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Abstract: Floods are common natural disasters worldwide, frequently causing loss of lives and
huge economic and environmental damages. A spatial vulnerability mapping approach incorporating
multi-criteria at the local scale is essential for deriving detailed vulnerability information for supporting
flood mitigation strategies. This study developed a spatial multi-criteria-integrated approach of flood
vulnerability mapping by using geospatial techniques at the local scale. The developed approach was
applied on Kalapara Upazila in Bangladesh. This study incorporated 16 relevant criteria under three
vulnerability components: physical vulnerability, social vulnerability and coping capacity. Criteria
were converted into spatial layers, weighted and standardised to support the analytic hierarchy
process. Individual vulnerability component maps were created using a weighted overlay technique,
and then final vulnerability maps were produced from them. The spatial extents and levels of
vulnerability were successfully identified from the produced maps. Results showed that the areas
located within the eastern and south-western portions of the study area are highly vulnerable to
floods due to low elevation, closeness to the active channel and more social components than other
parts. However, with the integrated coping capacity, western and south-western parts are highly
vulnerable because the eastern part demonstrated particularly high coping capacity compared with
other parts. The approach provided was validated by qualitative judgement acquired from the field.
The findings suggested the capability of this approach to assess the spatial vulnerability of flood
effects in flood-affected areas for developing effective mitigation plans and strategies.
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1. Introduction

Floods are regarded as among the most devastating hydro-meteorological natural disasters.
These disasters often cause tremendous economic and environmental damages and loss of lives [1–3].
The United Nations (UN) report states that approximately 2.3 billion people were affected and 157,000
died by floods in 1995–2015 worldwide [4]. Globally, floods cause nearly US 386 billion dollar economic
loss in the last three decades of the twentieth century [1]. Several recent studies have predicted and
expected that the occurrence rate and intensity of flood disasters are likely to be considerably increased
under future climate change scenarios [5–8]. Moreover, other factors, such as rapid urbanisation,
population growth and economic development, will intensify the flood risk areas worldwide [3]. As a
result, people, properties and the environment will be under constant risk in the future.
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Prevention and reduction are appropriate strategies in disaster management for reducing the effects
of flood disasters [9]. Deriving spatial information regarding the key vulnerable infrastructure and areas,
the level of vulnerability and the factors liable for vulnerability is necessary to develop suitable flood
mitigation options [10,11]. Spatial vulnerability assessment can provide the aforementioned information
in detail. The spatial vulnerability is to map the extent to which people, property, resources, and
environment are likely to be affected by a hazard [12–14]. The effective spatial vulnerability assessment
includes mapping of various criteria that influence different types of vulnerability and coping capacity
and their integration to obtain the actual vulnerability scenario [15,16]. The maps produced by
vulnerability assessment could be used by policymakers for effective management plans targeting
prevention and reduction measures [17–19]. Thus, the vulnerability assessment can contribute to the
mitigation of the effects of floods on people, property and the environment.

Several studies have been performed using geospatial techniques for mapping vulnerability though
various approaches [6,19–23]. Appropriate and sufficient criterion selection, scale and components
of vulnerability determine the detailed and accurate vulnerability information [13]. The reliability of
vulnerability information is enhanced by selecting adequate criteria of each vulnerability component
(e.g., physical and social vulnerabilities and coping capacity) and their standard processing [15].
In addition, other factors, such as study area scale (local or regional), influence the derivation of detailed
vulnerability information [1,24,25]. Detailed and accurate vulnerable information helps prepare the
optimal flood mitigation plans [24]. However, a comprehensive flood vulnerability model is rare in
literature because most current studies have been performed on the basis of particularly limited criteria
and at the regional scale [18,20,22,26]. Selection of appropriate components is another major issue
in vulnerability analysis. Coping capacity of the local community, surrounding environments and
resources have an important role to protect and minimise flood effects [15]. Therefore, integrating
coping capacity for assessing vulnerability to derive actual result is essential [27]. Few studies are
found in the current literature where coping capacity is adopted in the spatial vulnerability analysis
using multi-criteria-integrated geospatial techniques at the local scale [15,28].

