
sensors

Article

Real-Time Healthcare Data Transmission for Remote
Patient Monitoring in Patch-Based Hybrid OCC/BLE
Networks †

Moh. Khalid Hasan , Md. Shahjalal , Mostafa Zaman Chowdhury and Yeong Min Jang *

Department of Electronics Engineering, Kookmin University, Seoul 02707, Korea;
khalidrahman45@ieee.org (M.K.H.); mdshahjalal26@ieee.org (M.S.); mzaman@kookmin.ac.kr (M.Z.C.)
* Correspondence: yjang@kookmin.ac.kr; Tel.: +82-2-910-5068
† This article is an extended and modified version of a paper presented in “Hasan, M.K.; Shahjalal, Md.;

Chowdhury, M.Z.; Jang, Y.M. In Proceedings of the International Conference on ICT Convergence (ICTC 2018),
Jeju, Korea, 17–19 October 2018.”

Received: 1 February 2019; Accepted: 5 March 2019; Published: 9 March 2019
����������
�������

Abstract: Research on electronic healthcare (eHealth) systems has increased dramatically in recent
years. eHealth represents a significant example of the application of the Internet of Things (IoT),
characterized by its cost effectiveness, increased reliability, and minimal human eff ort in nursing
assistance. The remote monitoring of patients through a wearable sensing network has outstanding
potential in current healthcare systems. Such a network can continuously monitor the vital health
conditions (such as heart rate variability, blood pressure, glucose level, and oxygen saturation) of
patients with chronic diseases. Low-power radio-frequency (RF) technologies, especially Bluetooth
low energy (BLE), play significant roles in modern healthcare. However, most of the RF spectrum
is licensed and regulated, and the effect of RF on human health is of major concern. Moreover, the
signal-to-noise-plus-interference ratio in high distance can be decreased to a considerable extent,
possibly leading to the increase in bit-error rate. Optical camera communication (OCC), which uses a
camera to receive data from a light-emitting diode (LED), can be utilized in eHealth to mitigate the
limitations of RF. However, OCC also has several limitations, such as high signal-blockage probability.
Therefore, in this study, a hybrid OCC/BLE system is proposed to ensure efficient, remote, and
real-time transmission of a patient’s electrocardiogram (ECG) signal to a monitor. First, a patch
circuit integrating an LED array and BLE transmitter chip is proposed. The patch collects the ECG
data according to the health condition of the patient to minimize power consumption. Second, a
network selection algorithm is developed for a new network access request generated in the patch
circuit. Third, fuzzy logic is employed to select an appropriate camera for data reception. Fourth, a
handover mechanism is suggested to ensure efficient network allocation considering the patient’s
mobility. Finally, simulations are conducted to demonstrate the performance and reliability of the
proposed system.

Keywords: Internet of Things (IoT); eHealth; patch; LED; camera; Bluetooth low energy (BLE); hybrid
system; network selection; handover; outage probability

1. Introduction

Electronic healthcare (eHealth) is regarded as one of the most important emerging applications
of wireless sensing networks owing to its substantial potential in a wide range of nursing assistance
activities. Nowadays, the Internet of Things (IoT) has become a distinguished solution in eHealth [1,2].
Among the promising, advanced IoT applications, eHealth represents a revolutionary segment and
offers numerous convenient solutions to patients, doctors, and nursing assistants [3–5]. The IoT has a
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great potential and provides various utilities wherein remote health monitoring of chronic diseases
can be regarded as the most significant technology. In this regard, wearable computing technologies
are considered to have an incredible influence, because they remarkably eliminate the necessity of
continuous physical examination [6].

Wearable technologies are extensively developed by researchers to monitor patients with chronic
diseases [7–9]. These technologies can be demonstrated through wearable armbands or patches
embedded in a patient’s body. These patches are designed according to the required operation.
A wireless body area network (WBAN) has also been developed, in which healthcare signals are
transmitted to the monitoring person. These wearable patches require a biosensor. Different biosensors,
such as an electrocardiogram (ECG) [7,10,11], electroencephalogram [12,13], blood pressure [14], and
oxygen saturation (SpO2) [15] sensors, are developed by researchers. However, the effective wireless
transmission of these bio-signals has recently attracted a considerable research interest. The bit-error
rate (BER) is highly significant in this regard, because the reliability issue must be addressed with
proper attention. In real-time remote monitoring of a patient’s condition (e.g., the heart rate), the data
transmission should be almost completely error-free.

Currently, radio-frequency (RF)-based technologies are extensively utilized to accomplish the
transmission of healthcare signals to the gateway. A wide range of devices with low-power
characteristics, such as Bluetooth low energy (BLE), ZigBee, and IPv6 over low-power wireless personal
area networks (6LoWPAN), are considered useful owing to their cost effectiveness and affordability to
the majority of people. Among these technologies, BLE is noteworthy for its low power demand and
robustness to obstacles [16,17]. After the introduction of BLE 4.0 by a special interest group in 2010,
a tremendous research interest has been observed in the area of WBAN, not only for its low-power
characteristics, but also for its simple protocol architecture [18]. However, the security of BLE remains
questionable [19,20]. For instance, some medical devices are very sensitive to electromagnetic radiation
originating from RF-based technologies, which eventually degrade the overall device performance [21].
Moreover, its effect on human health is considerable [22,23]. RF signals are also prone to inter-channel
interference and incur a substantial BER. Therefore, to ensure efficient, reliable, and secured healthcare
signal transmission, a congruent complementary to RF-based technologies is required.

Optical wireless communication has been actively researched over the last few years.
This communication type offers a completely unlicensed spectrum that can be utilized to manage
massive future data traffic [24]. Among the communication technologies that use optical spectra, optical
camera communication (OCC) is regarded to have significant potential [25]. Herein, a camera image
sensor is used to receive an optical signal sent from a modulated light-emitting diode (LED) [26–28].
LED flickering is captured in the form of binary data. Moreover, OCC is an excellent solution for both
long- and short-distance communications and has several useful features (e.g., high security, excellent
signal-to-interference-plus-noise ratio (SINR), and high stability with respect to communication
distance variation) [26].

