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Abstract: In the field of array signal processing, distributed sources can be regarded as an
assembly of point sources within a spatial distribution. In this study, a two-dimensional (2D)
non-symmetric incoherently distributed (ID) source model is proposed; we explore the estimation of
a 2D non-symmetric ID source using L-shape arrays. The 2D non-symmetric ID source is established
by modeling the angular power density function (APDF) as a Gaussian mixture model. Estimation
of the non-symmetric distributed source is proposed based on the expectation maximization (EM)
framework. The proposed EM iterative framework contains three steps in the process of each circle.
Firstly, the nominal azimuth and nominal elevation of each Gaussian component are obtained from
the phase parts of elements in sample covariance matrices. Then the angular spreads can be solved
through a one-dimensional (1D) search by the original generalized Capon estimator. Finally, weights
of each Gaussian component are obtained by solving the least-squares estimator. Simulations are
conducted to verify the effectiveness of the estimation technique.

Keywords: direction-of-arrival (DOA); angular spread; non-symmetric; incoherently distributed
sources; L-shape arrays; expectation maximization

1. Introduction

In array signal processing, applications such as wireless communications, radar and underwater
acoustics, point source models (assuming that signals impinging into receive arrays are from point
sources) are commonly used, which can simplify calculations. In the real surroundings of radar and
sonar systems, because of multipath propagation between receive arrays and targets, especially when
the distances of targets and receive arrays are short, the spatial scatterers of targets cannot be ignored,
assumptive condition of point source is no longer valid and point source models cannot characterize
sources effectively, which should be described by distributed source models [1]. Distributed sources
can be regarded as an assembly of point sources within a spatial distribution. The shape of spatial
distribution is related to geometry and surface property of a target, for instance, in underwater
detection. Considering multipath propagation and the surface feature of targets, distributed source
models are more appropriate in near field of radar or sonar detection.

Distributed sources may be classified into coherently distributed (CD) sources or incoherently
distributed (ID) sources [1]. Characterized by deterministic angular signal distribution function (ASDF)
representing spatial distribution, CD sources assume that scatterers within a source are coherent. On
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the contrary, scatterers of an ID source are supposed to be uncorrelated. Spatial distributions of ID
sources are characterized by angular power density function (APDF).

Spatial distribution of a distributed source, both ASDF and APDF, can be generally modeled as
Gaussian, uniform or any other distribution. Parameters of ASDF and APDF contain nominal angles
and angular spreads. Nominal angles can also be expressed as nominal direction-of-arrival (DOA)
representing the center of targets. Nominal spreads denote the spatial extension of targets. Traditional
estimation of a distributed source mainly involves estimation of DOA and angular spreads, which are
implied in ASDF or APDF.

For CD sources, representative achievements of parameters estimation are deriving the rotation
invariance relation with respect to different array configuration by virtue of Taylor series expansions [2–9].
Performance of distributed signal parameter estimator (DSPE) algorithm is analyzed in [10] and the
performance of multiple signal classification (MUSIC) is analyzed in [11]. In this paper, the modeling
and estimation of an ID source are considered.

Investigators for ID sources have been developed from classical point sources estimation
techniques. DSPE [1] and dispersed signal parametric estimation (DISPARE) [12] have been developed
from MUSIC, both of which involve a two-dimensional (2D) spectral search. In [13], an estimator
extended from estimation of signal parameters via rotational invariance techniques (ESPRIT) has been
proposed for ID sources, which use the total least square-ESPRIT (TLS-ESPRIT) algorithm to estimate
the nominal DOAs of sources firstly, and then the angular spreads are estimated using the central
moments of the distribution. Generalizations of Capon’s methods have been proposed in [14–16],
which involve a two-dimensional (2D) spectral search besides a high-order matrix inversion. The
maximum likelihood (ML) approach [17–19] has better accuracy but leads to a multidimensional
nonlinear optimization requiring high computational complexity. Developed from least squares
estimators, covariance matching estimation techniques (COMET) [20–24] have lower computational
complexity than ML but with the same large sample behavior. Applying sparse representation to
first-order Taylor expansion of steering vectors, in the case of small angular spreads, the authors of [25]
proposed an estimator via block sparse Bayesian learning for multiple incoherently distributed sources,
which has presented better accuracy under fewer snapshots.

The aforementioned methods consider sources as one-dimensional (1D) ID models, which have
two parameters: the nominal DOA and angular spread. However, impinging signals and arrays
sensors are not in the same plane practically. 2D distributed source models characterized by 2D DOA
and 2D angular spread should be more reasonable, which usually contain four parameters: nominal
azimuth, nominal elevation, azimuth angular spread and elevation angular spread. Including more
parameters, there have been relatively few studies on estimation of 2D ID sources. The authors of [26]
have proposed an extension of COMET for 2D ID sources, which employs alternating projection
principle [27] and estimates 2D DOAs and 2D angular spreads separating source powers and noise
variances to reduce complexity. Based on double parallel uniform linear arrays, the authors of [28] have
proposed a TLS-ESPRIT like approach for 2D DOAs, where estimation of nominal elevations is firstly
implemented via rotational invariance relations based on the diffused steering vectors derived from the
first-order Taylor series expansions, then the nominal azimuth is estimated by 1D searching. Authors
of [29] have proposed a (ESPRIT) like algorithm for 2D ID sources based on uniform rectangular arrays.
Receive vectors of arrays in [29] are described by generalized steering vector, which is composed of
nominal steering vector and its first-order partial derivatives along the direction of elevation and
azimuth. Nominal angles are estimated through rotational invariance relations of generalized steering
vectors, which are derived under the assumption of small angular spreads and small distance between
sensors. Generally, DOA estimation of ID sources by virtue of diffused steering vectors or generalized
steering vectors are derived from the first-order Taylor series expansions under the assumption of
small angular spreads [26] or the assumption of both small angular spreads and small distance between
sensors [28,29]. Though different methods based on different arrays have analyzed the influence of
angular spreads of Gaussian or uniform ID sources on DOA estimation, what is a satisfactory accuracy
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respect to a real specific target has not been carried out until now. The assumption that distance
between sensors is far less than wavelength of the signal is applicable to few specific detection areas,
such as underwater low frequency detection.