Bangladesh is a country highly affected by floods [20]. Every year various parts of the country
are affected [29]. However, studies related to detailed flood vulnerability assessment using geospatial
techniques in Bangladesh are very limited. A few studies are found in the literature [15,19,20,26,30],
but most of them have considered very few criteria for assessing flood vulnerability without integrating
all of the components of vulnerability. Masood and Takeuchi [30] used house/living place and
land covers in their flood vulnerability assessment in mid-eastern Dhaka city, whereas Bhuiyan and
Baky [20] used only land use as a criterion for flood vulnerability assessment in Sirajganj Sadar Upazila.
Topography and land cover data were considered by Bhuiyan and Dutta [26] in the flood vulnerability
assessment study in south-western region of Bangladesh. On the other hand, several social and coping
capacity criteria were considered by Roy and Blaschke [19] in spatial flood vulnerability assessment
in Dacope Upazila, Khulna. Dewan [15] also assessed urban flood vulnerability integrating several
criteria in Dhaka city.

Geospatial approach integrating remote sensing and spatial analysis are highly effective techniques
for obtaining spatial flood vulnerability information [1,3,7]. Remote sensing supports the capability to
provide repeated satellite imagery for deriving spatial environmental data where spatial analysis helps in
the collection, analysis and integration of various datasets for spatial decision-making [31]. Weighting
and ranking are required in the spatial decision-making processes to incorporate multi-criteria for
assessing spatial vulnerability. Analytic hierarchy process (AHP) is considered an optimal method for
integrating multi-criteria for special decision-making to generate spatial vulnerable information [1,2,19].
Multi-criteria layers are analysed in the AHP environment for developing a hierarchical structure that
provides weighting and ranking with the guidance of experts and users [2,32].

This study aims to develop and examine a multi-criteria-integrated approach of spatial
vulnerability mapping to assess flood effects using AHP incorporating information produced from
spatial analysis integrating GIS and statistical analysis, optical remote sensing and field data on
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coping capacity as well as validation data. The specific objectives of this study are as follows: (1) to
develop a spatial vulnerability mapping approach that integrates multi-criteria for flood effects at
the local scale covering <1000 km2; (2) to examine the developed approach for assessing spatial flood
vulnerability at the local scale in Kalapara Upazila, Bangladesh; and (3) to evaluate the validation of
spatial vulnerability assessment approach.

2. Materials and Methods

2.1. Study Area

This research was performed in Kalapara Upazila, a local administrative region (approximately
483.08 km2) of Patuakhali district in the coastal area of Bangladesh (Figure 1). Kalapara Upazila is
located between 21◦48′ to 22◦05′ north latitudes and 90◦05′ to 90◦20′ east longitudes. The area is
surrounded by several large coastal rivers, such as Andharmanik, Nilganj and Dhankhali, and the
Rabnabad channel and is open to the ocean in the southern side. This coastal area falls within a tropical
climate. The average annual temperature is 25.9 ◦C. Substantial rainfall is experienced most months of
the year. The average annual rainfall is 2654 mm. Bangladesh is considered a highly flood-affected
country [20]. Flood is a frequent event in the study area [29]. Human and all types of resources
are highly vulnerable to flooding effects due to the area’s lowland, geographical location and dense
population [6]. The economic condition of the people in the study area is poor. Numerous people live
under the poverty line [33]. Therefore, the effects of floods considerably affect the socio-economic
conditions. Frequent cyclone-induced storm surges, intensive rainfall and degradation of water storing
wetlands are triggering points for floods in this area.
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Figure 1. (a) Location of study area mapped on Landsat 8 OLI (Operational Land Imager) image of 20
January 2018, (b) study area in the context of the coastal region of Bangladesh.

