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Abstract: In this paper, we propose a novel machine learning (ML) based link-to-system
(L2S) mapping technique for inter-connecting a link-level simulator (LLS) and a system-level
simulator (SLS). For validating the proposed technique, we utilized 5G K-Simulator, which was
developed through a collaborative research project in Republic of Korea and includes LLS, SLS,
and network-level simulator (NS). We first describe a general procedure of the L2S mapping
methodology for 5G new radio (NR) systems, and then, we explain the proposed ML-based
exponential effective signal-to-noise ratio (SNR) mapping (EESM) method with a deep neural
network (DNN) regression algorithm. We compared the proposed ML-based EESM method with
the conventional L2S mapping method. Through extensive simulation results, we show that the
proposed ML-based L2S mapping technique yielded better prediction accuracy in regards to block
error rate (BLER) while reducing the processing time.

Keywords: link-to-system mapping; exponential effective SNR mapping (EESM); physical-layer
abstraction; system-level simulation; machine learning; deep neural network (DNN)

1. Introduction

With technological advance of 4G LTE/LTE-A (Long Term Evolution-Advanced) cellular
communications, the number of wireless smart devices has increased explosively. Wireless smart devices
have being applied in various services such as IoT (Internet of Things) communications, autonomous
vehicles communication, augmented reality service, etc. [1]. In the near future, a wide range of service
requirements will be demanded due to advent of many use cases [2]. However, 4G LTE/LTE-A systems
have several limitations to satisfy requirements of various services.

As the next version of 4G LTE/LTE-A, 3GPP Release 15 (Rel-15) has specified 5G new radio
access (NR) and core technologies from December 2017 and it is known as 5G NR. 5G NR access
technology is evolving to support a variety of service requirements and it contains enhanced mobile
broadband (eMBB), massive machine type communications (mMTC), and ultra reliable low latency
communications services (URLLC) as 5G representative services [3]. To support low latency service,
5G NR system has embraced new flexible frame structures different from 4G LTE/LTE-A system with
a fixed sub-carrier interval. Moreover, to support high data rate and high traffic service for eMBB
use cases, 5G NR systems are expanding to high frequency bands above 6 GHz. Accordingly, 5G NR
system will be mainly operated on high frequency band with a wide bandwidth [4].

In a wide band channel, a transport block (TB) is allocated into N narrow band channels
and each narrow band channel goes through a different fading condition on its own sub-carrier.
Therefore, user equipment (UE) experiences different post-processing signal to interference plus noise
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ratio (SINR) over every sub-carrier. In a traditional narrow band channel, block error rate (BLER)
is estimated from a curve of mean SINR and mean BER. On the contrary, in the wide band channel,
different N post-processing SINRs are mapped to the averaged post-processing SINR. Since the concept
of the averaged post-processing SINR is defined as an effective SNR, this many-to-one mapping is
called an effective SNR mapping (ESM) technique. Besides, ESM technique is used for the purpose
of physical layer abstraction when evaluating a system-level simulator (SLS). A simplified link-level
simulator (LLS) helps SLS reduce complexity of computation and it can help improve a simulator
performance. Since the concept of a physical level abstraction for SLS is reflected, this is also called a
link-to-system (L2S) mapping technique. Accordingly, a L2S mapping is that post-processing SINRs
extracted from LLS are mapped to an effective SNR and BLER is predicted by the effective SNR,
thus, it is called effective SNR mapping (ESM).

In prior studies, many researchers analyzed exponential effective SINR mapping (EESM) [5,6] and
mutual information based ESM [7] as representative L2S mappings. In [8], effective SNR is analyzed
on the side of uplink. In [9], impact of L2S is analyzed on the side of system level. However, there are
too many data extracted from LLS as well as too much processing time is need to find EESM mapping
parameters for various cases. Moreover, loss incurs due to an inaccuracy from additive white Gaussian
noise (AWGN) curve of SNR and BLER.

Therefore, recently, researchers studied ML-based link abstraction models. In [10], support vector
machine is used to enable ML classification for fast adaptive modulation coding. This scheme exploits
measurement of single TB success or failure to train the classifier. In [11], a ML method based on a
logistic regression is proposed. To predict a TB success or failure, their basic model uses mean and
standard deviation of the SINR set, modulation rate, and TB size as input variables. To improve the
estimation accuracy, adding terms of higher order or combinations of input variables are used in an
enhanced model.

To utilize ML-based link abstraction models that have been studied thus far, ML algorithms should
be applied on both of an evolved Node-B (eNB) and UE sides. However, since the number of UEs is too
large, it is difficult to embed ML algorithms in all UEs. Some UEs can directly apply ML algorithms while
other UEs should take the existing EESM method. Therefore, eNBs still need the existing EESM method.
In our previous work [12], we proposed a ML-based EESM method where training data are learned by
deep neural network (DNN) regression and L2S mapping based on EESM is executed by optimization
algorithms under 4G LTE system environments. We showed that the processing time and accuracy are
improved. However, L2S mapping-related previous studies including our previous work have been done
based on 3G/4G cellular networks. Our previous work is meaningful as the existing results under SISO
condition of 4G LTE systems are applied to machine learning techniques.