All the distributed sources estimation techniques mentioned above assume that the shape of
sources is symmetric. Nevertheless, scatterers are distributed irregularly within targets and the
surface of targets is generally non-symmetric. Models of 1D non-symmetric ID sources have been
proposed according to the principle that a non-symmetric distribution can be constructed by symmetric
distributions. The authors of [30] have proposed a non-symmetric ID source model, where the shape
of APDF can be figured via the variation of the ratio between two Gaussian distributions. The authors
of [31] have employed the Gaussian mixture model to characterize the 1D non-symmetric ID sources
and proposed a COMET algorithm embedded in expectation maximization (EM) framework [32,33] to
estimate the 1D non-symmetric APDF. Containing more parameters, estimation for a non-symmetric
ID source mainly lies in estimation of the non-symmetric APDF, which is different from estimation of a
symmetric ID source.

To the best of our knowledge, there are no algorithms for 2D non-symmetric distributed sources.
In this paper, we are concerned with modeling and estimation of a 2D non-symmetric ID source.
As the principle that symmetric distributions can form a non-symmetric distribution is also true in
the case of 2D, we present a 2D non-symmetric ID source model by constituting APDF with the 2D
Gaussian mixture model. The authors of [34] have explored Cramer-Rao bound of L-shape arrays
composed of two orthogonal ULAs and shown that such arrays have better accuracy potential than
traditional cross arrays using same number of sensors with respect to point sources. Utilizing the
propagator method, the authors of [35] have said that L-shape arrays composed of two orthogonal
ULAs with less number of elements can estimate better than parallel shape arrays using the same
method. Several DOA estimation methods [36–39] have been developed based on a point source
model with L-shaped array placed in xoz or xoy plane. Estimation for a 2D non-symmetric ID source
is proposed under EM framework based on L-shape arrays. The general EM framework is to get the
best parameters by maximization of the likelihood function during the iteration process. As a 2D
non-symmetric ID source has more parameters than those of an ID symmetric source; maximization
of the likelihood function makes it difficult to apply for a 2D non-symmetric ID source because of
nonlinear and high dimensional property. In our method, parameters are obtained successively in each
EM cycle. Deducing the covariance matrices via the first-order Taylor series expansion of the steering
vectors in each Gaussian component, we find that the nominal DOA parameters are related to the
phase parts in elements of covariance matrices. Accordingly, nominal azimuth and nominal elevation
of each Gaussian component can be obtained by the sample covariance matrices. Then angular spreads
can be searched through the original Generalization of Capon’s estimator base on DOA parameters.
Weights are estimated by a least squares fit of theoretical covariance and sample covariance.

The rest of this paper is organized as follows. Section 2 formulates a 2D non-symmetric ID
source model and describes the received signal vectors and covariance matrix under L-shape array.
Section 3 details the proposed algorithm of estimation for parameters of the 2D non-symmetric ID
source. Section 4 shows numerical simulations to validate the proposed estimation method. Section 5
draws the conclusion of this paper.

2. Distributed Source Model

Figure 1 shows the L-shape arrays configuration, which uses the xoy plane. Array X is composed
of sensors on x axis, while sensors on y axis constitute array Y. Each linear array consists of K sensor
elements separated by d meters, and the two linear arrays share an origin sensor. Suppose that there is
a stationary narrow-band 2D ID source with azimuth angle θ and elevation angle ϕ distributed in a
spatial distribution. θ ∈ [0, π/2], ϕ ∈ [0, π/2]. λ is the wavelength of the signal impinging into the
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array sensors. The K × 1 dimensional received signal vectors of the arrays X and Y can be expressed as
follows:

x(t) = [x1(t), x2(t), · · · , xk(t), · · · , xK(t)]
T , (1)

y(t) = [y1(t), y2(t), · · · , yk(t), · · · , yK(t)]
T , (2)

where (•)T denotes the transpose. xk(t) and yk(t) are the signal received by kth sensors in arrays X and
Y, which can be expressed as follows:

xk(t) = s(t)
L

∑
l=1

αl(t)ej2πd(k−1) cos θl sin ϕl/λ + nxk(t), (3)

yk(t) = s(t)
L

∑
l=1

αl(t)ej2πd(k−1) sin θl sin ϕl /λ + nyk(t). (4)
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Figure 1. The L-shape arrays configuration.

An ID source means that different scatterers from one target generate uncorrelated multipath
signals. s(t) in Equations (3) and (4) is the impinging signal into the target. L is number of scatterers.
nxk(t) and nyk(t) are noises received. αl(t) is random complex ray gain of the lth scatterer. The random
complex ray gain αl(t) is supposed to be white and independent from snapshot to snapshot as well as
from scatterer to scatterer, which has the following relationship:{

E[αl(t)αl(t′)] = 0

E[αl(t)α∗l′(t
′)] = σα

L δ(l − l′)δ(t− t′)
, (5)

where |αl(t)|2 = σα/L, δ(•) is the Kronecker delta function, (•)* denotes the conjugate operator. Define
nx(t) and ny(t), which are the K × 1 dimensional additive noise vectors of arrays X and Y; they can be
written as:

nx(t) = [nx1(t), nx2(t), · · · , nxk(t), · · · , nxK(t)], (6)

ny(t) =
[
ny1(t), ny2(t), · · · , nyk(t), · · · , nyK(t)

]
. (7)

nx(t) and ny(t) can be combined into
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n(t) =

[
nx(t)
ny(t)

]
. (8)

The noise is assumed to be uncorrelated with signal and uncorrelated between sensors as well as
Gaussian white with zero mean:

E[n(t)nH(t′)] = ρI2Kδ(t− t′), (9)

E[n(t)nT(t′)] = 0 ∀t, t′ , (10)

where ρ is the power of noise, I2K is the 2K × 2K identity matrix, (•)H denotes the Hermitian transpose.
Combine x(t) and y(t) into:

z(t) =

[
x(t)
y(t)

]
. (11)

The signal is assumed to be uncorrelated with the noise; the covariance matrix of z(t) can be
written as follows:

Rz = E[z(t)zH(t)] =

[
Rx Rxy

Ryx Rx

]
=

[
E[x(t)xH(t)] E[x(t)yH(t)]
E[y(t)xH(t)] E[y(t)yH(t)]