2.2. Method Overview

In this paper, an AHP-based geospatial multi-criteria assessment technique was adopted
to combine various natural, social and anthropogenic criteria for flood vulnerability assessment.
Several criteria can be easily integrated and aggregated and present output in a particularly simple
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manner [17,34]. Few vulnerability equations are available for the vulnerability mapping of any hazard
(natural or manmade) [32]. An advanced and complete equation can provide an effective vulnerability
assessment. Equation (1) is selected in this study for flood vulnerability assessment in accordance with
the review of existing literature [13,15]:

Vulnerability = Physical vulnerability× social vulnerability/coping capacity (1)

Figure 2 outlines the methodological flowchart followed in the current study.
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2.3. Datasets and Sources

Dynamic criteria were selected for vulnerability assessment in the present study. We used a wide
range of data from various sources for creating spatial criterion layers using geospatial techniques.
We collected these data from national and international institutions and fieldwork. Validation and
coping capacity data were acquired through the fieldwork conducted in October 2018 in the study area.
The coping capacity data covered flood shelter and health complexes. Table 1 details the characteristics
of datasets used in the current study.
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Table 1. Data type and sources used in this study.

Data Type Source Period Mapping Output

Landsat 8 OLI
United States Geological

Survey (USGS) Earth
Explorer

20-01-2018 Land use and cover

SRTM-DEM (30 m
resolution) USGS Earth Explorer 11-2-2000 Elevation and slope

River channel USGS Earth Explorer 20-01-2018 Distance to active
channel

Precipitation
Bangladesh

Meteorological
Department (BMD)

2004–2014 Precipitation

Population Bangladesh Bureau of
Statistics (BBS) Population census of 2011

Population density,
dependent population,

female population,
literacy rate

Wooden house BBS Population census of 2011 Wooden house

Household with pond
and others BBS Population census of 2011 Household with pond

and others

Household with no
sanitation BBS Population census of 2011 Household with no

sanitation

Flood shelter and health
complex Fieldwork August–October Distance to flood shelter

and health complex

2.4. Vulnerability Evaluation Criteria, Alternatives and Mapping

The criteria and alternatives were selected on the basis of the literature, availability of data and
their relevance and influence on flood vulnerability in the present study. The spatial thematic layers of
each selected criterion were generated by mapping the alternatives of each criterion. We produced
16 spatial thematic layers under three vulnerability components in this study. The spatial resolution
was set to 30 m× 30 m cell size for each raster layers. Numerous spatial criterion layers were processed
and prepared using ArcGIS software (version 10.4). The relative importance and mapping procedures
of the selected criteria are described in the subsequent sections.

2.4.1. Criteria for Physical Vulnerability Mapping

Vulnerability is controlled and influenced by physical/natural factors. These controlling factors
have been selected as criteria for this analysis. In this study, five physical vulnerability criteria (i.e., land
use and cover, distance to the active channel, slope, elevation and precipitation intensity) were selected
for vulnerability assessment [15,18,19,35].

Damage and effects of floods are high for certain types of land covers. We used the Landsat OLI
imagery to map land use and cover (Figure 3a). A hybrid classification scheme was applied to classify
six land use and cover categories, namely, river channel, open water bodies, vegetation, settlement
and crops and bare lands. Firstly, unsupervised clustering algorithm was conducted to identify the
potential classes and then training sample data were selected and used to implement supervised
classification using maximum likelihood algorithm [36]. We used the ENVI 5.4 to pre-process the
image and ERDAS IMAGINE 2017 for hybrid classification. Accuracy assessment of the produced map
was conducted by collecting 250 random points from high spatial resolution Google Earth imagery
(2017) of the study area. Stratified random sampling technique was used to acquire the reference points
with minimum 50 points for each cover class. The study followed the techniques described in [37,38]
to perform the accuracy assessment. The overall accuracy of the produced map was 90%.

