KWT-8108/6S motor. With a 20,000 mAh, Lipo 6-cell, 15 C battery, this propulsion
system provides a maximum cruise time of 40 min at an airspeed of 12 m/s.

The navigation system consists of a three-axis accelerometer, a three-axis gyroscope, a three-axis
magnetometer, a GPS module, and a barometer [26], which are integrated into a coupled INS/GPS
navigation system [27]. In order to ensure the safety of flight, a differential GPS dual antenna is used
for aircraft orientation. This is not affected by the electromagnetic environment as long as the GPS
signal is found for the flight positioning. The Mar-UAV with this navigation system can conduct a fully
autonomous mission, including auto take-off, cruising via waypoints, returning to its home position
and auto landing, with enhanced fail-safe protection.

2.4. Ground Communication System

The Ground Communication System (GCS) is a wireless digital radio that can acquire onboard
information involving aerial image, AIS, etc., and enables staff to monitor the health state of the
Mar-UAV system in real time. The SPELL-IG is an algorithm software integrated into the ground
system. This software is mainly responsible for trajectory planning and visualization of the Mar-UAV
system. The 900 M-frequency digital transmission station and the 595 M-frequency, 8 M-bandwidth
image transmission station are integrated into the GCS. The Mar-UAV is controlled by the GCS for
over-the-horizon flight. The maximum control distance is up to 10 km. An auto antenna tracker works
in conjunction with a Yagi antenna to provide a reliable data link within a 10-km range. The Yagi
antenna is a directional type antenna and can be used for point to point or point to multi-point WiFi
applications. The Yagi antenna is responsible for data transmission between the ground system and
the Mar-UAV system. The Mar-UAV can not only follow the flight route set in advance in the GCS
software, but also modify the route in the GCS software during the flight to achieve autonomous flight.

The AIS transceivers are installed on Mar-UAV to receive AIS messages from surface vessels,
which is uploaded to the network server through a 4G communication module. The ground terminal
accesses the server through the Internet to obtain and analyze the AIS data.

2.5. Post-Imaging Processing and Video Transmission

GoPro HERO 4 (GoPro, Inc., San Mateo, CA, USA) is a motion camera that can provide
high-quality images for our matching algorithm. In our work, the camera is our vision module
(see Figure 1), which is installed under the body of the Mar-UAV system. In a searching and mapping
mission, the aerial image always faces the ground. During the flight, some actions such as rolling,
pitching or other unexpected vibrations can disrupt the camera’s stability, which may lead to an
unclear video. A Mini 2D camera gimbal, produced by Keweitai Tech Co., Ltd. (Shenzhen, China)

http://www.keweitai.com/products_detail/productId=38.html
http://www.keweitai.com/products_detail/productId=38.html
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and powered by two brushless motors, was used to stabilize the camera. The camera was set to video
mode with a 1920 × 1080 pixel resolution and a width field of view (FOV) at 30 frames per second [28].
During the flight, a digital image signal is sent to an on-screen display and video transmitter. With a
frequency of 595 MHz, the aerial video can be visualized by GCS in real time as the high-resolution
video is rerecorded for use during post-processing.

3. Matching Algorithms, Image, and AIS Data

Figure 4 shows the framework of the multi-feature, multi-level matching model algorithm for the
onboard image and AIS information of the Mar-UAV. It consists of the data acquisition, information
matching and output phases. In the data acquisition phase, the onboard camera and the AIS equipment
acquire the image information and AIS information of the vessel, respectively. After extracting
the target image and preprocessing the AIS information, space-time calibration is performed. This
information is used as an input to match the onboard image to the AIS data.
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In order to improve the speed and accuracy of the matching, the matching algorithm in the
work is divided into two stages. The first stage performs point matching for the position information,
heading information and size information of the point to improve the speed of the target recognition.
It gradually enters the field of view of the camera. In the second stage, spatial matching is performed
by using the trajectory information in the image and the trajectory information of the AIS data in order
to improve the target recognition. The identified output can be used as a result of target verification
and target tracking.

3.1. Image and AIS Information Processing

3.1.1. Image-Based Detection and Localization

(1) Image correction

According to the camera imaging principle, the wide-angle lens has a large field of view, which
can quickly capture water targets. However, the image taken by the wide-angle lens has a large
distortion. Before detecting the target, the distorted images need to be corrected [29].