Recently, the standards of 5G NR systems based on Rel-15 decided that LDPC channel coding
on data plane is preferred and clustered delay line (CDL) and tapped delay line (TDL) as 5G
channel models are used. Since the standards of 5G NR based on Rel-15 are continually progressing,
the performance results for AWGN channel of simple model are not easy to obtain. To develop LLS,
SLS, and network-level simulator (NS) for 5G NR based on Rel-15, a Korean collaborative research
project developed 5G K-Simulator during August 2016–February 2019 [13,14]. Our role was to develop
a L2S mapping method as an inter-connection between the LLS and the SLS in 5G K-Simulator. To the
best of our knowledge, were were the first to design a machine learning based L2S mapping under 5G
NR systems based on Rel-15. The main contributions of this paper are as follows:

(1) AWGN curves based on 5G NR system are provided. In conventional L2S mapping schemes,
an AWGN curve is required to estimate block error rate (BLER) on SLS. We provide the AWGN
curve of SNR-BLER under 5G NR systems and compare the AWGN curves of SNR-BLER between
4G LTE system and 5G NR systems.

(2) The values of SNR satisfying at a target BLER = 0.1 (10%) are provided through AWGN curve.
3GPP 4G LTE and 5G NR-standards are specified to set the target BLER of 0.1, i.e., 10%. In SLS,
signal-to noise ratio (SNR) can be measured immediately, but the calculation of BLER is burden
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because CRC decoding has to be performed. When a measured BLER is lower than the target
BLER, UE can change to the index of higher CQI to support high data rate. Therefore, we provide
the values of SNR thresholds under an unknown BLER satisfying the target BLER of 0.1 through
the simulation results.

(3) The methodology for 5G NR L2S mapping is provided based on ML. The optimal parameters for
L2S mapping depend on a given environment. In addition, 5G NR systems have flexible frame
structures. Therefore, we provide the methodology for 5G NR L2S mapping based on ML to
extract the data for any cases and find the optimal mapping parameters.

(4) The optimal mapping parameters for L2S mapping are provided in SISO and 2 × 2 MIMO cases
under given conditions.

This paper is organized as follows. In Section 2, we introduce 5G NR system and main difference
of 4G and 5G systems. In Section 3, we describe the methodology for 5G NR L2S mapping. In Section 4,
we propose machine learning-based effective SNR mapping procedure. In Section 5, we validate
the proposed scheme and show the simulation results of the proposed scheme. Finally, we draw
conclusions in Section 6. The abbreviations commonly used in this paper are summarized as Table 1.

Table 1. Abbreviations.

Abbreviation: Full Name Abbreviation: Full Name

AWGN: additive white Gaussian noise BLER: block error rate
CQI: channel quality indication CDL: clustered delay line
DNN: deep neural network EESM: exponential effective SNR mapping
eNB: evolved Node-B LDPC: Low-density parity-check
LTE-A: long term evolution-advanced LLS: link-level simulator
L2S: link-to-system MIMO: multiple input multiple output
ML: machine learning MMSE: minimum mean square error
MSE: mean squared error NS: network-level simulator
NR: new radio RB: resource block
RE: resource element SINR: signal-to-interference plus noise ratio
SISO: single input single output SLS: system-level simulator
SNR: signal-to-noise ratio TB: transport block
TDL: tapped delay line UE: user equipment

2. Background on 5G NR

3GPP Rel-15 was approved for NR standards in December 2017, referred to as 5G NR. Different
from 4G LTE-A systems with fixed sub-carrier intervals, 5G NR systems have newly flexible frame
structures to provide various services. Various transmission frame settings are available by introducing
sub-carrier interval parameter µ called numerology. 5G NR systems can set µ from 0 to 5, and the value
of µ determines the sub-carrier interval. As the numerology value µ increases by one, the sub-carrier
interval is doubled. Compared to 5G NR systems, 4G LTE/LTE-A systems only use a fixed sub-carrier
interval of 15 kHz (µ = 0), therefore, it can accommodate various services.

The most innovative change of 5G NR system is channel coding. Turbo codes [15], low-density
parity-check (LDPC) code [16], and polar code [17] were designated as candidate channel codings.
In particular, LDPC code and the polar code have been actively studied, and the performance of LDPC
code has been shown to be close to the Shannon limit. In a recent study, LDPC code enables fast
encoding/decoding with high error correction capability, and achieves high speed, low delay, low cost,
and high reliability for 5G communication services. At the first-phase of Rel-15, LDPC code replaces
the Turbo code used in 4G LTE data channels, while Polar code replaces the Tail Biting Convolutional
Codes used in 4G LTE control channels.

3GPP standards technical reports of TR 38.900 [18] and TR 38.901 [19] define clustered delay line
(CDL) and tapped delay line (TDL) as 5G channel models for LLS. Each channel model consists of
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three non-line-of-sight channels of A, B, and C types and two line-of-sight channels of D and E types.
These channel models support bandwidth of up to 2 GHz in the 500 MHz to 100 GHz operating frequency.

The CDL model [18,19] is designed as a signal arriving at the receiver antenna dispersed into
20 signals as it passes through each cluster in the channel. At this time, the delay, power, and four
kinds of angles (azimuth angles of arrival and departure, and zenith angles of arrival and departure)
are defined. In the case of the TDL model, instead of defining each cluster parameter in the channel
as in the CDL model, only the power delay profile of each taps is defined for the entire channel.
Therefore, it is a simplified form in which the four angular values do not appear, and the process of
distributing signals passing through each cluster to 20 signals is not modeled. It is also possible to
generate TDL models by assuming non-isotropic antennas such as directive horn antennas or array
antennas. The TDLs and the spatial-filtered TDLs can be used with the correlation matrices for MIMO
link-level simulations.