The elevation and slope have a great influence on spatial flood vulnerability assessment. The low
and plain areas with gentle slope are more vulnerable to flood than those with high elevation and steep
slope [39]. The elevation and slope spatial criterion layers were produced from the modified Shuttle
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Radar Topography Mission (SRTM) digital elevation model (DEM) at 30 m resolution (Figure 3b,c).
Tree offsets are present in the SRTM data as radar used for the SRTM mission cannot penetrate the
tree canopies fully [31,40]. These tree offsets were removed using a tree height offsets estimation
method provided by Gallant, et al. [41]. Void filled areas and spike were also removed from DEM
before use in this study converting into points and re-interpolated [31]. Distance to the active channel
is a conditioning factor in the level of flood vulnerability for any region. In general, the area close to
the active channel is more vulnerable to floods than that far from the channel [30]. In this study, river
channel data are used for generating distance to active channel map (Figure 3d).

Precipitation intensity is a highly important criterion that extensively influences flood
vulnerability [18]. The areas with high compared with low precipitation intensity are more vulnerable
to floods. Precipitation intensity map was prepared using the daily precipitation data (1950–2017)
acquired from BMD. In this process, we initially created a map of annual precipitation by interpolating
35 rainfall stations of Bangladesh (Figure 3e). We applied the kriging interpolation technique using
ArcGIS software for this process. Kriging interpolation is a widely used technique for interpolating
precipitation data. This technique is unbiased and has minimum variances [42]. Then, we extracted
the study area from this map.
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2.4.2. Criteria for Social Vulnerability Mapping

The incapability of people, organisations and societies to cope with the adverse effects of
hazards for their social interactions, institutions and systems of cultural values is referred to as social
vulnerability [43]. Several social criteria influence social vulnerability to floods. These criteria were
selected here for mapping social vulnerability. A total of eight social criteria, namely, population density,
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dependent population, disabled population, female population, wooden house, households with ponds
and others, households with no sanitation and agriculture-dependent population, were selected.

Population density is an essential criterion for determining social vulnerability given that people
are physically and psychologically affected by flood in several cases [15,43]. Moreover, conducting
evacuation activities during and after a flood event is particularly challenging. The population density
layer was created using 2011 population census data (Figure 4a). The population census is conducted in
Bangladesh within 10 years’ interval and the next census is scheduled to conduct in 2021. These census
data were acquired from the BBS. The area with high population density is expected to be more
vulnerable than that with low population density.
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People less than 15 years and more than 60 years are considered dependent because they do not
earn money and depend on other family members. Dependent population, for example, children and
elderly people, is highly vulnerable to flood due to their limited mobility and difficulties in emergency
evacuation activities [35]. In the present study, the spatial thematic layer for the dependent population
was produced using 2011 population census data (Figure 4b).

Floods physically and psychologically affect the disabled population. Disabled people cannot
proceed to flood shelters as fast as the active population. Consequently, disabled people are highly
affected by floods. Disabled people were extracted and then classified into five categories: ages <1,
1–1.5, 1.5–2, 2–2.5 and >2.5. Females are also affected by floods in numerous ways due to their limited
mobility and difficulty with evacuation during emergency cases [44]. The female population is more
vulnerable than the male population. Females who are affected by floods are categorised into five
classes. Disabled and female population data were collected from the 2011 population census prepared
by the BBS to generate disable and female population spatial layers (Figure 4c,d).

Flood vulnerability is also largely influenced by housing quality for a given area. A wooden
house is one of the dominant housing types in the study area. Wooden houses are categorised
into five groups for preparing spatial layer in this study (Figure 4e). By contrast, water source
and sanitation of a particular area are important criteria for assessing social vulnerability to floods.
People greatly suffer and are affected by various waterborne diseases due to inadequate access to
safe water and hygienic sanitation system. The pond is a dominant water source in the study area.
Therefore, households with ponds are divided into five categories and mapped (Figure 4f). Similarly,
households with sanitation system are grouped into five classes and mapped to convert into spatial
thematic layer (Figure 4g). Agricultural crops are extensively devastated by floods. In this study,
the agriculture-dependent spatial layer was prepared by categorising the percentages of dependency
into five classes (Figure 4h). The data for the wooden house, household with ponds, household with
sanitation and agricultural-dependent population were extracted from the 2011 population census.