OCC is exceptionally secure, as it is almost negligibly affected by the reflected component of the
light signal [26]. Unlike RF-based technologies, OCC is less affected by interference. The interfering
element can be extracted spatially from the image sensor, because each pixel acts as a photo detector.
The BER using OCC is almost zero when the communication distance is short [28–31]. The achievable
data rate of OCC is approximately 55 Mbps, which is also comparable to other low-power-based
technologies [25]. Although OCC mainly utilizes the visible light spectrum, it can also operate in
the infrared spectrum. Infrared wavelengths are invisible to the human eye and remove the LED
flickering that can be bothersome to the patients. In addition, LEDs can be modulated with very
low power. By virtue of these characteristics, OCC is a very promising solution in healthcare signal
transmission. LED can be embedded in wearable devices, and a camera is utilized to receive the
bio-signals. However, data transmission in OCC is instantly terminated if the signal transmission path
is blocked by any obstacle. In addition, LED must appear inside the angle-of-view (AOV) of a camera.
Furthermore, a direct line-of-sight (LOS) connection is required for successful communication.
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Considering both the utilities and limitations of OCC, we propose a novel hybrid architecture that
combines OCC and BLE for real-time healthcare signal transmission to a remote monitor. We consider
the transmission of ECG data that particularly focus on heart rate variability. The main contributions
of this work are listed below.

• A patch that is connected with an ECG sensor network is proposed. It is constructed using an
LED array and a BLE transmitter. The signal is modulated in the LED or BLE and sent to the
respective receiver. Static surveillance cameras are utilized to receive the LED data.

• We propose an algorithm that selects the appropriate network in a specific scenario. OCC has been
provided with initial priority in the selection mechanism. We employ both single and multiple
cameras to compute the selection probability. The AOV can be remarkably increased by using
multiple cameras.

• We apply fuzzy logic (FL) to select the most excellent camera. FL is an approach that uses variable
truth values ranging from 0 to 1 to generate a certain decision. Different parameters of the OCC
performance are investigated while applying FL. The center-of-gravity (COG) method is used to
perform defuzzification.

• The selection mechanism is initiated by using a network access request (NAR) generated from the
patch circuit. The NAR is produced on the basis of a patient’s current condition. Therefore, power
consumption can be minimized when the condition is well controlled.

• To confirm connection reliability, we propose a handover mechanism from OCC to BLE or vice
versa. The data are transmitted to a gateway for further transmission to a remote monitor.

The symbols used in our paper are listed in Table 1. The remainder of this paper is organized
as follows. Section 2 provides an overview of the current IoT technologies utilized in healthcare.
Section 3 introduces the patch circuit and the proposed hybrid infrastructure and presents the channel
characteristics of OCC and BLE. Section 4 represents the algorithms for generating a new NAR,
network selection for this NAR, and handover from OCC to BLE or vice versa. Section 5 evaluates
the performance of the developed selection mechanism in a simulation study. The paper concludes
with Section 6.

Table 1. List of symbols.

Symbols Definitions Symbols Definitions

Gα,β Channel gain γ Distance power gradient

gop Gain of the optical filter Lp
Path loss using Bluetooth low energy

(BLE)
ψin Angle of incidence Ptr Transmitted power using BLE
ψir Angle of irradiance λ Selection score

Ac

Area of the light-emitting diode
(LED)-projected image on an image

sensor
ζc Condition factor

ml Lambertian emission index ζc_1 and ζc_min Thresholds of the condition factor

dα,β
Euclidean distance between the

camera and LED σins Instantaneous heart rate

∂AOV Angle of view of camera σtar Target heart rate
ψ1/2 Half-intensity radiation angle τ Monitoring interval
ρ Pixel edge length Γcrit A threshold above Γmin

Al Effective area of LED pim × qim. Image sensor dimension
fo Focal length ϑ Distance between two cameras

η Signal-to-interference-plus-noise ratio mim

Minimum part of qim that must
appear inside the image sensor in

data decoding
ν Responsivity dd Vertical distance from LED to camera
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Table 1. Cont.

Symbols Definitions Symbols Definitions

Pt Transmitted optical power of LED doverlap
Overlapping distance between two

camera coverages

N Total number of neighboring light
sources χ

Threshold below which BLE outage
occurs

N0 Noise spectral density Nb
Total number of sources interfering

with the BLE spectrum

fr Frame rate IT
Power received from an interfering

source

Γ Total number of strips dmax
α,β

Maximum possible distance between
LED and camera

fon ON frequency of LED dcrit
α,β Maximum communication range

foff OFF frequency of LED φins Instantaneous data rate
tr Read-out time of a pixel φtar Target data rate

Γmin
Minimum number of generated strips

needed for data decoding ηins

Instantaneous
signal-to-interference-plus-noise ratio

(SINR)
Prb Power received by BLE receiver ηtar Target SINR

P0
Received power from a reference

distance by BLE receiver κ Bit error rate

dr
Communication distance between

BLE transmitter and receiver

2. Literature Overview

Extensive research has been conducted to determine an efficient data collection and transmission
scheme in healthcare over the last two decades. The developed monitoring systems implemented
various types of patches for healthcare signal collection. The systems are developed not only for
patients with chronic diseases, but also for those who are in critical conditions. Patients’ health
conditions that should be monitored in real-time have many types. For example, wearable body sensor
networks for blood pressure monitoring were proposed in [32]. A wearable wireless ECG monitoring
system was developed in [33], particularly focusing on low power and cost effectiveness. Healthcare
systems that monitor diabetic patients were developed in [34,35] by using a smartphone. In the
literature [36], a remote monitoring system was proposed to supervise patients developing Alzheimer’s
disease by tracking their movement patterns and locations. The same task was implemented in [37]
using ZigBee. A wearable monitoring system was also developed to monitor sleep quality by
investigating the respiration rate of patients [38]. The types of wearable technologies and monitoring
systems for patients with Parkinson’s disease are surveyed in [39].