]
. (12)

The concept of APDF reflecting the distribution of scatterers of a source can be traced back to
references [1] and [19], which can be approximately modeled as 2D Gaussian and uniform or any other
distribution function according to the different characteristic of ID sources. Denote f (θ,ϕ) as APDF of
an ID source. The (k,h)th noise free element of covariance matrix Rx is given by (proof can be seen in
Appendix A):

[Rx]kh = E[xk(t)x∗h(t)] = |s(t)|
2E
[

L
∑

l=1

L
∑

l′=1
αl(t)ej2πd(k−1) cos θl sin ϕl /λα∗l′(t)e

−j2πd(h−1) cos θl′ sin ϕl′/λ

]
= P

s
ej2πd(k−h) cos θ sin ϕ/λ f (θ, ϕ)dθdϕ

. (13)

where P = σα|s(t)|2 is the received power of the target. Define a(θ,ϕ) and b(θ,ϕ) are K × 1 dimensional
steering vectors of arrays X and Y, which can be written as follows:

a(θ, ϕ) =
[
1, ej2πd cos θ sin ϕ/λ, · · · ej2π(K−1)d cos θ sin ϕ/λ

]T
, (14)

b(θ, ϕ) =
[
1, ej2πd sin θ sin ϕ/λ, · · · ej2π(K−1)d sin θ sin ϕ/λ

]T
. (15)

Thus, the covariance matrices Rx, Ry, Rxy and Ryx can be expressed as follows (proof is in
Appendix B): 

Rx = P
s

f (θ, ϕ)a(θ, ϕ)aH(θ, ϕ)dθdϕ + ρIK

Ry = P
s

f (θ, ϕ)b(θ, ϕ)bH(θ, ϕ)dθdϕ + ρIK

Rxy = P
s

f (θ, ϕ)a(θ, ϕ)bH(θ, ϕ)dθdϕ

Ryx = P
s

f (θ, ϕ)b(θ, ϕ)aH(θ, ϕ)dθdϕ

. (16)

In this study, the Gaussian mixture model is used for angular power density of the distributed
source in order to express the non-symmetric distribution, so the APDF of a non-symmetric ID source
can be expressed as follows:

f (θ, ϕ) ≈
q

∑
i=1

wig(θ, ϕ; ui) =
q

∑
i=1

wi
1

2πσθiσϕi
exp

−0.5

( θ − θi
σθi

)2
+

(
ϕ− ϕi

σϕi

)2
, (17)
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where the APDF consists of q Gaussian components g(θ,ϕ; ui) i= 1,2, . . . ,q. ui = [θi,φi,σθi, σφi] is
the parameter set of the ith Gaussian component denoting the nominal azimuth, nominal elevation,
azimuth angular spread, and elevation angular spread, respectively.

To normalize f (θ,ϕ), the weighting coefficient wi satisfies the following constraint:

q

∑
i=1

wi = 1. (18)

APDF in (17) can be shaped asymmetrically via the variation of the weighting coefficient wi and
parameter set of each Gaussian component.

Combine a(θ,ϕ) and b(θ,ϕ) into:

c(θ, ϕ) =

[
a(θ, ϕ)

b(θ, ϕ)

]
. (19)

The summation of Gaussian mixture distributions in Equation (17) can be substituted for f (θ,ϕ).
Rz can be expressed respectively as follows:

Rz ≈
q

∑
i=1

Pi

x
g(θ, ϕ; ui)c(θ, ϕ)cH(θ, ϕ)dθdϕ + ρI2K, (20)

Equation (16) can be expressed as follows:

Rx ≈
q
∑

i=1
Pi

s
g(θ, ϕ; ui)a(θ, ϕ)aH(θ, ϕ)dθdϕ + ρIK

Ry ≈
q
∑

i=1
Pi

s
g(θ, ϕ; ui)b(θ, ϕ)bH(θ, ϕ)dθdϕ + ρIK

Rxy ≈
q
∑

i=1
Pi

s
g(θ, ϕ; ui)a(θ, ϕ)bH(θ, ϕ)dθdϕ

Ryx ≈
q
∑

i=1
Pi

s
g(θ, ϕ; ui)b(θ, ϕ)aH(θ, ϕ)dθdϕ

, (21)

where IK denotes the K × K identity matrix,Pi = wiP denotes power of the ith Gaussian component.

3. Proposed Method

For a 2D non-symmetric ID source, there are 5q unknown parameters in APDF. Compared with a
2D symmetric source, there are many more parameters to be estimated. Traditional methods such as the
maximum likelihood function, COMET, and the subspace-based algorithms are difficult applications,
on account of the high dimensional property of the 2D non-symmetric ID source. In this section, based
on EM framework and the alternating projection principle, an iterative algorithm is proposed, which
contains three steps in each iterative cycle: first, the nominal elevation angle and nominal azimuth
angle of each Gaussian component are obtained utilizing feature of covariance matrices; then angular
spreads are estimated by 1D searching; finally, estimation of weights are implemented though a least
squares fit of theoretical and sample covariance.

3.1. Latent Variable Model

On the basis of the latent variable model [32,33], the observed received vectors x(t) and y(t) caused
by source and noise can be considered as a combination of unobserved received vectors caused by
each Gaussian component implied in APDF of (17) as well as noise accompanying each Gaussian
component. xi(t) and yi(t) are supposed to be the K × 1 dimensional implied received vectors of
arrays X and Y, reflecting received signal impinged by the ith Gaussian component and the noise
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accompanying the ith Gaussian component. According to the latent variable model, x(t) and y(t) are the
observed data, which can be assumed as incomplete data; xi(t) and yi(t) can be assumed as complete
data. The many-to-one function representing the relationship of incomplete data and complete data
can be expressed as follows: 

x(t) =
q
∑

i=1
xi(t)

y(t) =
q
∑

i=1
yi(t)

. (22)

Combine complete data xi(t) and yi(t) into:

zi(t) =

[
xi(t)
yi(t)

]
. (23)

Thus, we have a relationship of incomplete data z(t) and complete data zi(t) as follows:

z(t) =
q

∑
i=1

zi(t). (24)