In contrast, 4G LTE-A system models the wideband characteristics of the channel as a TDL.
Each tap independently experiences a fading characteristic by an azimuth direction of departure
and direction of arrival angular spectrum. Since the mean direction and angular spread are fixed,
TDL represents stationary channel conditions in 4G LTE-A system.

3. Methodology for 5G NR Link-to-System Mapping

5G K-Simulator [13] is a Korean collaborative research project consisting of several Korean
universities and companies to develop a 5G NR simulator. At the start of the project, there was no
widely accepted L2S mapping suitable for 5G NR system. Our role was to develop a L2S mapping
method as an inter-connection between the LLS and the SLS in 5G K-Simulator. In this section, we deal
with considerations for the 5G NR system in Section 3.1, and we describe the preliminary phase to be
performed in the LLS simulation for L2S mapping in Section 3.2. Finally, we explain a L2S mapping
method for 5G NR systems in Section 3.3.

3.1. System Configuration/Setup

5G NR systems have been studied in many test scenarios in 3GPP TR 38.802 [20]. However, this paper
focuses on parameter settings for L2S mapping test among many scenarios. Table 2 summarizes the
system parameters used in this paper, and details are described below.

(1) Waveform: Although several candidate waveforms for uplink were proposed, Rel-15 recently
decided to use OFDM-based waveforms with cyclic prefix for 5G NR downlink and uplink.

(2) Bandwidth and sub-carrier spacing: The size of resource blocks (RBs) is determined by the product
of the number of sub-carriers on the frequency-axis and the number of symbols on the time-axis,
as shown in Figure 1 [21]. Bandwidth is set to 5 MHz in this paper. The maximum number
of available RBs is 25 at bandwidth of 5 MHz. When sub-carrier spacing is applied to 15 kHz,
12 sub-carriers are allocated in one RB on the frequency-axis and 14 symbols are allocated per
sub-frame on the time-axis. A sub-frame consists of two slots and one slot consists of seven
symbols. Assuming that the full band of 5 MHz is assigned to UE, 4200 resource elements (REs)
can be allocated to UE for one sub-frame since 4200 REs are calculated by 25 RBs× 12 sub-carriers
× 7 symbols × 2 slots per sub-frame. In other words, one RE is equivalent to the minimum
resource for a symbol time on the time-axis and a sub-carrier on the frequency-axis.

(3) Channel coding: 5G NR replaces the previously used Turbo-code to LDPC coding. The number
of the information bits and the number of the encoded bit are varied depending on channel
coding schemes, the number of RBs, and the modulation scheme. TB size represents the
number of information bits that can be transmitted throughout 4200 REs and it is denoted
as A. After encoding TB of length A by channel coding scheme, the output is to be encoded bits
of length E. Table 3 summarizes values of A and E according to the turbo code and LDPC when
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using 25 RBs per sub-frame. Morder denotes modulation order and its values are 2, 4, and 6 for
QPSK, 16QAM, and 64QAM, respectively.

(4) Channel model: Ideally, transmit signal is transferred over AWGN channel after LDPC encoding
and rate matching. In practice, we experimented with fading channel environments in which
CDL-A and TDL-A are utilized in SISO and 2 × 2 MIMO environments.

Table 2. System configuration/setup.

Parameters Values

Waveform OFDM
Carrier frequency 2.8 GHz

Bandwidth 5 MHz
Sub-carrier spacing ∆ f = 15 kHz
Channel Estimation Perfect, MMSE

The number of allocated RBs to a UE 25 RBs
The number of sub-carriers per RB 12 sub-carriers

The number of symbols per slot 7 symbols
The number of slots per sub-frame 2 slots

Channel Coding Turbo-Code (4G), LDPC (5G)
Channel Model AWGN, CDL-A (SISO), TDL-A (2× 2 MIMO)

Table 3. Channel Quality Indication (CQI) table for turbo-code and LDPC.

CQI Mod.

LDPC Turbo Code

A E CR η A E CR η

[Bits] [Bits] A/E CR×Morder [Bits] [Bits] A/E CR×Morder

1 QPSK 584 8000 0.0762 0.1523 608 7800 0.0779 0.1559
2 QPSK 912 8000 0.1172 0.2344 928 7800 0.1190 0.2379
3 QPSK 1480 8000 0.1885 0.3770 1480 7800 0.1897 0.3795
4 QPSK 2384 8000 0.3008 0.6016 2408 7800 0.3087 0.6174
5 QPSK 3480 8000 0.4385 0.8770 3496 7800 0.4482 0.8964
6 QPSK 4680 8000 0.5879 1.1758 4608 7800 0.5908 1.1815
7 16QAM 5880 16,000 0.3691 1.4766 5760 15,600 0.3692 1.4769
8 16QAM 7632 16,000 0.4785 1.9141 7424 15,600 0.4759 1.9036
9 16QAM 9600 16,000 0.6016 2.4063 9480 15,600 0.6077 2.4308