Patch devices are embedded in patients’ bodies. Thus, it must be ensured that a patient’s natural
movements are not troubled by the integration of the device. In addition, the healthcare signals must
be transmitted at low power with no or minimal errors. A wide range of low-power devices are used
by researchers to transmit healthcare information into another processing unit. Bluetooth was the most
widely used owing to its wide availability, robustness to obstacles, and simple protocol structure [16,17].
Bluetooth has now been replaced by BLE, a recent development with low power consumption
and a moderate communication range. Meanwhile, additional RF-based technologies are being
developed and utilized in remote health monitoring. For example, a survey was conducted focusing on
6LowPAN-based wireless monitoring [40]. Mobility management has had the priority in the literature.
A discussion on mobility support using 6LoWPAN is also provided in the literature [41,42]. ZigBee-
and ANT-based remote monitoring systems have also been reported [11,33,43]. The collected signals
can be processed using a smartphone or personal computer (PC). Table 2 presents a summary of the
existing health monitoring systems.

It is worth noting here that the aforementioned systems can suffer from a considerable amount of
BER due to interference generated from neighboring devices [31,44]. In addition, the smartphone-based
management systems are not very influential in cases where the monitoring person resides in another
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room or far from the patient. Most studies do not focus on intensive-care scenarios. This type of
environment has life or death implications when the connection reliability is questioned. It can be seen
from Table 2 that most of the monitoring systems particularly focus on devices with low-power
consumption. However, new methods are yet to be proposed to increase reliability. A system
focusing on low power, low cost, high security, and enhanced reliability needs to be developed
for intensive-care environments.

Table 2. Summary of health monitoring systems developed based on the literature.

Literature Data Transmission
Technology

Monitoring Health
Condition

Data Collection and
Processing System Aim of the Work

[7] BLE Electrocardiogram (ECG) Smartphone Development of a reliable, robust,
and low-power system

[11] ANT ECG Personal computer
(PC)-based management

Designing a low-power, small-sized,
and effective monitoring system

[33] ZigBee ECG PC-based management
Designing a system with long

battery life and high-quality signal
reception

[35]
IPv6 over low-power
wireless personal area
networks (6LoWPAN)

Glucose level PC-based management Utilizing Mobile-Internet of Things
(m-IoT)for diabetes management

[36] Bluetooth Detection of Alzheimer’s
disease

Bluetooth-enabled
monitoring device

Detecting early Alzheimer’s and
augmenting life expectancy

[38] BLE Sleep Smartphone Developing a reliable magnetometer
sensor with low power

[43] ZigBee Blood pressure PC-based management Easy and clear examination of
results

[45] Bluetooth Blood pressure Android smartphone Accuracy enhancement over the
existing technologies

[46] 3G/WiFi enabled
6LoWPAN ECG

PC-based management
with 6LoWPAN enable

edge router

Providing a flexible technological
solution for real-time remote

monitoring

[47]
Bluetooth and Global

System for Mobile
Communications (GSM)

ECG Mobile phone Continuous monitoring and data
acquisition from anywhere

[48] Bluetooth ECG Android smartphone

Developing a non-contact electrode
circuit with low power

consumption and good signal
quality

[49] 2.4 GHz radio and a
proprietary protocol

Electromyography (EMG)
and oxygen saturation

(SpO2)
PC or smartphone

Development of a low-power
sticking patch with reusable battery

and adhesive ingredients

[50] Bluetooth Detection of toxic volatile
organic compounds Cell phone

Designing a system with a novel
tuning fork sensor with high

sensitivity and selectivity

[51] Bluetooth Oxygen concentration in
breath

Android smartphone or
tablet

Design and characterization of a
fully wearable system applicable

everywhere

3. System Overview

In our work, we assume an indoor scenario, wherein a patient is confined in an intensive or
superficial care unit. An authorized person is remotely monitoring the patient’s health condition.
We consider the transmission of ECG data, which particularly focus on heart rate variability.
The proposed patch is connected to the ECG data sensing network. The signal is modulated in the LED
or BLE and sent to the respective receiver. Static surveillance cameras are utilized to receive the LED data.
Eventually, the data are transmitted to the authorized monitoring person using an eHealth gateway.

3.1. Patch Connectivity

Our proposed patch circuit is composed of an LED array, LED driving circuitry, and BLE
transmitter chip. The patch is embedded in the patient’s arm. Because a direct LOS communication
link must be developed between the patch and camera, the patch should be mounted to a completely
uncovered part of the body. Our proposed patch circuitry is suitable for monitoring sleeping or
unconscious patients. However, the patient may move for some exercise or when he or she goes
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to a restroom. In these cases, the LED can appear outside the AOV of a camera, which triggers the
handover necessity to BLE.

The ECG signals can be collected from the body as binary sequences [52]. The considered sensing
procedure is similar to those in the literature [7,11]. The ECG signal acquisition is facilitated by
using several electrodes. The bio-signals are collected by using a capacitance generated from the
electrodes. Then, the signal passes through the instrumentation amplifier. This amplifier reduces
the unwanted noise generated in the circuit. In addition, the acquired bio-signal can be naturally
weak owing to the regular movement of patients, which is another reason for using this amplifier.
In addition, high- and low-pass filters are exploited to pass the signals within a targeted frequency,
and a bandstop filter is used to attenuate unwanted frequencies. Thereafter, the signals pass through
the analog-to-digital converter (ADC), which presents the digitalized signals. Figure 1 depicts the
overall data acquisition procedure.
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Figure 1. Data acquisition procedure from the patch. OCC: optical camera communication. Figure 1. Data acquisition procedure from the patch. OCC: optical camera communication.