According to the incoherently distributed source assumption, signals from different Gaussian
component are uncorrelated; so different implied received vectors zi(t) are uncorrelated. Then
covariance matrix of the incomplete data z(t), Rz is accordingly a summation of Rzi which is covariance
matrix of the complete data zi(t)., Rz can be expressed as:

Rz =
q

∑
i=1

Rzi =
q

∑
i=1

E[zi(t)zH
i (t)] =


q
∑

i=1
Rxi

q
∑

i=1
Rxyi

q
∑

i=1
Ryxi

q
∑

i=1
Ryi

, (25)

As zi(t) is caused by the ith Gaussian component and its accompanied noise, covariance matrix of
the complete data Rzi, can be a written as:

Rzi = E[zi(t)zH
i (t)] = Pi

x
g(θ, ϕ; ui)c(θ, ϕ)cH(θ, ϕ)dθdϕ + ρiI2K, (26)

where ρi is noise power of complete data zi(t). From Equations (22) and (23), we find that Rzi is
composed of four parts—covariance matrix of the complete data xi(t) Rxi, covariance matrix of the
complete data yi(t) Ryi, covariance matrix of the complete data xi(t) and yi(t) Rxyi, covariance matrix of
the complete data yi(t) and xi(t) Ryxi, which means that:

Rzi =

[
Rxi Rxyi
Ryxi Rxi

]
=

[
E[xi(t)xi

H(t)] E[xi(t)yi
H(t)]

E[yi(t)xi
H(t)] E[yi(t)yi

H(t)]

]
. (27)

Denote the normalized noise-free covariance matrix of complete data zi(t) as follows:

rz(ui) =
x

g(θ, ϕ; ui)c(θ, ϕ)cH(θ, ϕ)dθdϕ =

[
rx(ui) rxy(ui)

ryx(ui) ry(ui)

]
. (28)

The noise is assumed to be distributed in complete data equally so covariance matrix of zi(t), Rzi

expressed by Equation (26) can also be expressed as follows:

Rzi = Pirz(ui) +
ρ

q
I2K. (29)
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Rxi, Ryi, Ryxi and Ryxi can be expressed as follows:[
Rxi Rxyi
Ryxi Ryi

]
= Pi

[
rx(ui) rxy(ui)

ryx(ui) ry(ui)

]
+

ρ

q
I2K. (30)

Assuming that the angular spread of both azimuth and elevation in each Gaussian component is
small, d/λ is set at 1/2; sinθsinϕ and cosθsinϕ can be approximated by the first term in the Taylor series
expansions. Thus, elements in the normalized noise-free signal covariance matrix of Equation (30) can
be expressed as follows (proof can be seen in Appendix C):

[rx(ui)]kh ≈ ejπ(k−h) cos θi sin ϕi e−0.5{[πσθi(k−h) sin θi sin ϕi ]
2+[πσϕi(k−h) cos θi cos ϕi ]

2}

[rxy(ui)]kh ≈ ejπ[(k−1) cos θi sin ϕi−(h−1) sin θi sin ϕi ]·[C(ui)]kh

[ryx(ui)]kh ≈ ejπ[(k−1) sin θi sin ϕi−(h−1) cos θi sin ϕi ]·[D(ui)]kh

[ry(ui)]kh ≈ ejπ(k−h) sin θi sin ϕi e−0.5{[πσθi(k−h) cos θi sin ϕi ]
2+[πσϕi(k−h) sin θi cos ϕi ]

2}

[C(ui)]kh = e−0.5{π2σ2
θi [(k−1) sin θi sin ϕi+(h−1) cos θi sin ϕi ]

2+π2σ2
ϕi [(k−1) cos θi cos ϕi−(h−1) sin θi cos ϕi ]

2}

[D(ui)]kh = e−0.5{π2σ2
θi [(k−1) cos θi sin ϕi+(h−1) sin θi sin ϕi ]

2+π2σ2
ϕi [(k−1) sin θi cos ϕi−(h−1) cos θi cos ϕi ]

2}

, (31)

where [•]kh denotes the element of the kth row and the hth column in a matrix.

3.2. EM Algorithm

The EM algorithm is an iteration process containing two steps in turn: an expectation step (E-step)
and a maximization step (M-step). The E-step serves to obtain parameters that are implied in each
Gaussian component under the condition of incomplete data and the parameters values of E-step in
the last EM circle. The M-step serves to update parameters based on the data from parameters obtained
in the E-step, which is usually performed by maximizing the logarithm of the likelihood function.

The sample covariance matrix of incomplete data z(t), Rz can be replaced by R̂z with N snapshots,
which is defined as follows:

R̂z =
1
N

N

∑
1

z(t)zH(t). (32)

R̂zi,R̂xi and R̂yi are the estimated sample covariance matrix of complete data zi(t), xi(t) and yi(t).
As R̂zi is a sufficient statistic of unknown parameters wi, θi, φi, σθi, σφi and P, the (m+1)th E-step of the
EM algorithm serves to calculate the expected value of sufficient statistics as follows (the proof can be
seen in Appendix D):

R̂m+1
zi = E[R̂zi|R̂z] = Rm

zi(R
m
z )
−1R̂z(Rm

z )
−1Rm

zi + Rm
zi −Rm

zi(R
m
z )
−1Rm

zi , (33)

where the superscript m indicates the value at the mth iteration.
To simplify the calculation, we assume the same angular spread for both azimuth and elevation

σi = σθi= σφi. The M-step will minimize the negative logarithm of the likelihood function to find the
optimal parameters in the (m + 1)th iteration, which can be expressed as follows:

wm+1
i , θm+1

i , ϕm+1
i , σm+1

i , Pm+1
i = argmin

wi ,ui

[
L(ui) = log|Rzi|+ Tr(R−1

zi R̂m+1
zi )

]
(i = 1, · · · , q), (34)

where parameters to be estimated are implied in Rzi which can be expressed by Equations (29)–(31).
Equation (34) means exploring the best (m + 1)th parameters of the ith Gaussian component based
on the sample covariance matrix of the complete data R̂m+1

zi . Minimizing the Equation (34) is
computationally complicated because of nonlinearity and inversion of the high-dimensional matrix;
therefore, solving all the unknown parameters simultaneously is impossible. According to the principle
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of alternating projection, parameters can be estimated successively based on other parameters that
have already been solved in M-step.