2.4.3. Criteria for Coping Capacity Mapping

Coping capacity refers to the capability of people, organisations and systems to manage the effects
of disasters using available skills and resources [28]. This component helps in mitigating disaster
effects [45]. Three coping capacity criteria, namely, distance to flood shelter, distance to health complex
and literacy rate, were selected in this study.

The availability of flood shelters and health complexes and their closeness to individual living
places are important criteria for assessing the coping capacity of communities [15]. Immediate access
capacity to flood shelters and health complexes of every affected individual can largely decrease
disaster effects. In this study, we used a global positioning system device to collect spatial flood shelter
and health complex data directly from the field. Then, spatial layers, such as distance to flood shelters
and health complexes, were created using the ‘Euclidean distance’ technique in the ArcGIS platform
(Figure 5a,b).

Literature is an essential criterion that helps people reach appropriate decisions and engage in
effective mitigation measures for addressing or recovering from disaster effects [15]. Studies prove
that households with literate people exhibit high coping capacity with disaster effects compared with
households with illiterate people [46]. Literacy rate data were extracted from the 2011 population
census, and a spatial layer was produced in the ArcGIS environment (Figure 5c).
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2.5. Alternative Ranking and Standardisation Criterion Layer

Ranking was performed on the mapped alternatives of each spatial criterion layer, thereby
providing the vulnerability levels (1 to 5) (Table 2). Ranks 1 and 5 indicate very low and high
vulnerabilities, respectively. Ranking of alternatives was conducted in accordance with the contribution
of vulnerability and AHP guidelines. All spatial layers were transformed into 30 m pixel raster ones
to apply the raster-based weighted overlay procedure. Afterwards, standardisation was performed
on the alternatives of each spatial criterion layer to convert their ranked values into a common scale
(0 to 1) to support the multi-criteria decision using the AHP. Linear scale transformation Equation (2)
was applied for this standardisation:

p =
x−min

max−min
, (2)

where p means standardised score; min and max indicate the minimum and maximum values of each
dataset, respectively; and x presents the cell value.
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Table 2. Alternative ranking scheme based on the contribution to risk flood disaster.

Component Criteria
Ranking (Based on Vulnerability)

Very Low (1) Low (2) Moderate (3) High (4) Very High (5)

Physical
vulnerability Elevation (m) >10 7–10 5–7 2–5 <2

Slope (%) >6.56 3.74–6.56 2.14–3.74 0.93–2.14 <0.93
Precipitation
(mm/year) <7.1 7.1–7.2 7.2–7.3 7.3–7.4 >7.4

Land use and cover Open water
bodies Bare land Vegetation Cropland Settlement

Distance to active
channel (m) >2400 1800–2400 1200–1800 600–1200 <600

Social
vulnerability

Population density
(km2) <360 360–400 400–450 450–500 >500

Dependent
population (%) <46 46–47 47–48 48–49 >49

Disabled population
(%) <1 1–1.5 1.5–2 2–2.5 >2.5

Female population
(%) 44.5 44.5–48.5 48.59–49.7 49.7–50.4 >50.4

Wooden house (%) 74.0 74.0–83.7 83.7–86.6 86.6–89.8 >89.8
Household with

ponds and others (%) <20 20–30 30–40 40–50 >50

Household with no
sanitation (%) <10 10–15 15–20 20–25 >25

Agriculture-dependent
population (%) 3.15 3.14–4.68 4.68–6.28 6.28–8.92 >8.92

Coping
capacity Literacy rate (%) >55 50–55 45–50 40–45 <40

Distance to flood
shelter (m) <600 600–1200 1200–1800 1800–2400 >2400

Distance to health
complex (km) <2 2–4 4–6 6–8 >8

2.6. Weighting the Criteria Using AHP

In this study, we used the AHP technique for weighting the criteria of physical and social
vulnerabilities and coping capacity. The pairwise comparison matrices were developed to weight the
criteria using the qualitative judgment received from five experts and a user. The criteria were weighted
in accordance with the scale of relative importance proposed by Saaty [47] (Table 3). The expert selection
was at the national level in accordance with the related research experiences and in-depth knowledge
of the experts and users. The experts and users came from academic, governmental and research
organisations. The total score of physical and social vulnerabilities and coping capacity was 1.