First, the camera parameters need to be calibrated. The traditional checkerboard method is
used to calibrate the camera. The calibration result is as follows: Internal reference matrix A = 413.68

0
0

414.82
0
0

959.72 530.70 1

; Rotation matrix R =
[

0.0425 −0.0073
]
; Translation matrix T =

[
− 0.0103 0.0008

]
.

Secondly, the image is rectified by a regression algorithm based on SVM correction. Figures 5
and 6 are shown as original and rectified images, respectively.
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(2) Vessel detection

The target detection uses the segmentation method based on the structure chart classification to
realize vessel detection in the image. Figure 7 shows the detection results. The algorithm includes the
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Firstly, the original image is converted to a structure diagram (G= (V, E)). In this structure, each
element represents a vertex in the graph (Vi ∈ V) and adjacent vertices form an edge (

(
Vi, Vj

)
∈ E).

The difference in the corresponding grayscale, coordinate, and texture information among the elements
constitutes the weight ω

(
vi, vj

)
of the edge

(
vi, vj

)
. The smaller the value about ω, the higher the

similarity between elements.
Then, the graph G is reduced to a minimum spanning tree. That is, all elements with high

similarity or pixel regions are merged. Each region C contains several vertices connected by the
edges of the smallest spanning tree. Further, the structure map is merged according to the differences
between the regions and similar regions form a branch. The difference between the node regions is
formed by internal differences and inter-region differences, while the internal differences refer to the
weights of the largest edges in the region C (See Equation (1)).

Int(C) = max
e∈MST(C,E)

ω(e) (1)

The difference between the regions refers to the weight of the smallest edge where the
vertices between the two divided regions are connected to each other. Equation (2) shows the
specific calculation.
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Di f (C1, C2) = min
vi∈C1,vj∈C2,(vi ,vj)∈E

ω
((

vi, vj
))

(2)

Finally, the separation or detection of the vessel target in the image is achieved based on the
above-mentioned intra-region difference value Int and the difference value Dif between the regions.
Specifically, a threshold function τ is introduced to determine the two values and it is determined
whether the detection area contains target information with complicated structure or edges. If there is
an obvious edge or contour information, it is thought to be a vessel.
(3) Image-based vessel localization

As shown in Figure 8, four vessels are detected, and their characteristics include course, position
and size. Their speeds can also be calculated based on the position of two consecutive frames of pictures.
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Figure 8. The vessel information extraction.

3.1.2. Processing AIS Information

According to the algorithm, the AIS information is analyzed to extract the MMSI, name, location,
speed, heading and size information of the vessel. The effective dynamic information includes MMSI,
latitude and longitude, ground speed and ground heading (See Table 2); the effective static information
includes name, MMSI, vessel length and width [30] (See Table 3). Figure 9 shows a vessel’s dynamic
information received in real time on the map.

Table 2. The decoding results of the vessel’s dynamic information.

Description Decoding
Information

Type of information 1
Status Engine in use
MMSI 413791052

Ground heading 227.9◦

Ground speed 3.8 kn
Longitude 114.34549◦

Latitude 30.6284433◦

Table 3. The decoding results of the vessel’s static information.

Description Decoding Information

Type of information 5
Name HANGJUN14
MMSI 412070210
Type Cargo ship

Distance from the reference point to the bow 48 m
Distance from the reference point to the stern 25 m
Distance from the reference point to left chord 12 m

Distance from the reference point to right chord 2 m
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3.1.3. Calibration of the Image and AIS Information

(1) Space calibration

Since the onboard image is positioned in the image coordinate system, with the positioning of
the AIS information in the Earth’s coordinate system, it needs to be converted to a unified coordinate
system for data matching through spatial calibration. The work proposes an onboard image localization
algorithm based on the Earth’s coordinate system, which locates the target under the following three
assumptions:

(1) Since the GPS module is located above the onboard camera, the Mar-UAV is at the center of
the image.

(2) Since the onboard camera is mounted on the pan-and-tilt, the camera’s shooting angle should be
set perpendicularly to the ground.

(3) ψ is the angular deviation for the transformation of a north-east (NE), world-to-camera frame.

The range of the field of view coverage can be estimated based on the camera’s field of view, the
UAV’ height, and GPS position information (see Figure 10). The field of view can be calculated by
Equation (3). 

w =
2h

cos(θx/2)

l =
2h

cos
(
θy/2

) (3)

where w and l denote the distances of the field of view length and width, respectively; θx and θy denote
the camera angles of view on the x- and y-axes, respectively.