According to Equation (27), the sample covariance matrices of the complete data xi(t) and yi(t)
can be obtained as follows:

R̂m+1
xi =

[
IK 0K

0K 0K

]
R̂m+1

zi , (35)

R̂m+1
yi =

[
0K 0K

0K IK

]
R̂m+1

zi , (36)

where IK is the K × K identity matrix and 0K is K × K zero matrix.
From Equation (31), we show that the phase parts of the elements of rx(ui) and ry(ui) contain

information of cosθisinϕi and sinθisinϕi, which means that we can obtain cosθisinϕi and sinθisinϕi
from phase parts of Rxi and Ryi. Average phase parts of all elements in matrix R̂xi and R̂yi except the
real diagonal elements, denote ηi as cosθisinϕi and υi as sinθisinϕi. Thus, we obtain:

ηm+1
i =

2
K2 − K

k−1

∑
h=1

K

∑
k=2

angle([R̂m+1
xi ]kh)

π(k− h)
, (37)

υm+1
i =

2
K2 − K

k−1

∑
h=1

K

∑
k=2

angle([R̂m+1
yi ]

kh
)

π(k− h)
, (38)

where angle(•) denotes the phase of a complex number. Thus, we obtain θi and ϕi of the ith Gaussian
component as:

θm+1
i = arctan(υm+1

i /ηm+1
i ), (39)

ϕm+1
i = arcsin(

√
(ηm+1

i )
2
+ (υm+1

i )
2
). (40)

After the nominal azimuth θi and nominal azimuth angle φi are solved, the angular spread of the
ith Gaussian components can be estimated by using the original generalized Capon estimator:

σm+1
i = argmin

σi

µmax[(R̂
m+1
zi )

−1
rz(θ

m+1
i , ϕm+1

i , σi)], (41)

where µmax(•) represents the maximal eigenvalue of a matrix.
The least-squares fit of the theoretical and sample covariance can be expressed as:

U =

∥∥∥∥R̂zi − Pirz(ui)−
ρ

q
I2K

∥∥∥∥2

F
. (42)

Differentiating Equation (42) with respect to Pi and ρ setting the results to zero yields the following
equation:

Pm+1
i =

tr[R̂m+1
zi rz(um+1

i )]− tr(R̂m+1
zi )

tr[r2
z(u

m+1
i )]− 2K

. (43)

At last, the weight of the ith Gaussian component can be obtained as follows:

wm+1
i =

Pm+1
i

q
∑
i

Pm+1
i

. (44)
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After all parameters of the Gaussian component obtained in the (m + 1)th M-step, Rm+1
zi can be

expressed by Equations (29)–(31). Rm+1
z is the summation of Rm+1

zi according to Equation (25). Then
the (m + 2)th iteration can be started.

3.3. Complexity Analysis and Comparison

Now, we analyze the computational complexity of the proposed method in comparison with
COMET [26] and DISPARE [12], which are estimators for symmetric ID sources. It is noteworthy that
the original algorithm in DISPARE [12] is for 1D ID sources and can be extended for 2D ID sources.
COMET [26] is a method of estimation under alternating the projection algorithm framework; its
computational cost mostly consists of calculation of the sample covariance matrix and the alternating
projection technique with respect to cost functions. The DISPARE method estimates DOA and angular
spreads through a three-dimensional (3D) spectrum-peak searching and its computation cost is mostly
made of three parts: the calculation of the sample covariance matrix, the eigendecomposition of the
matrix, and a 3D searching. The computation cost of the proposed method in one EM circle mainly
consists of three operations: calculation of the 2K × 2K sample covariance matrix, 1D searching for
angular spread, and calculation of weights. Assume that M is the EM iteration number. Table 1 shows
the main computational costs of three methods. From Table 1, we can clearly see if computational
cost of estimation for non-symmetric distributed source is significantly higher than that of symmetric
distributed source.

Table 1. Computational complexity of different methods.

Method Calculation of the Sample
Covariance Matrix

Searching/AP
Algorithm

Eigendecomposition/
Calculation of Weights Total

Proposed o (4 NK2) + o(4 MK3) o(8 MK3) o(8 MK3) o (64 MK3) + o (4 NK2)

COMET o (4 NK2) o (24 K3 + 12 K2) o (24 K3 + 12 K2) + o (4 NK2)

DISPARE o (4 NK2) o (24 K2+6 K) o (8K3) o (8 K3) + o (4 NK2) + o (24 K2 + 6 K)

The stopping criterion of the EM algorithm is when all the parameters are no longer changing [30,31].
We define the iterative variation of all parameters as:

∆ =
1
4q

∣∣∣∣∣ εm
γ − εm

γ

εm
γ

∣∣∣∣∣γ = 1, 2, · · · , 4q, (45)

where εm
γ represents a parameter value in the mth iteration. When ∆ reaches a sufficiently small value,

all parameters can be considered keeping stable.
Now, our algorithm can be summarized as follows
Step 1: Determine the number q of Gaussian components. Initialize P, wi, θi, ϕi, σi ( i = 1,2, . . . , q).
Step 2: Compute the sample covariance matrix of incomplete data R̂z using Equation (32).
Step 3: Repeat the following sub-steps for M times, which is a sufficiently large number or until

the iterative variation of all parameters reaches the condition ∆ ≤ 0.001.

1. Compute the sample covariance matrices of complete data R̂m
zi , R̂m

xi and R̂m
yi using Equations (33),

(35) and (36).
2. Calculate the nominal azimuth θm+1

i and nominal elevation ϕm+1
i from Equations (37)–(40).

3. Calculate rz(um+1
i ) using Equation (27) and search angular spread σm+1

i rough 1D search by
Equation (41).

4. Estimate the power of each component Pm+1
i using Equation (39) and calculate weight of each

component wm+1
i by Equation (44).