Table 3. Scale of relative importance (adapted from Saaty [47]).

Relative Importance Definition Description

1 Equal importance Two factors equally influence the objective

3 Moderate importance Experience and judgment slightly favour one factor
over another

5 Strong importance Experience and judgment strongly favour one
factor over another

7 Very strong importance
One decision factor is strongly favoured over
another, and its supremacy is established in

practice

9 Extreme importance The evidence favouring one decision factor over
another is of the highest possible orders of validity

2, 4, 6 and 8 Intermediate values between
adjacent judgement When compromise is required

The consistency ratio (CR) was computed to check the consistency of comparisons in the pairwise
comparison matrix. CR is considered at the acceptable level if the value is equal to or less than 0.1 [48].
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Otherwise, a review of the provided qualitative judgement and recalculation of weights is required.
The following equation was used to calculate the CR:

CR = Consistency Index/Random Index, (3)

where random index (RI) denotes the randomly generated average consistency index and consistency
index (CI) is defined as follows:

CI = (λmax − n)/(n− 1), (4)

where λmax represents the largest eigenvalue of the matrix and n refers to the order of the matrix [49].
Table 4 presents the criterion weights produced from the pairwise comparison matrices and CR

values of comparisons.

Table 4. Weighting the criteria using AHP.

Component Criteria Weight

Physical vulnerability

Elevation 0.22
Slope 0.16
LULC 0.08

Precipitation 0.12
Distance from active channel 0.42

CR: 0.04

Social vulnerability

Population density 0.11
Dependent population 0.17

Female population 0.17
Wooden house 0.10

Household with ponds and others 0.05
Household with no sanitation 0.05

Disabled population 0.28
Agriculture-dependent population 0.08

CR: 0.04

Coping capacity
Literacy rate 0.12

Number of shelter houses 0.61
Number of hospitals 0.27

CR: 0.05

2.7. Vulnerability Assessment

We separately applied the weighted overlay technique with physical and social vulnerabilities and
coping capacity spatial criterion layers by incorporating their related criterion weights. Accordingly,
we obtain the indices of physical and social vulnerabilities and coping capacity. Then, we categorised
the particular index values into five classes (i.e., very low, low, moderate, high and very high) to
create the maps of physical and social vulnerabilities and coping capacity. Afterwards, a vulnerability
without coping capacity index was created by multiplying the physical and social vulnerability indices.
By contrast, a vulnerability integrated coping capacity index was created by multiplying the physical
and social vulnerability indices and then dividing them using the coping capacity index in the ArcGIS
environment on the basis of Equation (1). Subsequently, we standardised both vulnerability index
values on the basis of Equation (2) in the scale of zero to one and categorised them into five levels
of vulnerability, namely, very low, low, moderate, high and very high. The natural break statistical
method was used to classify flood vulnerability maps. This is because this classification method was
found more consistent and efficient to present the spatial pattern of flood vulnerabilities in the study
area [50,51].
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2.8. Validation of Vulnerability Assessment

No established specific method can validate spatial vulnerability mapping approach. However,
a qualitative validation method was adopted to evaluate the spatial vulnerability maps [19]. A field
visit was performed in October 2018 to assess the accuracy of our software-generated vulnerability
maps. The field visit included in-depth personal observation and discussion with around 60 people
consisting of local people, experts and policymakers for their opinion regarding the accuracy of the
produced spatial flood vulnerability maps. Personal observation involved the identification of specific
vulnerable areas from the generated maps, and the area was visited to justify real vulnerability to
flood effects. The previous historical flood effects were also explored through a discussion with the
local people.