The resolution of the video frame is set to 1920 × 1080 pixels. The scale between the distance and
pixels is assumed to be in a linear relation vessel (see Equation (4)).

pixelx =
w

1920
=

2h
1920· cos(θx/2)

pixely =
l

1080
=

2h
1080· cos

(
θy/2

) (4)
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The target is assumed to be located on the (x, y) pixel in the photo, and the offset of the target
from the center of the image is

o f f settarget =

[
pixelx·x
pixely·y

]
(5)

The conversion matrix of the camera coordinate system Oc to the earth coordinate system Oe is

Re
c =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
(6)

The position offset in the earth frame can be solved with

P = Re
co f f settarget =

[
PE
PN

]
(7)

The target’s GPS coordinates can be determined by

GPStarget = GPScam +

[
PE/ fx

PN/ fy

]
(8)

where fx and fy denote the distances of one degree of longitude and latitude, respectively.
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(2) Time calibration

Since the onboard image and AIS are two separate sensors, the collected data is stored
separately. Therefore, spatial matching needs time calibration, including time-based calibration
and sampling-period calibration.

(1) A pulse signal is generated by the hardware to start the onboard camera and the AIS device, thus,
ensuring the synchronization of the sampled data head.

(2) Synchronization of the sampling period. The sampling period of the image is 33 ms, and the
receiving period of the AIS data is 2–180 s. So it is necessary to synchronize the two different
data. Considering that the sensors with different data frequencies need to be time aligned,
we employed simplified filtering to interpolate some estimation values between the data of the
AIS receiver with a lower frequency. The filtering is based on a linear kinematic model. This
assumption is reasonable because the motion of a vessel is thought to be constant for short time
periods. In detail, the filtering linearly interpolates the AIS data to 1 Hz and samples the image
information to 1 Hz, thus ensuring the synchronization of the data sampling period.
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3.2. Multi-Featured and Multi-Level Matching Algorithm

3.2.1. Multiple Feature Selection

According to the principle of image detection, the characteristics of the vessel extracted from the
airborne image include size, location, head and grayscale statistics. The AIS information includes
the vessel’s MMSI, name, location, size, ground heading and ground speed. By comparing their
characteristics, the matched position, size and heading can be obtained.

(1) Location feature

The position information of vessels, obtained by the positioning algorithm of the target and by
the AIS information, should be matched.

(2) Geometric features

The length and width of a vessel calculated by AIS are obtained by calculating the distance from
the information transmission point to the bow, stern, left chord and right chord. In order to improve
the matching accuracy, the appropriate reference point is selected with the extracted length and width
of the vessel. Moreover, the ratio of the length and the width of the vessel is used for matching.
The calculation of the heading is based on the angle between the main axis of the vessel and the true
north direction.

(3) Movement characteristics

The relative position of a vessel can be obtained by detecting the vessel between two consecutive
images. The speed of the vessel can be calculated by combining the acquisition time interval of the
image. This speed can be matched to the speed of the vessel analyzed by the AIS.

3.2.2. Multi-Level Hierarchical Matching

The UAV fixed-point hovering method is used to quickly and accurately identify vessels entering
the perspective of the airborne camera. Since the vessel gradually enters the field of view of the camera,
target matching is divided into two stages according to the detection purpose—the point matching
stage and the track matching stage.

(1) Point to track matching

The point matching phase is to quickly match the vessel entering the camera’s field of view.
Figure 11 shows the first stage of the match. The vessel is gradually detected in the field of view of the
camera. A target point to track matching method is employed in the process. First, the detected target
is positioned in the image coordinate system. Then, the target position is calibrated according to the
spatial calibration algorithm (converted to the geodetic coordinate system). This position is matched
to the acquired AIS information. Finally, the heading and size matching are further carried out on the
target with the correct position matching.
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(2) Track to track matching

In order to ensure the accuracy of the matching, the second phase of the trajectory matching
is performed on the target. First, a period of data acquisition and formation of a target trajectory is
performed on a target within the field of view of the camera. Secondly, the tested heading, speed,
position and size characteristics are matched to the trajectory formed by the AIS information to improve
the matching accuracy.

3.2.3. The Multi-Featured and Multi-Level Matching Algorithm

(1) Point to track matching algorithm

If there are M vessels in the image, their positions are P1, P2, . . . , PM; if there are N vessels in the
AIS information, their positions are Q1, Q2, . . . , QN , respectively. The position of the vessel is matched.
If the vessel numbered P in the image matches the vessel numbered Q in the AIS information with the
shortest position, the output squared error is the smallest.

|r(p, q)|2 =
∣∣Pp −Qq

∣∣2 (9)

According to the analysis of the position matching error, the threshold d needs to be set because
the vessel AIS data may be false-alarm, or the vessel has no AIS information. When r < d, the position
is considered to be correct. Then, the headings and sizes of the two vessels with the correct position
matching are matched; if the error is within a certain allowable range, the matching is correct.