10 64QAM 10,896 24,000 0.4551 2.7305 10,760 23,400 0.4598 2.7590
11 64QAM 13,264 24,000 0.5537 3.3223 13,064 23,400 0.5583 3.3497
12 64QAM 15,584 24,000 0.6504 3.9023 15,112 23,400 0.6458 3.8749
13 64QAM 18,072 24,000 0.7539 4.5234 17,424 23,400 0.7446 4.4677
14 64QAM 20,440 24,000 0.8525 5.1152 19,968 23,400 0.8533 5.1200
15 64QAM 22,192 24,000 0.9258 5.5547 21,504 23,400 0.9190 5.5138

Figure 1. Downlink resource grid [21].
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3.2. Preliminary Phase for 5G NR L2S Mapping

To perform L2S mapping, data of post-processing SINRs corresponding to allocated REs and
BLERs is required. The procedure to extract raw data of post-processing SINRs and BLER from LLS
is considered as a preliminary phase for L2S mapping. In AWGN environment, methods to extract
raw data for L2S mapping are almost the same as the performance evaluation of stand-alone LLS.
However, methods to extract raw data for L2S mapping in the fading channel environment are different
from existing LLS evaluation methods. The preliminary phase for 5G NR L2S mapping is discussed in
this subsection.

We consider fading channel models such as CDL or TDL specified in 3GPP TR 38.900 under
downlink. As mentioned in Section 3.1, 4200 symbols are transmitted through 4200 REs for a sub-frame.
Whenever one TB is generated every sub-frame, 4200 received SNRs corresponding 4200 REs can be
measured on a UE side. Since a wide bandwidth of 5 MHz is used, the channel is varying on the
frequency-axis domain but it does not change much on the time-axis. Therefore, we consider the
received signal of 300 sub-carriers (i.e., 25 RBs × 12 sub-carriers × 1 symbol = 300 REs) at the first
symbol-time to eliminate redundancy and reduce calculation complexity.

The received signal from the kth sub-carrier (1 ≤ k ≤ 300) at the first symbol-time in a sub-frame
is expressed as follows:

yk = HkWksk + nk, (1)

where yk ∈ CNR×1 is a received signal vector on the kth sub-carrier, Hk ∈ CNR×NT is the MIMO channel
matrix on the kth RE, Wk ∈ CNT×NT is the precoder matrix on the kth sub-carrier, sk ∈ CNT×1 is a
transmitted symbol vector on the kth sub-carrier, and nk ∼ CN (0, σ2INR) is a Gaussian noise vector
on the kth sub-carrier. NT denotes the number of transmit antenna and NR denotes the number of
receiver antennas.

A receiver filter on the kth sub-carrier by zero-forcing (ZF) and minimum mean square error
(MMSE), Gk, is given as follows:

Gk = (HH
k Hk)

−1HH , for ZF,

Gk = (HH
k Hk + σ2INR)

−1HH
k , for MMSE,

(2)

where Gk ∈ CNL×NR denotes a receiver filter matrix, and NL denotes the number of spatial
transmission layers.

The estimated received symbol vector on the kth sub-carrier by a receiver filter, xk, is expressed
as follows:

xk = Gkyk = GkHkWksk + Gknk, (3)

where xk ∈ CNL×1.
Post-processing SINR of the kth sub-carrier at the mth layer is calculated as follows:

SINRk(m) =
| [GkHkWk](m,m) |2

NL
∑

i=1,i 6=m
| [GkHkWk](m,i) |2 + σ2

NR
∑

i=1
| [Gk](m,i) |2

(4)

where [·](m,i) is a signal in row m and column i of matrix. The numerator term is the desired signal at
the mth layer, whereas the first term of denominator is the sum of the inter-stream interference signals
and the second term is the filtered noise.

Since each layer is independent and identically distributed, in the case of a large number
of simulation, it does not matter to collect raw data from how many layers or which layer.
For simplicity of experiment, raw data of post-processing SINRs and BLER is collected at the first
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layer. Accordingly, the variable m can be replaced to a constant 1 with the meaning of the first layer,
and then it can be removed. Consequently, Equation (4) can be expressed to Equation (5) as follows:

SINRk =
| [GkHkWk](1,1) |2

NL
∑

i=2
| [GkHkWk](1,i) |2 + σ2

NR
∑

i=1
| [Gk](1,i) |2

(5)

In a SISO case, m , NT , NR, and NL set to be 1, and there is no inter-stream interference.
Thus, the post-processing SINR at the kth sub-carrier is expressed as follows:

SINRk =
|Hk|2

σ2 (6)

For convenience of expression, post-processing SINRs (SINRk) is denoted by γk.
One thousand TBs are repeatedly transmitted for a given input SNR under the same channel

condition. CRC error checking is applied to determine whether the TB is successfully decoded.
UE transmits ACK by successful TB decoding among transmitted TBs, whereas it transmits NACK by
failed decoding. Therefore, BLER is calculated as follows:

BLER =
The total number of received NACKs
The total number of transmitted TBs

× 100 [%]. (7)

At the next input SNR under the same channel, 1000 TBs are transmitted recurrently.
Correspondingly, the data of (γ1, · · · , γNRE , BLER) is collected for a given input SNR and NRE REs
where NRE is the number of allocated sub-carriers per symbol, i.e., 300. Thus, raw data of (input SNR,
γ1, · · · , γNRE , BLER) is gathered for L2S mapping. We describe LLS procedure to extract raw data as
shown in Algorithm 1. Especially, the condition of channel must not be changed during the generation
of 1000 TBs over all SNRs, while the condition of channel is changed at every simulation. The input
SNR should be adjusted so that values of BLER are measured within the range of 0.01 and 0.9. When the
value of measured BLER with 0 is used, log10(measured BLER) is to be negative infinite, as shown
in Equation (9). BLER with 1 is meaningless data since all TBs failed. Since MSE is calculated from
measured BLERs, MSE is dependent by measured BLERs. The exact value of L2S mapping can not be
derived if the BLER value does not appear evenly in BLER range from 0.01 to 0.9. Therefore, equally
distributed BLERs within the range from 0.01 to 0.9 should be measured to find the values of L2S
mapping parameters.