3. Results and Discussion

3.1. Physical Vulnerability Mapping

A map of physical vulnerability to floods was produced and categorised into five classes (Figure 6).
The produced map demonstrated that approximately 80% of the study area was classified into moderate
to very high vulnerability, whereas very low and low vulnerability covered 20%. The south-eastern,
eastern and central parts and areas near the active channels are highly vulnerable to flood effects
because they are close to the river channels and exhibit low elevation and gentle slope. By contrast,
northern and north-western parts and few areas from the central portion of the study area are less
vulnerable because they are located within high elevation, in steep slope and far from the active
river channel.
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3.2. Social Vulnerability Mapping

Several criteria were selected to assess the social vulnerability of communities to floods. A social
vulnerability index was generated from the processed criteria. The produced social vulnerability index
values were categorised into five levels for creating a social vulnerability map (Figure 7). The resulting
map indicates that communities living in the eastern, south-eastern and middle parts of the study area
are in high and very high vulnerable zones. The high and very high socially vulnerable zones cover
34% and 24% of the total area, respectively. The social vulnerability of these highly vulnerable zones
is due to the high level of population density, dependent population, unsafe sanitation systems and
agriculture-dependent population. By contrast, the low and very low socially vulnerable areas cover
32%. These areas comprise the northern and south-western portions of the study area. In addition,
the socio-economic condition of the communities in these areas is good.
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3.3. Coping Capacity Mapping

The coping capacity map was created by categorising developed index values into five levels.
Figure 8 presents that moderate to very high coping capacity levels cover 76% of the study area. People
in these areas have good access to flood shelter and health complexes and are educated. An educated
society can effectively cope with flood vulnerability because these people know the measures that they
need to take before, during and after flood events. The coping capacity of this area is higher than that
of other parts of Bangladesh given that numerous flood shelters and health complexes are recently
established after the devastating effects of several floods triggered by tropical cyclones and intensive
precipitation. By contrast, low to very low coping capacity zones cover 24% of the study area.
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3.4. Vulnerability without Integrated Coping Capacity

Vulnerability to floods without integrated coping capacity was mapped by multiplying the
physical and social vulnerability indices and categorising them into five classes (Figure 9). Figure 9
presents that moderate to very high vulnerable zones account for 68% of the study area. These zones
cover the south-eastern, eastern and north-eastern parts of the study area due to the closeness to the
active channel, low elevation and gentle slope, high precipitation and population density, further
dependent population, poor sanitation and low housing quality. By contrast, the south-western and
north-eastern portions of the study area are situated in low and very low vulnerable zones and cover
11% and 21% of the land, respectively. Most of these areas are far from active channels and steep slope
and exhibit moderate elevation and good socio-economic condition.

3.5. Vulnerability with Integrated Coping Capacity

A coping capacity-integrated vulnerability index was created by multiplying the physical and
social vulnerability indices and then dividing them using the coping capacity indices. Afterwards,
the coping capacity-integrated vulnerability index was categorised into five levels to produce the
map (Figure 10). The produced map exhibited different results from the vulnerability map without
integrated coping capacity. The areas (south-eastern and north-eastern) had very high and high
vulnerability in the map without coping capacity integration. These areas are now moderate to very
low vulnerable zones. Thus, incorporating the coping capacity is crucial to derive the real vulnerability
scenario. By contrast, the areas in the north-eastern, north-western and central parts and lower portion
of south-western part are highly vulnerable due to the low coping capacity. Figure 10 exhibits that
moderate to very high vulnerable zones cover 64% of the study area, whereas very low and low
vulnerability zones account for 36%.
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3.6. Validation of Vulnerability Assessment