The ADC is connected with the BLE chip and LED driver circuit. A NAR is generated based on
the patient’s condition. The NAR determines whether the bio-signal will be mounted to the BLE chip
or the LED driver. At the LED side, the bio-signal is modulated by a small microcontroller circuit.
The LED array switching is controlled by a metal-oxide-semiconductor field-effect transistor.

3.2. Proposed Hybrid Framework

The proposed hybrid system can be implemented at home, the clinic, the ambulance, or other
places. The system operates wherever a patient must be remotely monitored. The number of
surveillance cameras in a large-sized room can be high. Multiple patients can be monitored inside
the room, thus also confirming the convenience of using multiple cameras. Figure 2 illustrates the
monitoring system topology. The camera or BLE receiver collects the data sent from the patch.
These collected data are processed to retrieve the original signal, then passed to an eHealth gateway
for remote transmission. Several gateway architectures have been proposed [53–55]. The data are
stored in the eHealth server, which can be accessed from the eHealth database thereafter. Finally, they
are transmitted to the remote monitor.

The cameras are assumed to operate by the rolling shutter technique. These rolling-shutter-based
cameras are the most popular owing to their worldwide availability and reasonable cost. When a
NAR is generated in the patch circuit, the data are transmitted via OCC or BLE (the OCC network is
accessed for the initial data transmission). When there is link blockage and high outage probability, the
access point for a new NAR switches to BLE. The initial selection or access handover to BLE depends
on the position and mobility of the patient.



Sensors 2019, 19, 1208 7 of 23

Sensors 2019, 19, x FOR PEER REVIEW 7 of 24 

 

The ADC is connected with the BLE chip and LED driver circuit. A NAR is generated based on 
the patient’s condition. The NAR determines whether the bio-signal will be mounted to the BLE chip 
or the LED driver. At the LED side, the bio-signal is modulated by a small microcontroller circuit. 
The LED array switching is controlled by a metal-oxide-semiconductor field-effect transistor. 

3.2. Proposed Hybrid Framework 

The proposed hybrid system can be implemented at home, the clinic, the ambulance, or other 
places. The system operates wherever a patient must be remotely monitored. The number of 
surveillance cameras in a large-sized room can be high. Multiple patients can be monitored inside 
the room, thus also confirming the convenience of using multiple cameras. Figure 2 illustrates the 
monitoring system topology. The camera or BLE receiver collects the data sent from the patch. These 
collected data are processed to retrieve the original signal, then passed to an eHealth gateway for 
remote transmission. Several gateway architectures have been proposed [53–55]. The data are stored 
in the eHealth server, which can be accessed from the eHealth database thereafter. Finally, they are 
transmitted to the remote monitor. 

Wearable Patch

Communication 
using BLE

Communication 
using OCC

Camera BLE Module

Real-time 
monitoring

Physician

Gateway Medical server Database

 

Figure 2. Topology of the proposed health monitoring system. 

The cameras are assumed to operate by the rolling shutter technique. These 
rolling-shutter-based cameras are the most popular owing to their worldwide availability and 
reasonable cost. When a NAR is generated in the patch circuit, the data are transmitted via OCC or 
BLE (the OCC network is accessed for the initial data transmission). When there is link blockage and 
high outage probability, the access point for a new NAR switches to BLE. The initial selection or 
access handover to BLE depends on the position and mobility of the patient. 

3.3. OCC Channel Model and Data Retrieval Technique 

The non-line-of-sight (NLOS) component of the optical signal minimally affects the OCC. The 
effect is almost negligible when the LED is very small. The data reception can be modeled by the 
Lambertian radiant intensity [26,56]. The LOS channel model of OCC is depicted in Figure 3. The 
LED light source and camera are placed in α  and ,β  respectively. The DC LOS channel gain can 
be represented as follows: 

Figure 2. Topology of the proposed health monitoring system.

3.3. OCC Channel Model and Data Retrieval Technique

The non-line-of-sight (NLOS) component of the optical signal minimally affects the OCC.
The effect is almost negligible when the LED is very small. The data reception can be modeled
by the Lambertian radiant intensity [26,56]. The LOS channel model of OCC is depicted in Figure 3.
The LED light source and camera are placed in α and β, respectively. The DC LOS channel gain can be
represented as follows:

Gα,β =

 gop cos(ψin) cosml(ψir)
Ac(ml+1)

2πd2
α,β

, for ψin < ∂AOV

0 , for ψin ≥ ∂AOV

(1)

where dα,β denotes the Euclidean distance between α and β, ψir indicates the angle of irradiance of
the LED, ml signifies the Lambertian emission index (which is a function of the half-intensity radiation
angle ψ1/2 and formulated as ml = − logcosψ1/2

(2)), gop denotes the gain of the optical filter, ψin is
the angle of incidence, and Ac is the area of a projected image on the image sensor. If the pixel edge
length is ρ, Ac can be expressed as

Ac =
Alf

2
0

ρ2d2
α,β

(2)

where Al denotes the entire area of the LED that is active to send the optical signals, fo is the focal
length of the camera, and ∂AOV indicates the AOV of the camera.