3.3. Schematic of 5G NR L2S Mapping

L2S mapping method has two aims to map various SNRs over allocated REs to one averaged
SNR as well as to reduce system overload in SLS. The overall procedure of the L2S mapping is shown
in Figure 2 where L2S mapping method basically receives raw data of γ1, · · · , γNRE and BLER from
the LLS and then delivers two mapping parameters of (α1, α2) and 5G NR AWGN to the SLS. Our L2S
mapping is composed of four modules: M1, loading raw data; M2, AWGN curve; M3, Effective SNR
(ESM); and M4, exponential ESM (EESM) L2S mapping. The operation and function of each module
are explained below.

(1) Module M1: Loading raw data

M1 module reads stored data on the preliminary phase in Section 3.2. The format of raw data is
composed of x rows and y columns for each CQI. The value of x is the number of input SNRs
× the number of simulations (Sim) and the value of y is NRE+2. As mentioned in Section 3.1,
the number of allocated sub-carriers per sub-frame is NRE. The first column is a given input
SNR, the last column is BLER, and the rest of columns mean γ1, · · · , γNRE . The data loading is
performed for AWGN channel and all fading channels, respectively.
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(2) Module M2: AWGN curve

M2 module only applies to AWGN channel. It gets AWGN raw data from M1 module and makes
AWGN fitting curve for SNR versus BLER in the range of all CQIs. The AWGN fitting curve is
generated from the relation of (γ1, · · · , γNRE ) and BLER. Generally, the fitting curve is induced
from an exponential function or regression curve of machine learning.

(3) Module M3: Effective SNR

M3 module calculates an effective SNR applying α1 and α2 when a UE measures γ1, · · · , γNRE ,
and it is expressed as follows [5,6]:

γeff (α1, α2) = −α1 ln

(
1
N

N

∑
k=1

exp(−
γk
α2

)

)
, (8)

where α1 and α2 are determined after optimization in M4.

In fact, SLS only measures {γ1, γ2, · · · , γNNE} without decoding. To estimate error for a received
TB, SLS calculates an effective SNR from Equation (8) using α1 and α2. The values of α1 and α2

are already reported to SLS through a L2S mapping method.

(4) Module M4: EESM based L2S Mapping

M4 module finds optimal mapping parameters of α1 and α2 for a given CQI and a channel type.
After performing M snapshots, we calculate mean square error (MSE) as follows [5,6]:

MSE(α1, α2) =
M

∑
i=1

[
log10 BLERi − log10 BLERR

(
γi

eff(α1, α2)
)]2

. (9)

where M denotes the total number of simulated snapshots and BLERi denotes the BLER measured
from the ith post-processing SINR values. In addition, γi

eff(α1, α2) is calculated by Equation (8) at
the ith snapshot, and BLERR is the value of BLER on AWGN channel. Furthermore, BLERR(x)
denotes output BLER corresponding to input x from AWGN fitting curve. (It is plotted in
module M2)

To find optimal α∗1 and α∗2 , we minimize MSE for the entire range of (α1, α2) as follows:

(α∗1 , α∗2) = arg min
(α1,α2)

MSE(α1, α2). (10)

Since the BLERs vs. SNR varies depending on the modulation method, code block size and code
rate, we should find α∗1 and α∗2 for a given condition.

Loading Raw Data

Effective SNR
(SNReff)

EESM
L2S 

Mapping
(α1,α2)

SLS
(System Level Simulator)

Multi-cell, multi-user

LLS
(Link Level Simulator)

Single link

M1

α1,α2

M3

AWGN

M4

Fading

M2

Measurement
(sinr1, …, sinrN)

BLER

[5G NR AWGN]

B
LE

R

AWGN
Curve

L2S

CQI1

CQI5

CQI10

CQI15

CQI
1

CQI5
CQI10

CQI15

SNR

Figure 2. Schematic of 5G NR L2S mapping.
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Algorithm 1: Extract raw data.
input : NRE
output :Raw data related to (SNR, γ1, · · · , γNRE , BLER)

1 for CQI ← CQI_range (1, · · · , 15) do
2 Initialize Sim;
3 while Sim < 10,000 do
4 /*The simulation is stopped when the BLER result is evenly ranged from 0.01 to 0.9.