(2) Track to track matching algorithm

In the work, the vessel’s trajectory information includes heading, speed, position and length of the
trajectory. The matching of the trajectory of the vessel can be converted into a match to the trajectory
feature information. That is, we can obtain the correlation and similarity between the vessel’s trajectory
of image detection and the AIS trajectory in the feature information.

Structural similarity index (SSIM) can be expressed by Equation (10):

M(I, A) = Dir×WD + Speed×WS + Loc×WL (10)

where F = [Dir, Speed, Loc] is the difference quantity of the feature, and W = [WD, WS, WL] is the
weight of the response feature. In the matching process, the relative difference of the position
information is large, so the weight WL is set as a function variable. When the vessel numbered
P1 in the image matches the vessel numbered Q1, Q2, . . . , QN in the AIS information, the two minimum
values Locmin and Locmin−1 are selected in the comparison of position (Loc11, Loc12, . . . , Loc1N). When
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the difference eloc = |Locmin − Locmin−1| is less than d, it means that the two vessels are similar in
position and the weight of WL needs to be weakened.

WL =

{
ξ eLoc ≥ d
0.2ξ eLoc < d

(11)

(1) Heading comparison

Dir(I, A) =

{
min(‖I‖, ‖A‖)× sin(θ),

min(‖I‖, ‖A‖),
0 ≤ θ ≤ 90

90 ≤ θ ≤ 180
(12)

where ‖I‖ and ‖A‖ represent the image track length and the AIS track length, respectively; θ is the
angle between the two tracks.

(2) Speed comparison

Speed(I, A) =
1
3
(Smax(I, A)) + Savg(I, A) + Smin(I, A) (13)

where Smax(I, A) is the absolute value of the maximum speed difference between the two tracks;
Savg(I, A) and Smin(I, A) are the absolute values of the average speed and the minimum speed
difference, respectively. The speed describes the difference of the overall speed from the maximum
speed, minimum speed and average speed.

(3) Position comparison

We calculate the average distance of the vessel’s trajectory detected by the image and the
corresponding discrete point on the vessel’s AIS information trajectory.

Loc(I, A) =
1
n

n

∑
i=0
|DIi − DAi| (14)

where DIi is the vessel’s position of the discrete point in the image; DAi the vessel’s position of the AIS
information.

3.2.4. Error Analysis of the Matching Algorithm

Position matching refers to the matching between aerial image-based vessel positioning and
the position report from the AIS receiver. The errors of the above-mentioned matching algorithm
come mainly from image-level detection error EL and AIS error EA. For the employed image-based
positioning algorithm, the global position of the vessel can be calculated by using the onboard GPS
of the Mar-UAV. As a result, the GPS measurement error Eg is also considered together with image
detection error EIm. The two errors Eg and EIm are modeled respectively with a Gaussian white
noise that the mean is zero and the variance is σ. In addition, the AIS error consists of two parts,
measurement error EAm and calculation error EAc. The measurement error EAm is determined by
the GPS accuracy of the AIS module. Since the receiving period of the AIS message is uncertain,
filtering-based interpolation is necessary. Thus, some calculation error exists in the interpolation
processing. The two errors of AIS can also be defined with Gaussian white noises. So the errors of the
multi-featured and multi-level matching algorithm introduced in this section can be expressed using
the following equation: {

EL = Eg
(
0, σg

)
+ EIm(0, σIm)

EA = EAm(0, σAm) + EAc(0, σAc)
(15)
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4. Experimental Results and Analysis

4.1. Point to Track Matching Results and Analysis

Firstly, the absolute position and heading of the vessel in the earth coordinate system are calculated
by Equations (4)–(8), according to the height and position of the UAV, the horizontal declination of the
camera, the angle of view, and the relative coordinates of the vessel. Then, the point to track matching
algorithm is used to match the vessel to obtain the information of the inspected vessel.

Three sets of experiments were performed using the point to track matching algorithm to match
two, three and four vessels in the onboard image. Figures 12–14 show the experimental results.
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(1) Matching two vessels

The measurement parameters are as follows: height h = 205.0 m; position P(lon, lat) =

(114.36157227◦, 30.63745689◦); camera horizontal declination ψ = 318.3◦; threshold d = 30 m.
As shown in Figure 12, + indicates the position of the two vessels detected by the image and the

blue * indicates the vessel AIS data track. The position matching minimum error EM1 = 8.7 m, and
EM2 = 3.5 m. The error is less than the threshold d. The heading and size matching of the vessel are
less than the set threshold.