OCC is less affected by interferences generated from neighboring light sources owing to the
nature of the image sensor. The interfering elements can be spatially separated by applying region of
interest (ROI) techniques. Thus, OCC offers excellent SINR, which is represented as follows:

η(dα,β) =
(νPtGα,β)

2

N
∑

i=0

(
νPtGj,β

)2
+ N0fr

(3)

where Pt denotes the transmitted optical power, ν is the optical-to-electrical conversion efficiency, N0

is the noise spectral density, and fr is the camera sampling rate. In addition, N is the total number of
neighboring light sources and Gj,β is the dc gain of a specific interfering light source.
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The LED projected image in the camera is analyzed frame by frame to retrieve the actual data.
When the LED is activated, it can be detected by the camera. Computer vision techniques have also
been developed recently for object detection [57,58]. We employ a convolutional neural network
(CNN) to detect the ROI using the camera. First, the camera captures a series of image frames. Then, a
pre-trained CNN is applied to detect the actual ROI to reduce the complexity. Considering that the
size of the LED and the transmitted optical signal power are very small, applying CNN is effective and
achieves less detection error. The image frames are examined by converting the pixels into grayscale.
Subsequently, a certain threshold is set, and the images are binarized, resulting in the appearance
of bright pixels that only contain the LED image. Because we use cameras with rolling shutters, the
LED image will appear as dark and bright strips because of the “on” and “off” states of the LED.
The width of the strips is the function of the LED modulation frequency and the read-out architecture
of the camera. By analyzing the width and the number of strips, the data are extracted as binary bits.
The total number of strips projected inside the image sensor can be represented as follows [26]:

Γ =
Alf

2
o(fon + foff)tr

ρ2d2
α,β

(4)

where fo is the focal length of the camera, tr denotes the read-out time of a pixel of the camera, ρ is the
edge length of a pixel, and fon and foff denote the ON and OFF frequencies of the LED, respectively.

The appearance of the full LED to appear inside the image sensor is not necessary for successful
communication. Particularly, the strips have a minimum number, denoted by Γmin, that should be
formed to retrieve the transmitted bits. Γmin is formulated as follows:

Γmin = argmin
dα,β

(Γ) (5)

3.4. BLE Path Loss Model

The signal power at the BLE receiver is given by [59]

Prb = P0dr
−υ (6)

where P0 is the received power at a reference distance from the transmitter, dr is the communication
distance, and γ is called the distance power gradient.
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The path loss for BLE is expressed as [59]

Lp = 10 log(Ptr)− 10 log(P0) + 10γ log(dr) (7)

where Ptr signifies the transmitted power.

4. Proposed Methodologies

4.1. FL Employment

As discussed previously, an excellent BER is more important than the data rate in eHealth
applications. The network’s capacity is almost negligible, because the monitoring system does not
require a similar data rate to voice or video calling. However, the outage probability, which is a function
of the achievable SINR, should be given significant attention. The link blockage probability for OCC is
also important for reliable communication. Based on these issues, the major performance factors for
OCC are regarded as the average SINR, instantaneous received power, and communication distance.
These features should be inspected and analyzed before finalizing OCC as the data transmission system.
However, setting a certain threshold value of the parameters that should be considered while selecting
OCC is particularly inconvenient. Therefore, we envisage FL to assist in the selection mechanism.

FL is a computing approach that utilizes degrees of truth values ranging from 0 to 1 [60,61] rather
than using only “true or false” when making decisions. We employed the Mamdani fuzzy inference
system to assess the selection process of OCC. Three steps are considered in FL, namely fuzzification
of performance parameters, assessment of different “if/then” rules, and defuzzification. Fuzzification
is a process that transforms crisp inputs into fuzzy output quantities. The inputs are fuzzified by using
numerous fuzzifiers, also referred to as membership functions (MFs) [62]. These functions are utilized
to represent a fuzzy set graphically. MFs have different types. We used MFs with different numbers of
breakpoints for various inputs.

Four input parameters are considered in the fuzzification process. We chose these parameters
based on their effects on the OCC performance. The fuzzification process of SINR is illustrated in
Figure 4. Four membership grades are chosen, such as low, average, high, and excellent, ranging from
−15 to 45 dB. The selected values of the breakpoints a, b, c, and d are −15, 0, 15, and 30 dB, respectively.
Among the parameters, the fourth parameter that we considered is the number of strips projected
inside the image sensor. The significance of this parameter is indisputable when considering OCC for
data transmission. As discussed in Section 3, below Γmin, the data bits cannot be extracted, although
the LED image is projected in the image sensor. We performed several experiments on the training
data and eventually chose the MFs. The grade breakpoints of the MFs were selected based on the
variations of the parameters with distance prior to outage. Eventually, we selected four triangular MFs
for the fuzzification of the SINR and three each for the other input parameters.

The fuzzification process is followed by the assignment of “if/then” rules. The rules are generated
on the basis of the considered indoor scenario. The assumption of a patient’s movement was apparent
while establishing the rules, because the receiving camera or BLE receiver is a static object. However,
mobile robots can be utilized for remote monitoring, which becomes the only case based on which
the rules can be employed. We performed the evaluation of the rules by several “anding” operations.
The output is denoted by five triangular MFs to obtain a precise result. Finally, the defuzzification step
generates a score based on the evaluation rules, which is represented by a crisp value. The inputs can be
defuzzified by various methods, such as centroid, bisector, smallest maximum, and largest maximum.
We adapted the centroid method owing to its superiority among the other methods. The obtained
score, also defined as the selection score (SS), is represented by the following equation.

λ =

∫
uµ(u)du∫
µ(u)du

, [λ ∈ R : 0 ≤ λ ≤ 1] (8)

where u represents sample input, µ(u) is the MF, and R is the universal set of real numbers.
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Based on the values of λ, a particular camera is selected for communication. However, as discussed
previously, if the number of strips projected inside the image sensor is below Γmin, the communication
is instantly terminated. Therefore, scores will not be considered in this circumstance.
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4.2. New NAR Generation

A new NAR initiation strictly depends on the patient’s condition. Remotely monitoring a patient
is energy inefficient, even when the patient’s health condition is completely normal and has almost
no retrogradation possibility. The normal heart rate of individuals in different ages has different
ranges [63,64]. Based on the heart rate variability, an instantaneous condition factor is introduced,
which will be utilized to initiate a new NAR. Algorithm 1 describes the process of initiating a new
NAR. This condition factor is a variable denoted by ζc ranging from 0 to 1. It will determine the
scheduling process of the new NAR. The normal heart condition will be given a value of ζc equal to
1. Two threshold values of ζc, namely ζc_1 and ζc_min, which denote the first and second thresholds,
respectively, are evaluated. Particularly, these values are naturally variable and strictly depend on the
patient’s heart condition. In most remote monitoring cases, a patient is specified with an expected
heart rate by the monitoring person. A heart rate close to the optimal extent represents the value of ζc

close to unity. When the rate decreases or increases from the optimal value, the value of ζc decreases.