The number of simulations 10,000 is the minimum value. */
5 Generate AWGN channel or a fading channel;
6 for SNR← SNR_range do
7 Initialize BLER, ACK, NACK;
8 Calculate γ1 · · · γNRE ; See Equations (5) and (6)
9 for TB← 1 to 1000 do

10 if decoing success then
11 ACK← ACK+1;
12 else
13 NACK← NACK+1;

14 BLER← NACK/1000 × 100; See Equation (7)

15 Store data of (SNR, γ1, · · · , γNRE , BLER)

16 Sim← Sim + 1 ;

4. Machine Learning Based Effective SNR Mapping Procedure

The number of simulations was 10,000 for each input SNR and each CQI and 1000 TBs were
generated for each simulation. BLER was determined for transmitted 1000 TBs. Thus, the size of raw
data of (SNR, γ1, · · · , γNRE , BLER) to collect from LLS, i.e., the total number of simulation results per
CQI was the product of the number of SNR values and the the number of simulations. In general,
since the size of raw data from the LLS is large, obtaining the optimal parameters of α∗1 and α∗2 through
heuristic search with Equation (10) is burdensome. Thus, it was necessary to reduce the computation
complexity as well as to improve the accuracy. As shown in this section, we used Python Tensorflow
framework and applied the DNN regression method to make an AWGN fitting curve of module M2 in
Section 3.3. The algorithm of DNN regression is described in Algorithm 2 and Figure 3.

(1) We utilized the DNN regression method instead of the best fitting curve to obtain the BLER
curve in AWGN channels. The DNN consists of several hidden layers between the input and
output layers. Hidden layers of (100, 200, 100) layers were used in Adagrad optimizer [22]. As the
number of hidden layers and the number of nodes at each hidden layer increased, MSE decreased.
However, the improvement of MSE was saturated at three hidden layers with the number of
nodes of (100, 200, 100), as shown in Figure 3. Learning rate was set to 0.1, which implies how
quickly it is tuned to the target SNR value. The regularization strength to prevent over-fitting was
set to 0.001. The sigmoid function 1/(1+ e−x) was used as an activation function in hidden layers.

(2) DNN regression continued training for SNRs and BLERs on AWGN channel with the learning
rate at each epoch. The number of training data was 4000.

(3) After training data, BLERs were predicted for test set of SNRs. Finally, we obtained an enhanced
AWGN curve of SNRs and BLERs.
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Algorithm 2: DNN regression.

/* Configure DNN regression */
1 regressor = learn.DNNRegressor(feature_columns, hidden_units = [100, 200, 100], optimizer =

tf.train.ProximalAdagradOptimizer( learning_rate = 0.1, l1_regularization_strength = 0.001),
activation_fn = tf.nn.sigmoid)

/* Train measured data up to 4000 times */
2 input_training_fn← (awgn_snr, awgn_bler)
3 regressor.fit(input_fn = input_training_fn, steps = 4000)
/* Predict of BLERs for test SNRs */

4 input_reff_fn← snr range
5 predictions = list(regressor.predict_scores(input_fn = input_reff_fn))
6 regressed_bler = np.asarray(predictions)

Figure 3. Deep neural network.

Next, we applied the optimization algorithm to efficiently find (α∗1 , α∗2), which is summarized in
Algorithm 3.

(1) To find the optimal parameters (α∗1 , α∗2), we loaded raw data from module M1 in Section 3.2.
(2) In the ML scheme, the loss function is defined as the difference between the calculated effective

SNR value from Algorithm 3 and AWGN SNR obtained from Algorithm 2 at the same BLER.
We calculated loss as the expectation of loss function over BLERs. The loss function and MSE of
Equation (9) were used almost synonymously.

(3) We applied optimization algorithms, Adagrad and RMSProp, to find the optimal parameters
that minimize the loss function. Since Adagrad and RMSProp adapt the learning rate to the
parameters, they eliminate the need to manually tune the learning rate. Adagrad optimizer adapts
the learning rates by scaling them inversely proportional to the sum of the historical squared
values of the gradient. In contrast, RMSprop optimizer modifies AdaGrad for a nonconvex setting
by changing gradient accumulation into exponentially weighted moving average [23].

(4) With the optimal parameters, the mean squared error (MSE) was calculated by

MSE =
M

∑
i=1

[
log10 BLERi − log10 BLERR

(
γi

eff(α
∗
1 , α∗2)

)]2
. (11)
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Algorithm 3: Find optimal α1 and α2.

/* Load data on Fading channel */
1 snr_k← post-processing SINRs, bler← BLER
/* Calculate γeff with α1 and α2 */

2 snr_eff = -1 ∗ alpha1 ∗ tf.log(tf.reduce_mean (tf.exp(-1∗snr_k/alpha2), axis = 1))
/* Decide target SNR by regression */

3 target_snr← predicted snr corresponding to BLER
/* Calculate loss function */

4 loss = tf.reduce_sum(tf.abs(tf.subtract (target_snr,snr_eff)))
/* Select a training algorithm between Adagrad and RMSprop; Adagrad is

selected in this case. */
5 train = tf.train.AdagradOptimizer(0.1).minimize(loss)
/* train = tf.train.RMSPropOptimizer(0.1).minimize(loss) ← when RMSProp is

selected. */
/* Training data 4000 times */

6 with tf.Session() as sess:
7 sess.run(init)
8 for i in range(4000):
9 sess.run(train)
/* Calculate MSE in test data set */

10 regressed_bler← estimated BLER, y_data← BLER
11 mse = np.mean(np.square(np.subtract(np.asarray(y_data), np.asarray(regressed_bler))))

5. Numerical Results and Analysis

Table 2 shows the system parameters used. To make AWGN curve, we used a DNN regression
method. Actually, we already showed that a DNN regression is a more suitable method than a fitting
function under 4G LTE-A systems in our previous work [12]. The fitting curve became over-fitted as
BLER approached zero, as shown in Figure 4. In contrast, a DNN regression followed AWGN curve as
closely as possible through a multi-dimensional mapping. Moreover, Table 4 shows MSE results for
fitting function (“FIT”) and DNN regression (“DNN”) for all CQIs under 4G LTE-A systems. Actually,
the deep neural network gave little improvement compared to fitting algorithm under AWGN channel
condition since AWGN was an almost static channel environment. Accordingly, in this study, 5G NR
AWGN curve was generated with a DNN regression method without comparison of FIT and DNN.