5. Repeat sub-steps 1 to 4 for i = 1, 2, . . . , q.
6. Superscript m = m + 1.



Sensors 2019, 19, 1226 11 of 21

It is noteworthy that the distribution of a 2D non-symmetric ID source is unknown, so the true
number of Gaussian components is unknown. Estimation is performed as q is an initial parameter,
which needs to be set artificially. Step 1 can be considered as 0th iteration of the EM cycle. P0 is
supposed to equal to ρo, which can be set at a unit power. σ0

i is set at a small value initially. w0
i

can be set at 1/q. Then, R̂0
zi can be obtained according to Equations (29)–(31). R̂0

z can be obtained
from Equation (25). As the incomplete data z(t) is observed, R̂1

zi can consequently be obtained from
Equation (33).

4. Results and Discussion

In this section, we investigate the effectiveness of the proposed method though four simulation
experiments. Assume that L-shape arrays have a configuration as in Figure 1 with sensors numbers K
= 4 in both X and Y axis, d/λ is set at 1/2. SNR is defined as follows:

SNR = 10 log
P
ρ

. (46)

Root mean squared error (RMSE) is used to evaluate estimation performance. The RMSE of the
nominal angle is defined as:

RMSEa =

√√√√ 1
Mc

Mc

∑
ς

(θ̂ς − θ)
2
+

1
Mc

Mc

∑
ς

(ϕ̂ς − ϕ)2, (47)

where θ̂ς and ϕ̂ς are the estimated nominal azimuth and estimated nominal elevation of the ID source,
respectively. The superscript ς denotes the estimated parameters in ςth Monte Carlo run. Mc is the
number of Monte Carlo simulations, which is 500. θ and ϕ are the true nominal azimuth and nominal
elevation, respectively.

We define the value corresponding to the maximum point of the APDF as the nominal angle of the
non-symmetric ID source. Nominal angle can be obtained through partial derivative of the estimated
APDF, according to the property of continuous distribution.

In addition to investigation of nominal angles, estimation of the spatial distribution should be
emphasized with respect to a non-symmetric distributed source. To evaluate the estimation of spatial
distribution, the RMSE of distributed function is defined as follows:

RMSE f =
1

Mc

Mc

∑
ς

x √
[ f (θ, ϕ; ûς)− f (θ, ϕ; u)]2dθdϕ, (48)

where f (θ, ϕ; ûς) is the estimated APDF in ςth Monte Carlo run. In this section, we compare
the performances of the proposed algorithm with two traditional estimators for ID sources, the
COMET [26], which can be applied for any 2D arrays, and DISPARE [12], which can be extended for a
2D case. A 2D non-symmetric ID source with APDF is constructed as follows:

f (θ, ϕ; u) = 0.2g(40, 40, 2.5) + 0.2g(45, 40, 2.5) + 0.2g(50, 40, 2.5) + 0.3g(40, 45, 2.5) + 0.1g(40, 50, 3), (49)

where g(a1,a2,a3) denotes a Gaussian component

g(a1, a2, a3) =
1

2πa2
3

exp

{
−0.5

[(
θ − a1

a3

)2
+

(
ϕ− a2

a3

)2
]}

. (50)

The nominal angle of the APDF can be calculated as (40◦, 44.4◦). Figure 2a,b shows the constructed
non-symmetric APDF. The purple region of Figure 2b is projection of the constructed non-symmetric
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APDF on the θ-ϕ plane and the color bar represents measurement of probability density function (PDF).
Mark + represents the central position of each Gaussian component in Equation (49).

When estimating a 2D non-symmetric ID source, we do not know details of the non-symmetric
APDF. The proposed algorithm is performed by setting initial parameters of the Gaussian mixture and
iterates until the parameters no longer change. The following experiments examine the parameter
variety process of each Gaussian component, different experimental conditions, number of Gaussian
components, and initial positions of Gaussian components. Effectiveness of the estimated APDF can
be measured though RMSEa and RMSEf .

1 
 

 

(a) 
 

(b) 

 Figure 2. (a) Probability density function of APDF of the constructed non-symmetric ID source;
(b) projection of the APDF on the θ−ϕ plane.

In the first example, the variety processes of Gaussian components in EM iterations are
investigated. We choose four Gaussian components to estimate the source and set number of snapshots
N = 200 and SNR = 15dB. As the shape of APDF of a 2D non-symmetric ID source to be estimated
is unknown, we can firstly get DOA estimated by the traditional method, which is defined as an
assumptive nominal angle of the 2D non-symmetric ID source. To be more representative, the initial
positions of Gaussian components are set uniformly around the assumptive value with same distance
to the assumptive nominal angle. Thus, the nominal azimuth and nominal elevation of four Gaussian
components—A, B, C and D—are set uniformly around the value (47◦,48.5◦), estimated by DISPARE
and set at (43◦, 43◦), (41.5◦, 52.5◦), (52.5◦, 44.5◦) and (51◦, 54◦) respectively, where the distances from
initial Gaussian components to the assumptive nominal angle are all 6.8◦. The initial angular spreads
are set at 1◦. Figure 3 shows the variety processes of parameters of each component. Figure 4 shows
the initial and final values of each Gaussian component. The ordered array in parentheses (θi,φi,σθi, σφi,
wi) of Figure 4 is the parameters of the ith Gaussian component. The beginning of the arrow represents
the initial value, while the end of the arrow is the final value. The final estimated APDF is:

f (θ, ϕ; û) = 0.24g(40.1, 40.3, 2.7) + 0.5g(39.9, 46.4, 3) + 0.25g(46.4, 40, 2.8) + 0.01g(39.4, 45, 0.9) (51)