Algorithm 1: Initialization of the new network access request (NAR).

1. NARGeneration ()
2. Begin
3. set time = 0;
4. if ζc > ζc_1 then
5. put the system in idle mode;
6. else if ζc_min < ζc > ζc_1 then
7. Initiate new NAR;
8. Activate patch;
9. Set interval = τ seconds
10. else
11. Initiate new NAR;
12. Activate patch;
13. Set τ = 0;
14. end if
15. End

As ζc decreases, it eventually reaches its first threshold. As long as it does not reach ζc_1, the
system will be retained in idle mode, in which the patch is always deactivated. Consequently, the
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overall power consumption will be reduced. Note that the heart condition of the patient remains
completely under control below ζc_1. If the value of ζc is lower than ζc_1, then the patient will be
continuously monitored with a regular interval, τ. The interval depends on the closeness of ζc to the
second threshold. This interval will be reduced if the closeness is high.

If ζc falls behind the second threshold ζc_min, then the patient will be monitored with no interval.
The data will be continuously transmitted as long as ζc is higher than ζc_min. The patient is less likely
to move when the instantaneous condition factor is very low, so continuous monitoring of the patient
is convenient. If the instantaneous and target heart rates are respectively σins and σtar, then ζc is
calculated as follows:

ζc =


σins
σtar

,σins < σtar(
2− σins

σtar

)
,σins > σtar

0,
[
(σins > 2σtar) ‖

(
σavg > 2σtar

)] . (9)

4.3. Network Selection for the New NAR

After generating a new NAR, the patch circuit is activated, and the digitalized signal is modulated.
The signal is transmitted by using LED or BLE. The number of surveillance cameras can be more
than one but particularly depends on the room size. Algorithm 2 summarizes the network-selection
mechanism. The selection probability of OCC depends on the distance between the patient and camera.
However, the patient should appear inside the camera AOV. Multiple cameras will increase the OCC
coverage. The number of cameras is denoted by ξ.

Several factors are investigated before permitting data transmission by OCC. The patch LED will
be ready for data transmission only when it is detected by a camera. However, when the number
of strips projected in the image sensor is less than Γmin, the camera cannot extract data even if the
LED is inside the AOV. This problem can occur in two circumstances. First, the Euclidean distance
is considerably high between the camera and the patient. Second, the projected image appears in a
corner of the image sensor, and the camera confronts the projection of a very small part of the LED.
In both cases, Γ can be lower than Γmin. Hence, the communication can be instantly terminated in this
condition. Therefore, a critical threshold of Γ is significantly required to confirm the reliability of the
OCC scheme. The threshold is denoted by Γcrit, whose value is only above Γmin. The value of Γcrit

varies for the cameras with different characteristics.
Initially, the system checks the value of ξ. When ξ = 1, the camera is selected as the transmission

network. However, for the high values of ξ, the SS of each camera is investigated. Then, the camera
with the highest SS is selected. When a camera is selected for communication, its Γ is immediately
verified whether it is lower than Γcrit or not. If yes, BLE will be selected for communication.

To theoretically represent the selection probability of each network, we consider a room with a
dimension of aroom × hroom, as illustrated in Figure 5. The image sensor dimension of each camera is
pim× qim. For simplicity, we assume that each camera is separated with equal distance from each other.
The distance is denoted by ϑ. The selection probability of OCC is expressed in the following equation:

Sp_OCC =

ξ

∑
i=1

[
1
2

pimqim

(
dd
fo

)2
+ ddpimϑ−ψ

]
+

ddpim
fo

(
qimdd

2fo
− ϑ
)

aroomhroom
. (10)

Here,

ψ =


pimmimdd

2f2
o

, for doverlap ≥
mim

2fo
pimmimdd

f2
o

, for doverlap <
mim

2fo

(11)

where dd denotes the vertical distance from the LED to the camera and mim is the minimum part of
qim in which the minimum part of the LED must appear to extract the data bits sent from the LED.
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Algorithm 2: Access point selection for new NAR.

1. Selection ()
2. Begin
3. if new NAR is generated then
4. Collect data from body sensor
5. Activate patch;
6. if ξ = 1 then
7. Accept Camera (1);
8. Call threshold;
9. else if ξ > 1 then
10. for j = 2; j < ξ

11. if λ(1) > λ(j) then
12. Accept Camera (1);
13. Set λ(j) = λ(1);
14. Set j = j + 1;
15. else
16. Accept Camera (j);
17. Set λ(j) = λ(1);
18. Set j = j + 1;
19. end if
20. end for
21. Call threshold (j);
22. else
23. Accept BLE;
24. end if
25. else
26. Keep system in idle mode;
27. end if
28. End
29. threshold (x)
30. Begin
31. if Γ > Γcrit then
32. Accept Camera (x);
33. else
34. Accept BLE;
35. end if
36. End

The minimum LED part depends on the size of the LED and the distance between the LED and
image sensor. The minimum area of the LED that should appear inside the image sensor for successful
data decoding can be measured using the following equation [26]:

Am =



2
rl∫

rl−rm

√
r2

l − x2dx, rl > rm

1
2

Al, rm = rl

2
rm∫

rm−rl

√
r2

l − x2dx, rm > rl

Al, rm = 2rl

(12)



Sensors 2019, 19, 1208 13 of 23

where rl represents the radius of the LED and rm denotes the minimum portion of the LED that must
appear inside the image sensor.