Table 4. The comparison of MSE under 4G AWGN channel [12].

CQI Index CQI 1 CQI 2 CQI 3 CQI 4 CQI 5 CQI 6 CQI 7 CQI 8

FIT 0.033 0.027 0.033 0.038 0.017 0.032 0.017 0.012
DNN 0.018 0.014 0.016 0.013 0.014 0.011 0.015 0.016

CQI Index CQI 9 CQI 10 CQI 11 CQI 12 CQI 13 CQI 14 CQI 15 -
FIT 0.019 0.021 0.011 0.025 0.013 0.015 0.030 -

DNN 0.011 0.008 0.013 0.013 0.010 0.013 0.010 -

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

lo
g
1
0
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L
E

R
)

SNR [dB]

-7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5

AWGN

DNN Regression

Fitting function

Fitting Function

DNN Regression

AWGN

Figure 4. SNR vs. BLER for CQI 1 under 4G AWGN channel [12].
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5.1. AWGN Curve

Figure 5 shows BLER performance for 4G AWGN and 5G AWGN. 4G LTE-A systems and 5G NR
systems use Turbo-code and LDPC as channel coding schemes, respectively. The size of TB and their
coding rates varied slightly according to channel coding schemes, as shown in Table 3. After applying
the channel coding shown in Table 3, the performances of 4G AWGN and 5G NR AWGN were evaluated.
5G NR AWGN outperformed 4G AWGN, especially better for small CQL values.

3GPP 4G LTE and 5G NR-standards are specified to set the target BLER of 0.1, i.e., 10%. As SNR
increased, BLER decreased. SNR could be measured immediately on SLS, but the calculation of BLER
was burdensome because CRC decoding had to be performed. When measured BLER is lower than
target BLER, a UE can choose the index of high CQI to support high data rate. Under an unknown
BLER, we found the value of SNR satisfying the target BLER of 0.1 through the simulation results and
induced Equation (12) for CQI and SNR.

-10 -5 0 5 10 15 20

SNR [dB]

-2

-1.5

-1

-0.5

0

lo
g

1
0
(B

L
E

R
)

(5G AWGN: solid line -), (4G AWGN: dotted line --)

1 2 3 4 5 6 8 9 10 11 12 13 14 157

Figure 5. The BLER comparison between 4G AWGN and 5G AWGN.

From the AWGN curve shown in Figure 4, SINR threshold at BLER = 0.1 (10%) can be derived,
as shown in Table 5. In practical 4G/5G systems, if an estimated BLER exceeds 0.1, TB transmission is
considered as failure. Otherwise, TB transmission is considered as success. We plot SINR threshold at
BLER = 10% for the range of all CQIs in Figure 6. From this plot, we derive a linear equation as follows:

SNRth(i) = 1.938× i− 9.682 [dB], i = 1, · · · , 15, (12)

where i means CQI index. SNRth(i) is SINR threshold for CQI index i at 10% BLER.

Table 5. The values of SNR Threshold satisfying 10% BLER.

CQI Index CQI 1 CQI 2 CQI 3 CQI 4 CQI 5 CQI 6 CQI 7 CQI 8

SNR Threshold [dB] −7.8474 −6.2369 −4.3591 −1.9319 0.1509 1.9976 4.7278 6.2231
CQI Index CQI 9 CQI 10 CQI 11 CQI 12 CQI 13 CQI 14 CQI 15 -

SNR Threshold [dB] 8.0591 9.8585 11.8432 13.4893 15.3598 17.4435 19.2155 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CQI index

-10

-5

0

5

10

15

20

S
N

R
 [

d
B

]

BLER = 10% _fit

BLER = 10% _sim

Figure 6. SNR threshold for all CQIs under 5G AWGN.
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5.2. Optimal Values of α1 and α2

To find optimal values of α1 and α2, two optimizers, Adgrad and RMSProp, were used. Table 6
shows optimal parameters (α∗1 , α∗2) in the case of 5G CDL-A SISO, whereas Table 7 shows optimal
parameters (α∗1 , α∗2) in the case of 5G TDL-A 2 × 2 MIMO. The MSE performances of both optimizers
were similar. In our previous work [12], we analyzed the optimal EESM parameters in 4G LTE-A system.
At that time, the MSE performance of RMSProp was better than that of AdaGrad. However, since
5G NR AWGN curve aws too steep, there was little difference in performance of the two optimizers.
In the case of 2 × 2 MIMO, the variance of sinr1 · · · sinrNRE was larger than that of SISO, thus the MSE
of MIMO was larger than MSE of SISO.

Table 6. Optimal parameters (α∗1 , α∗2) in 5G CDL-A SISO.