(2) Matching three vessels

The measurement parameters are as follows: height h = 365.2 m; position P(lon, lat) =

(114.36662292◦, 30.64152145◦); camera horizontal declination ψ = 324.7◦; threshold d = 30 m.
As shown in Figure 13, + indicates the position of the three vessels detected by the image and

the blue * indicates the vessel AIS data track. The position matching minimum error EM1 = 7.4 m;
EM2 = 12.2 m; EM3 = 15.7 m. The error is less than the threshold d. The heading and size matching of
the vessel are all less than the set threshold.

(3) Matching four vessels

The measurement parameters are as follows: height h = 360.3 m; position P(lon, lat) =

(114.36743164◦, 30.64311218◦); camera horizontal declination ψ = 327.9◦; threshold d = 30 m.
According to the point to track matching algorithm, the position of the vessel is calculated in

the image to match the AIS data near the time. As shown in Figure 14, + indicates the position of the
four vessels detected by the image and the blue * indicates the vessel AIS data track. There is only the
information of three vessels that can be received from the AIS, indicating that there is a vessel without
AIS information. The position matching minimum error EM1 = 141.4 m; EM2 = 4.7 m; EM3 = 4.3 m;
EM4 = 7.4 m. The green + indicates that the vessel numbered 1 has no matching vessel in the AIS data
because the minimum position r is larger than the threshold d. Next, the heading and size of the vessel
with the correct position match are matched, with the error less than the set threshold.

Therefore, the point to track matching algorithm can match the vessel detected in the image and
AIS information. The method can identify the detected vessel.

4.2. Track-to-Track Matching Results and Analysis

As the vessel’s time in the field of view of the camera increases, the vessel forms a trajectory
detected in the image to match the AIS trajectory. The matching result has higher accuracy than the
point to track matching.

According to the track-to-track matching algorithm, if WD = 1, WS = 1, and ξ = 1, the matching
results are M1, M2 and M3. Where, Mij represents the structural similarity of the trajectory of the
vessel numbered i and the trajectory of the vessel numbered j in the AIS data. A smaller value leads to
more similarity. The experimental data are analyzed according to the driving characteristics of the
inland river vessel. When the similarity value is less than 50, the two trajectories are correct.

Figures 15–17 show the vessel’s trajectory matching results. The small picture is a partial
enlargement of the large picture, which shows that each discrete point represents the position and
heading of the vessel.
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Figure 17. The identification results for four vessels.

Figure 15 shows the track-to-track matching results of the two vessels. Both vessels travel
downstream with the same heading and speed; however, there is a fixed calculation error in
the position.

Figure 16 shows the results of the trajectories of three vessels. Vessels No. 1 and 2 are running
against the water, while vessel No. 3 is running along the water. The blue trajectory is the detected
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vessel trajectory in the image. In the large picture, the AIS trajectory length of the No. 1 vessel is larger
than the trajectory detected by the image, because vessel No. 1 has a certain error in the detection
result at the edge of the detected image.

In Figure 17, the blue curve is the four vessel trajectories detected by the image, and the red curve
indicates that only AIS trajectories of three vessels are available. The matching results show that vessel
No. 1 has no corresponding AIS information.

5. Conclusions

This paper, focusing on maritime supervision, has proposed a multi-featured and multi-level
matching algorithm for our Mar-UAV system. First, vessel feature information, extracted in aerial
image and AIS information, was calibrated in time and space. Then, the feature matching was
performed by the point matching and trajectory matching algorithm. Through the field experiments,
it was proved that the proposed algorithm can solve the identification of vessels as well as illegal or
dangerous acts. Such a matching algorithm combining aerial vision and AIS is beneficial to improve
the autonomy of UAVs in the application of maritime supervision. The advantage of the algorithm is
that more information about vessels could be recognized by combining vision and AIS. Through the
proposed algorithm, some information (name, goods type, engine status, knot, etc.) of the detected
vessel would be achieved from AIS. The information is helpful for maritime staffs to supervise the
vessels properly. As one weakness, it seems unnecessary to employ all available information of vessels
for matching. In the future, some machine learning method like Principal Component Analysis (PCA)
will be used for feature selection from the information of vision and AIS.
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