The quantity mim ascertains the maximum communication range of the OCC, and doverlap is the
width of the overlapped coverages of two cameras (see Figure 5). The width is formulated as

doverlap =
1

2fo
(qimdd − ϑfo). (13)

The selection probability of BLE is then simply calculated as

Sp_BLE = 1− Sp_OCC. (14)
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4.4. Network-Switching Policy

As mentioned previously, OCC is a strictly directional LOS technology. If the LOS path of the
light signal is blocked, the communication is terminated. Thus, efficient handover between OCC
and BLE is required. Network switching is unnecessary in static user scenarios (e.g., patients who
are unconscious and/or being transported in ambulances) but necessary when the patient is mobile,
because the OCC performance remarkably depends on the LOS Euclidean distance between the LED
and camera. The BLE performance is also influenced by user mobility. Efficient handover is thus
required for reliable data transmission.

dα,β varies with the patient’s movement. The signal-blockage probability should be considered
as it hampers the OCC performance. In addition, when changing the dα,β, the SS changes as well,
consequently triggering the possibilities for the LED to be projected inside the image sensor with a
number of strips below Γcrit. The network-switching procedure from OCC to BLE is summarized
in Algorithm 3. When dα,β is changed, Γ of the current camera is immediately compared with the
threshold. The communication with the current camera is continued if Γ is above Γcrit. Otherwise, its λ

is compared with the other cameras that simultaneously detect the LED. The camera with the highest
λ will be acceptable for communication. However, if no camera can meet the Γcrit requirement, the
network will be switched to BLE.
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Algorithm 3: Network-switching algorithm from OCC to BLE.

1. O2B_Handover ()
2. Initialization: Communication with camera is in progress;
3. Begin
4. if dα,β is changed then
5. if Γ < Γcrit then
6. Initiation of neighboring cameras;
7. if ξ > 1 then
8. for j = 1; j < ξ

9. if λ(1) > λ(j) then
10. Accept BLE;
11. Set λ(j) = λ(1);
12. Set j = j + 1;
13. else if Γ(j) > Γcrit

14. Accept Camera (j);
15. Set λ(j) = λ(1);
16. Set j = j + 1;
17. else
18. Accept BLE;
19. Set j = j + 1;
20. end if
21. end for
22. else
23. Accept BLE;
24. end if
25. else
26. Continue communication with Camera (1);
27. end if
28. else
29. Continue communication with Camera (1);
30. end if
31. End

When the BLE transmitter is activated in the patch circuit, the room cameras are reinitiated at the
next change of dα,β. If any camera detects the LED, its Γ is immediately compared with Γcrit. If the
compared Γ is below Γcrit, the BLE transmission continues; otherwise, it is replaced by the camera
monitoring. If the LED is detected by more than one camera, the λ values of all the in-range cameras
are compared, and the network communication switches to the camera with the highest λ. Algorithm
4 summarizes the network switching strategy from BLE to OCC.
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Algorithm 4: Network switching algorithm BLE to OCC.

1. B2O_Handover ()
2. Initialization: Communication with BLE is in progress;
3. if dα,β is changed then
4. Initiation of room cameras;
5. for j = 1, j < ξ

6. if Camera (j) detect LED then
7. if Γ(j) > Γcrit then
8. Select Camera (j);
9. if λ(j) > λ(j + 1) then
10. Accept Camera (j);
11. Set j = j + 1;
12. else
13. Accept Camera (j+1);
14. Set j = j + 1;
15. end if
16. else
17. Set j = j + 1;
18. end if
19. Set j = j + 1;
20. else
21. Continue communication using BLE;
22. end if
23. end for
24. else
25. Continue communication using BLE;
26. end if
27. End

4.5. System Reliability

The reliability of a healthcare data transmission is tremendously significant. Any error in reception
can lead to serious issues with patient health. To assess the reliability of the transmission system,
several parameters are evaluated in this section, such as outage probability, BER, and quality of
service (QoS).

Interference from neighboring RF cells is a main cause of outage in BLE. Current indoor/outdoor
infrastructures are installed with abundant RF devices using the 2.4 GHz band, generating a
considerable amount of interference. Path loss is another significant contributor to the overall outage
probability. BLE outage can be considered to occur below a certain SINR threshold, denoted by χ.
The BLE outage probability is calculated as [65]:

OP_BLE = 1− exp

[
− χ

Prb

Nb

∑
k=1

IT(k)

]
(15)

where Nb denotes the total number of interfering sources with the BLE spectrum, k signifies a specific
source, and IT(k) represents the total power received by the BLE for the specific interfering source.

The interference of neighboring optical sources in OCC is also non-negligible. The interfering
elements can be spatially separated from the image pixels, as each pixel acts as a photo detector.
However, outage occurs when the LED array is beyond the AOV of the camera. In the scenario of
Section 4, the outage probability can be expressed as



Sensors 2019, 19, 1208 16 of 23

OP_OCC =

η
(
dmax
α,β
)[

aroomhroom − ξpimqim

(
dd
fo

)2
+

2ddpim(ξ− 1)(qimdd − ϑfo)

4f2
o

+ ξψ

]
+ aroomhroomη

(
dmax
α,β − dcrit

α,β

)
aroomhroomη

(
dmax
α,β
) (16)

where dmax
α,β and dcrit

α,β denote the maximum possible distance between the LED and a camera and the
maximum communication range when using that camera, respectively.

The QoS of the healthcare data transmission system significantly depends on how much error-free
data is received. Achieving an excellent SINR is indispensable in this regard. Although the data rate
is not a highly considerable parameter, a minimum data rate must be ensured in the communication
system. We theoretically defined the QoS for the hybrid system as follows:

δ =



(2− 3κ)φinsηins
2φtarηtar

, {φins < φtar}&{ηins < ηtar}
(2− 3κ)ηins

2ηtar
, {φins ≥ φtar}&{ηins < ηtar}

(2− 3κ)φins
2φtar

, {φins < φtar}&{ηins ≥ ηtar}

(17)

where φins and φtar denote the instantaneous and target data rate, ηins and ηtar are the instantaneous
and target SINR, and κ represents the BER achieved in reconstructing after reception.