CQI AdaGrad RMSProp

α1 α2 MSE α1 α2 MSE

1 3.294 3.230 0.150 2.752 2.698 0.149
2 1.874 1.880 0.357 2.163 2.170 0.364
3 1.607 1.594 0.065 2.002 1.988 0.061
4 1.184 1.175 0.159 1.162 1.154 0.156
5 1.286 1.283 0.140 1.552 1.546 0.206
6 1.359 1.359 0.055 1.360 0.360 0.056
7 3.642 3.628 0.170 3.643 3.629 0.170
8 3.256 3.228 0.171 3.937 3.911 0.155
9 5.563 5.543 0.110 5.636 5.616 0.110
10 16.259 16.204 0.075 16.262 16.208 0.075
11 13.685 13.604 0.329 13.382 13.301 0.268
12 17.988 18.079 0.778 17.547 17.632 0.724
13 23.971 23.970 0.555 24.112 24.111 0.558
14 29.306 29.205 0.210 29.306 29.204 0.210
15 33.590 33.833 0.533 28.733 28.739 0.823

Table 7. Optimal parameters (α∗1 , α∗2) in 5G TDL-A 2 × 2 MIMO.

CQI AdaGrad RMSProp

α1 α2 MSE α1 α2 MSE

1 0.088 0.126 1.581 0.079 0.106 1.465
2 0.114 0.154 0.834 0.114 0.152 0.969
3 0.200 0.252 0.730 0.208 0.260 1.070
4 0.280 0.306 0.867 0.301 0.339 0.976
5 0.511 0.525 0.859 0.513 0.528 0.865
6 0.718 0.729 2.072 0.718 0.729 2.070
7 2.664 3.554 1.526 2.664 3.553 1.528
8 2.465 2.665 1.538 2.465 2.664 1.525
9 3.200 4.695 1.782 3.203 4.700 1.784

10 6.532 8.174 1.824 6.338 7.900 1.777
11 6.588 8.619 0.703 5.969 7.634 0.688
12 9.985 11.538 1.125 10.021 11.661 1.135
13 11.190 14.225 1.393 11.19 14.224 1.399
14 15.933 19.071 0.973 19.562 23.828 2.784
15 20.410 38.530 1.399 19.062 34.963 1.099

5.3. Simulation Validation

Figures 7 and 8 show the results of effective SNR mapping by the proposed ML-based
EESM method in the case of 5G CDL-A SISO. “CQI1_SNR_k”, “CQI5_SNR_k”, “CQI10_SNR_k”,
and “CQI15_SNR_k” indicate the post-processing SINRs sinrk, as mentioned in Equation (6). Since the
number of allocated REs NRE was 300 (25 RB × 12 sub-carriers × 1 symbol time = 300 REs),
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sinr1 · · · sinrNRE corresponding to BLER are plotted in Figure 7. When wide-band signal passed
through a fading channel, each RE suffered different fading. Thus, the results show that NRE sinrks
spread widely. AWGN indicates SNR and BLERs at CQI 1, 5, 10 and 15 in 5G NR AWGN, as shown in
Figure 5. To perform EESM L2S mapping, we applied optimal parameters of α∗1 and α∗2 obtained using
RMSProp optimizer, as shown in Table 6. Blue x mark presents effective SNRs and the results show
that widespread sinr1 · · · sinrNRE were mapped to one effective SNR on the AWGN curve. Figure 8
shows how well is the effective SNR mapped to the AWGN for all CQIs. The results show that most
blue x marks were on the AWGN line. With these results, we observed that the proposed method
predicted the BLER quite well.

Figure 7. Effective SNR mapping results of the proposed ML-based EESM method under 5G CDL-A
SISO (for CQI1, CQI5, CQI10, and CQI15).
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Figure 8. Effective SNR mapping results of the proposed ML-based EESM method under 5G CDL-A
SISO for all CQIs.

Figures 9 and 10 show the results of effective SNR mapping by the proposed ML-based EESM
method in the case of 5G TDL-A 2 × 2 MIMO. MIMO cases were also similar to SISO cases from the
analytical point of view. As shown in Figure 9, sinr1 · · · sinrNRE were more widespread compared to
SISO case shown in Figure 9. Therefore, since the variance of sinr1 · · · sinrNRE was larger than that of
SISO, MSE of MIMO was also larger than that of SISO. Figure 10 shows how well is the effective SNR
mapped to the AWGN for all CQIs under 2× 2 MIMO. Compared to SISO results, there were a few
blue x that were slightly off the AWGN line.
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Figure 9. Effective SNR mapping results of the proposed ML-based EESM method under 5G TDL-A
2 × 2 MIMO (for CQI1, CQI5, CQI10, and CQI15).
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Figure 10. Effective SNR mapping results of the proposed ML-based EESM method under 5G TDL-A
2 × 2 MIMO for all CQIs.

6. Conclusions

We proposed a novel link-to-system (L2S) mapping method based on machine learning (ML)
for 5G new radio (NR) simulators, which reduces the computational complexity as well as improves
the prediction accuracy of block error rates (BLERs) prediction. The performance of the proposed
ML-based L2S mapping technique was validated by utilizing link-level simulator (LLS) of the 5G
K-simulator. In particular, we adopted the optimizers such Adagrad and RMSProp for obtaining
parameters for effective exponential signal-to-noise ratio mapping (EESM).

As a further study, we will investigate the ML-based decision process for the system-level
simulator (SLS) to determine whether a received frame is successfully decoded without the L2S
mapping procedure.
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