The adopted qualitative approach was able to provide reliable information for evaluating
our spatial vulnerability assessment results. The qualitative approach covered in-depth personal
observation and discussion with the local people, experts and policymakers for their opinion on the
produced vulnerability maps. Our spatial vulnerability assessment results were promising based on
the opinions of the local people, experts and policymakers (Table 5). Out of 60 respondents about 37
(62%) respondents were highly satisfied, 14 (23%) respondents were satisfied and 9 (15%) respondents
were not satisfied with the results. Moreover, the vulnerability map without integrated coping capacity
revealed that south-eastern and eastern areas are located within high to very high vulnerable zones.
The field observation data obtained by the authors showed similar results. Highly vulnerable areas are
affected >4 times by floods in a year. Very low and low vulnerability areas were unaffected by floods
in the last 2 years. These areas are often affected once to twice a year.

Table 5. Summary of feedback on flood vulnerability results acquired from a different category of
people during the field visit.

Category of
People

Total Number of
Respondents

Feedback

Highly Satisfied Satisfied Not Satisfied

Experts 5 3 1 1
Policymakers 5 2 2 1

General people 50 32 11 7
Total 60 (100%) 37 (62%) 14 (23%) 9 (15%)

4. Conclusions

This study presents a multi-criteria-incorporated approach of spatial flood vulnerability mapping
using remote sensing, spatial analysis and field data at a local scale. Geospatial techniques were used
to map all selected criteria under each component of vulnerability. An AHP was adopted in the ArcGIS
environment to integrate multi-criteria in a spatial decision-making process. Kalapara Upazila, a local
administrative area in Bangladesh, was used for examining the suitability of this developed approach.
The produced vulnerability maps were validated through a qualitative validation approach that
included in-depth personal observation and discussion with the local people, experts and policymakers
in the study area to obtain their feedback on the created vulnerability maps. This study presented an
efficient way for assessing the spatial vulnerability of flood effects by integrating multi-criteria using
geospatial techniques at a local scale.

A local-scale study integrated with multi-criteria evaluation is required to derive the accurate and
detailed vulnerability information. However, collecting spatial data at the local scale and processing
and integrating them for the spatial decision-making process in data-poor countries are highly
challenging. Our developed geospatial approach exhibited efficiency in generating detailed and
accurate vulnerability information through multi-criteria evaluation at the local level. The AHP was
useful for weighting the selected multi-criteria and spatial decision-making process. In addition,
mapping actual vulnerability information requires integrating the coping capacity of the area in
the vulnerability assessment process. Results showed that vulnerability was greatly influenced
when coping capacity was incorporated. Furthermore, validation of the results by providing reliable
vulnerable information enhanced the applicability of this approach. This study presented a framework
for the overall spatial flood vulnerability assessment that integrates physical and social vulnerabilities
and coping capacity. The generated information from this study could be applied by planners and
administrators to develop effective flood effect mitigation strategies.

The outcomes of this study were accompanied by a number of drawbacks. Numerous criteria
are required to process and map effective vulnerability assessment. Collecting quality and up to
date spatial data for each criterion at the local level is highly challenging, especially in developing
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countries. This study addressed similar challenges. SRTM 1 DEM at 30 m spatial resolution was used
to create the elevation and slope map. High spatial resolution topographic data, such as LIDAR, could
provide excellent outputs. Freely available Landsat OLI imagery at 30 m spatial resolution was used for
mapping land use and cover. However, high spatial resolution satellite imagery could provide excellent
results. Land use and cover classification accuracy was also performed by acquiring reference points
from Google Earth image instead of the field due to lack of funding and short timeframe. Our study
used the most recent population census data to map social vulnerability criteria which was conducted
in 2011. Up to date socio-economic data could provide better outputs. Furthermore, our results
were validated by qualitative judgment. Quantitative judgment can effectively justify the developed
approach. Future studies can address the listed drawbacks. The developed approach is still considered
useful for mapping spatial vulnerability at the local scale to support flood management initiatives
in spite of the drawbacks. This verified approach can be applied in other similar environments for
mapping spatial flood vulnerability by modifying the criteria, data type and scale if necessary.
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