5. Performance Evaluation

To simulate our proposed system, we considered a room with dimensions of 5 m× 4 m× 3 m.
Particularly, we employed static surveillance cameras rather than any mobile robot. Table 3 lists the
unchanged parameters used in performing the simulations. Note here that any change to luminous
parameters will affect the simulation results. All the simulations were executed in MATLAB.

Table 3. Unchanged system parameters for the simulation.

OCC parameters

Effective LED area, Al 7 cm2

Half-intensity radiation angle, Ψ1/2 60◦

Transmit power, Pt 15 dbm
Gain of optical filter, gop 1.0
Image sensor aspect ratio 3:2 aspect ratio

Pixel edge length, ρ 1.5 µm
Frame rate, fr 30 fps

Focal length, fo 36 mm (effective)
Responsivity, ν 0.51

BLE parameters

Frequency band 2.4 GHz
Modulation index 0.5

Channel bandwidth 2 MHz
Transmit power, Ptr 20 dBm

Indoor scenario

Room dimension 5 m× 4 m× 3 m
Camera height from ground 1.5 m

The network selection mechanism for a new NAR particularly depends on the OCC performance.
When an LED array is detected by a camera using CNN, λ of the camera is immediately investigated
to evaluate the possibility of selecting a camera. Four performance parameters, namely instantaneous
received power, number of strips projected in the image sensor, SINR, and LOS communication range,
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were analyzed to calculate the value of λ. We implemented more than 100 rules to obtain the precise
score. The COG method was utilized to calculate λ. Figure 6 depicts the variation of λ in each input
parameter with increasing distance using the COG method. To evaluate λ, we considered triangular
MFs for all the inputs. The MFs were selected on the basis of a maximum communication range of 4 m.
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Noticeably, when increasing the number of cameras, ∂AOV will be increased to a great extent.
Therefore, the probability for the LED to appear inside the camera coverage will also increase.
Concurrently, the selection probability for BLE will be reduced. In addition, when coverage of a
camera overlaps with another camera, Sp_OCC depends on the value of doverlap. Evidently, the cameras
can cover a large area when the value of doverlap is small, hence increasing the selection probability.
Figure 7 depicts the variation in Sp_OCC for a new NAR considering different values of ∂AOV and ξ.
In this simulation, doverlap and dα,β were fixed at 50 cm and 3 m, respectively. As shown in Figure 7,
Sp_OCC is significantly improved with higher values of ∂AOV. On the other hand, the value of Sp_BLE

is decreased concomitantly. The selection probability also depends on the outage probability of each
system. The outage probability for the hybrid system is illustrated in Figure 8. The outage probability
of OCC is comparatively high. Several reasons can be addressed for the high outage probability
of OCC. First, as most of the current commercial cameras have limited AOV, the overall coverage
area is small. Second, data communication requires a LOS connection between the camera and the
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LED. Third, the optical signal in OCC is almost unaffected by the NLOS component. In Figure 8, we
considered both the LOS and NLOS scenarios. However, when monitoring a patient in intensive care,
the outage probability of OCC is low because the patient is static and the NLOS caused by the patient’s
movement is non-existent. In addition, the outage probability can be minimized by increasing the
number of cameras. As is evident in Figure 8, integrating OCC with BLE considerably reduces the
outage probability.
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Network switching becomes important when monitoring mobile patients in these scenarios.
When patients move, the changing dα,β alters the OCC performance (as discussed above), and hence
the possibility of outage in OCC. When an outage occurs, the communication must switch to BLE.
Figure 9 plots the OCC-to-BLE handover probabilities in the hybrid system as functions of dα,β for
varying ∂AOV and ξ in the scenario of Section 4. The outage probability significantly decreased with
increasing ∂AOV and ξ and increased with increasing doverlap. Expressed another way, decreasing the
∂AOV and ξ increases the handover probability from BLE to OCC.
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As discussed earlier, reducing the error in the healthcare information is more important than
improving the data transmission rate. Therefore, an excellent SINR is imperative. When the system
meets the data rate requirement, its QoS is dominated by the error amount in the received information.
In the performance evaluation, we set the target data rate and SINR and estimated the QoS values of
the OCC, BLE, and hybrid systems. The cumulative QoS distribution functions in the three systems are
compared in Figure 10. The cumulative distribution function (CDF) was calculated over the distance
range 0.5–4 m. The CDF of the QoS increased with increasing difference between φtar and φins and
with increasing distance between ηins and ηtar. As indicated in Figure 10, the QoS was higher in the
proposed scheme than in OCC or BLE. In all the simulations, the spectral density of the OCC noise
was assumed to be constant and equal to 10−21.
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The rapid development of IoT technologies has led to a new dimension in the healthcare field.
Remote monitoring of patients’ health conditions using IoT is a promising approach that may result
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in various convenient solutions to nursing assistants. In this paper, we proposed a wearable ECG
monitoring system based on a hybrid OCC/BLE architecture. A patch circuit was suggested where
an LED array and BLE transmitter chip are integrated. The patch collects the ECG data from the
sensing network and transmits it through a hybrid infrastructure. Depending on the patient’s health
condition, a NAR is generated in the patch circuit, and the appropriate network (OCC or BLE) is
decided by a network-selection algorithm. The selection mechanism in multiple-camera scenarios is
assisted by fuzzy logic. To ensure the safety of both mobile and stationary patients, network-handover
mechanisms were proposed. The healthcare information is transmitted to the gateway, where it is
stored in an eHealth database before being sent to a remote monitor. The network selection and outage
probabilities of each network were mathematically formulated. As confirmed in simulation studies,
the hybrid network significantly improved the performance of the data transmission system. However,
the performance was evaluated only in an idealized indoor scenario. When multiple patients in a large
room are monitored by the same camera, a multiple-input multiple-output setup might be required.
In future research, we will test the optimality of the proposed hybrid system over other optical-RF
hybrid infrastructures. Other implementation complexities, such as the size and weight of the patch,
will also be considered in our future work.
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