The nominal angle of the APDF is (39.5◦, 45.9◦), which is near the nominal angle of the given
sources. RMSEa is 1.58◦ and RMSEf is 0.29. The APDF is displayed in Figure 5, which reflects the spatial
non-symmetric feature of the source and is similar to the given source. It is seen that parameters will
converge to certain values as a result of sufficient EM iterations. A noticeable phenomenon wherein
a small weight, 0.01, developed from component D whose central position is originally far from the
given source, indicates that the initial Gaussian component outside the scope of the distributed source
makes hardly any contribution to the final results.
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In the second example, we investigate the influence of SNR and the number of snapshots N on
the performance of the proposed algorithm in comparison with COMET and DISPARE. The RMSEa

of the proposed algorithm and COMET, as well as DISPARE at different SNR and different number
of snapshots N are shown, respectively, in Figure 6a,b, while RMSEf of three methods at different
SNR and N are shown, respectively, in Figure 7a,b. The EM iteration number M is set at 500. We
also choose four Gaussian components to estimate the unknown source. The distances from initial
Gaussian components to the assumptive nominal angle of the source are all set at 6.8◦. The initial
angular spreads are set at 1◦. Then we randomly choose four positions with equal interval around the
assumptive nominal angle (47◦, 48.5◦) in each Monte Carlo run. Five hundred independent Monte
Carlo simulations are run to obtain the results. The number of snapshots N is set at 200 in experiments
shown in Figures 6a and 7a, while the SNR is set at 15dB in experiments shown in Figures 6b and 7b. As
the number of snapshots N or SNR increases, all algorithms provide better performance. Apparently,
the proposed algorithm provides higher estimation accuracy than COMET and DISPARE algorithm
with regard to RMSEa and RMSEf. As can be shown in Figure 6a,b, RMSEa of COMET and DISPARE
reach 4.3◦, 4.3◦, 7.1◦, 7.3◦. In Figure 7a,b, we have found that the RMSEf of COMET and DISPARE reach
1.08, 1.1, 2.1, 2.3. As to RMSEf, supposing in ςth Monte Carlo trail, if the estimated APDF f (θ, ϕ; ûς) =

0,
s √

[ f (θ, ϕ; ûς)− f (θ, ϕ; u)]2dθdϕ = 1. RMSEfs estimated by COMET and DISPARE, are big errors
considering distribution of function. Therefore, Figure 7a,b show that COMET and DISPARE is invalid
as to the spatial distribution estimation of the given non-symmetric distributed source on account of
the large errors of RMSEf.
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In the third example, the influence of number of Gaussian components on performance is
examined. The number of snapshots N = 200 and SNR = 15 dB. The initial angular spreads are
set at 1◦. When the performances of two or more Gaussian components are investigated, central
positions of Gaussian components with equal interval around the assumptive nominal angle (47◦,
48.5◦) are randomly chosen in each Monte Carlo run; the distances from initial central positions to the
assumptive nominal angle of the source are all set at 6.8◦; 500 independent Monte Carlo simulations are
run to obtain the result. As can be seen in Figure 8, the utilization of one Gaussian component provides
a large error, which is an estimation considering sources as symmetric in essence. As the number of
Gaussian components increase, RMSEf and RMSEa decrease. However, the final results of both RMSEf
and RMSEa have little difference as the number changes from 3 to 6. Meanwhile, the convergence is
markedly slower. It can be concluded that an increasing number of Gaussian components will provide
a higher estimation accuracy, but the performance will not be notably improved as the number increase
to a certain extent.
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different number of Gaussian components.

On the premise of not considering the cost of calculation, we can theoretically use any number
of Gaussian components to fit a 2D non-symmetric ID source. In the third example, we examine the
influence of different number of Gaussian components on estimation of a given source where the
true number of Gaussian components is 5. It is found that the accuracy of estimation will not be
significantly improved when q exceeds a certain extent. This phenomenon may be related to the shape
of the given source. If the degree of asymmetry of the given 2D ID source is low, though it is composed
of many Gaussian components, fewer Gaussian components can also fit the given 2D ID source well.

As the initial parameters of Gaussian components are set around assumptive value estimated by
DISPARE or other methods for 2D symmetric sources, there will inevitably be Gaussian components
with central positons outside the scope of the distributed source. To improve the robustness and
accuracy of the algorithm, the number of Gaussian components should be set at a high level, and
computing cost is also a matter of balance.

In the fourth example, we investigate the influence of initial positions to the final results. The
number of snapshots N = 200 and SNR = 15dB. The initial angular spreads are set at 1◦. The EM
iteration is stopped under the condition ∆≤0.001. Three different assumptive nominal angles are
considered. The first assumptive nominal angle is (47◦,48.5◦). Figure 9a shows that a circle is defined
around the assumptive nominal angle (47◦,48.5◦). r is radius of the circle. We randomly select initial
central positions of the Gaussian components, which are four points with equal interval on circle, such
as the red dots in Figure 9a. 500 independent Monte Carlo simulations are run in a same circle, and
then RMSEa and RMSEf are obtained with regard to each circle. We examine the radius of circle r
changing from 0◦ to 20◦. As shown in Figure 9b, both RMSEa and RMSEf change when the radius
of the circle changes. The trends of the two curves are roughly the same. In general, as the radius
increases, the estimation error decreases and then increases. When r is 8.5◦, both RMSEa and RMSEf
touch the bottom. The circle whose r equals 8.5◦ is drawn in dotted black line in Figure 9a. The
second assumptive nominal angle is (45◦, 44◦), which is shown in Figure 10a. Setting process of initial
positions is same as the first one. We examine the influence of radius of circle r changing on estimation.
As shown in Figure 10b, both RMSEa and RMSEf decrease then increase with the radius of the circle
increasing. The trends of the two curves are also roughly the same. When r is 6.8◦, both RMSEa and
RMSEf touch the bottom. The circle r equals 6.8◦ is drawn in dotted black line in Figure 10a. The third
assumptive nominal angle is (50◦, 42◦), which is shown in Figure 11a. RMSEa and RMSEf changing
with r are shown in Figure 11b. When r is 13.4◦, both RMSEa and RMSEf touch the bottom. The circle r
equals 13.4◦ is drawn in dotted black line in Figure 11a. The circles r, which equals 8.5◦, 6.8◦ and 13.4◦

in the first, second and third trails, have common characteristics, such as initial positions of Gaussian
components in these circles are within the given distributed sources with greater probability than any
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other circles. It is probable that estimation with initial positions of Gaussian components near the
positions of Gaussian components in the given source has better accuracy than other parts, where the
initial positions are far from the given source.
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 Figure 11. (a) Description of assumptive nominal angle (50◦, 42◦) and circles r equals 13.4◦; (b) RMSEa

and RMSEf estimated by different r with assumptive nominal angle (50◦, 42◦).

5. Conclusions

In this paper, we described the problem of estimating a 2D non-symmetric ID source based
on L-shape arrays. The method we thus propose is developed by modeling the 2D non-symmetric
APDF as a Gaussian mixture model. The estimation algorithm of a 2D non-symmetric ID source on
the basis of iterative EM framework has been introduced in detail. The computational cost of a 2D
non-symmetric ID source is much higher, when compared to the estimation of a 2D symmetric ID
source. To evaluate the performance of estimation, we defined two indexes to reflect nominal angles
and indicate spatial distribution. We investigated the parameter variety process of each Gaussian
component, different SNR, number of snapshots, number of Gaussian components and initial positions
of Gaussian components; the results of the numerical simulations show that the proposed method is
effective for estimation of a non-symmetric ID source.
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Appendix A

Considering that the random complex ray gain of the lth scatterer αl(t) has a property described
by Equation (5), as scatterers have density distribution f (θ,ϕ), when L is a large number, Equation (13)
can be expressed as:

[Rx]kh = E[xk(t)x∗h(t)] = |s(t)|
2E
[

L
∑

l=1
αl(t)ej2πd(k−1) cos θl sin ϕl /λ

L
∑

l′=1
α∗l′(t)e

−j2πd(h−1) cos θl′ sin ϕl′/λ

]
(A1)

αl(t) is supposed to be white with zero mean and independent from snapshot to snapshot as
well as from scatterer to scatterer. E[αl(t)α∗l′(t

′)] = σα
L δ(l − l′)δ(t− t′) and E[αl(t)αl(t′)] = 0, which is

described by Equation (5). We can obtain:

E
[
αl(t)ej2πd(k−1) cos θl sin ϕl/λα∗l′(t)e

−j2πd(h−1) cos θl′ sin ϕl′/λ
]
= 0, i f l 6= l′. (A2)
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Then [Rx]kh can be expressed as:

[Rx]kh = |s(t)|2E
[

L
∑

l=1
αl(t)ej2πd(k−1) cos θl sin ϕl /λα∗l (t)e

−j2πd(h−1) cos θl sin ϕl/λ

]
= σα

L |s(t)|
2E
[

L
∑

l=1
ej2πd(k−h) cos θl sin ϕl/λ

] (A3)

As f (θ,ϕ) is the density function of scatterers of a source, we have:

E
[
ej2πd(k−h) cos θl sin ϕl/λ

]
=

x
ej2πd(k−h) cos θ sin ϕ/λ f (θ, ϕ)dθdϕ. (A4)

Then [Rx]kh can be expressed as:

[Rx]kh = σα
L |s(t)|

2E
[

L
∑

l=1
ej2πd(k−h) cos θl sin ϕl /λ

]
= σα|s(t)|2

s
ej2πd(k−h) cos θ sin ϕ/λ f (θ, ϕ)dθdϕ

(A5)

Appendix B

Check Rx of Equation (16). According to Equation (14), the kth and hth elements of a(θ,ϕ) can be
expressed as:

[a(θ, ϕ)]k = ej2π(k−1)d cos θ sin ϕ/λ, (A6)

[a(θ, ϕ)]h = ej2π(h−1)d cos θ sin ϕ/λ. (A7)

We can obtain:
[a(θ, ϕ)aH(θ, ϕ)]kh = ej2π(k−h)d cos θ sin ϕ/λ. (A8)

From Equation (13), the (k,h)th noise free element of covariance matrix Rx can be expressed as
[Rx]kh = P

s
ej2πd(k−h) cos θ sin ϕ/λ f (θ, ϕ)dθdϕ. According to Equation (A9), the noise free [Rx]kh can be

written as follows:
[Rx]kh = P

x
[a(θ, ϕ)aH(θ, ϕ)]kh f (θ, ϕ)dθdϕ. (A9)

Considering the noise vector described by Equation (9), Rx can be expressed as follows:

Rx = P
x

f (θ, ϕ)a(θ, ϕ)aH(θ, ϕ)dθdϕ + ρIK. (A10)

The derivation processes of Ry, Rxy and Ryx is similar to Rx.

Appendix C

Check [rx(ui)]kh of Equation (27). Change variables (θi + θ̃) for θ and (ϕi + ϕ̃) for ϕ, where θ̃ and
ϕ̃ are the small deviation of θi and ϕi. Thus, sinθsinϕ and cosθsinϕ can be approximated by the first
term in the Taylor series expansions:

[rx(ui)]kh ≈
s 1

2πσθiσϕi
e
−0.5[( θ̃

σθi
)

2
+(

ϕ̃
σϕi

)
2
]
ejπ(k−h)(cos θi sin ϕi+cos θi cos ϕi ϕ̃−sin θi sin ϕi θ̃)dθ̃dϕ̃

= ejπ(k−h) cos θi sin ϕi
s 1

2πσθiσϕi
e
−0.5[( θ̃

σθi
)

2
+(

ϕ̃
σϕi

)
2
−2jπ(k−h)(cos θi cos ϕi ϕ̃−sin θi sin ϕi θ̃)]dθ̃dϕ̃

= ejπ(k−h) cos θi sin ϕi e−0.5{[πσθi(k−h) sin θk sin ϕi ]
2+[πσϕi(k−h) cos θi cos ϕi ]

2}

. (A11)

Appendix D

Assume that complete data zi(t) and incomplete data z(t) are zero-mean complex Gaussian random
vectors and their covariance matrices are Rzi and Rz, respectively. According to the incoherently
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distributed source assumption, different vectors zi(t) are uncorrelated. Since z(t) is a linear combination
of uncorrelated zi(t), the covariance matrix of zi(t) and z(t) can be written as follows:

E[zi(t)z∗(t)] = E[zi(t)z∗i (t)] = Rzi. (A12)

Thus, the conditional expectation and variance of zi(t) under given observed data can be expressed
as follows:

E[zi(t)
∣∣∣z(t)] = 0 + E[zi(t)z∗(t)]R−1

z [z(t)− 0] = RziR−1
z z(t). (A13)

D[zi(t)
∣∣∣z(t)] = Rzi − E[zi(t)z∗(t)]R−1

z E[zi(t)z∗(t)] = Rzi −RziR−1
z Rzi. (A14)

Thus, the conditional expectation of covariance matrix Rzi under the given observed data can be
expressed as follows:

E[R̂zi

∣∣∣R̂z] = Rzi(Rz)
−1R̂z(Rz)

−1Rzi + Rzi −Rzi(Rz)
−1Rzi (A15)
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