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Abstract: In order to optimize intelligent applications driven by various sensors, it is vital to properly
interpret and reuse sensor data from different domains. The construction of semantic maps which
illustrate the relationship between heterogeneous domain ontologies plays an important role in
knowledge reuse. However, most mapping methods in the literature use the literal meaning of each
concept and instance in the ontology to obtain semantic similarity. This is especially the case for
domain ontologies which are built for applications with sensor data. At the instance level, there is
seldom work to utilize data of the sensor instances when constructing the ontologies’ mapping
relationship. To alleviate this problem, in this paper, we propose a novel mechanism to achieve
the association between sensor data and domain ontology. In our approach, we first classify the
sensor data by making them as SSN (Semantic Sensor Network) ontology instances, and map the
corresponding instances to the concepts in the domain ontology. Secondly, a multi-strategy similarity
calculation method is used to evaluate the similarity of the concept pairs between the domain
ontologies at multiple levels. Finally, the set of concept pairs with a high similarity is selected by the
analytic hierarchy process to construct the mapping relationship between the domain ontologies,
and then the correlation between sensor data and domain ontologies are constructed. Using the
method presented in this paper, we perform sensor data correlation experiments with a simulator
for a real world scenario. By comparison to other methods, the experimental results confirm the
effectiveness of the proposed approach.

Keywords: sensor data; domain ontology; domain ontology mapping; ontology-based data fusion

1. Introduction

Recently, various intelligent Internet of Things (IoT) based algorithms [1] and applications [2]
have been developed by making use of large amount of sensor data, for example, mobile data reception
in wireless sensor networks [3], and various applications in urban sustainable development [4].
To optimize the utilization of data from multiple sources for decision making, meaningful sensor
data should be achieved [5,6]. Building sensor ontology and mapping sensor data to domain
ontology provides a solid foundation for sensor data sharing, reuse and fusion in a variety of IoT
applications [7–9]. Further, semantic sensor networks (SSN) are proposed to formally express semantic
associations with an existing ontology [10]. However, due to the diversity of the domain ontologies
and the ontology construction methods, the domain ontologies often have significant differences.
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In order to dig out more rules or knowledge with multiple existing heterogeneous ontologies, we need
to establish mapping relationships among the ontologies. Therefore, it is critical to study how best
to perform ontology mapping in order to associate multiple domain ontologies with the presence of
sensor data.

Many researchers have done a lot of work on ontology related areas. In the early days, domain
experts used manual methods to establish ontology mapping. Since then, these methods have evolved
to incorporate semi-automated and automated methods. At present, there are three main types of
ontology mapping methods: machine learning based, similarity calculation based and background
knowledge based. The machine learning-based mapping method can be regarded as a model for
information classification, where the information in ontology is used to predict the objects that each
concept may map to. However, such methods do not fully utilize the information in the ontology.
The mapping method based on background knowledge relies on the existing domain knowledge
base. This kind of method is more accurate, however it’s efficiency and recall rate remains insufficient.
Similarity-based mapping methods are generally based on a similarity calculation of concepts in
different ontologies which may have been built with different methods, thus the application field
of this strategy is narrow. To overcome the deficiencies of existing methods, we proposed a novel
similarity evaluation method which utilizes multiple strategies to establish the relationship between
domain ontologies and uses a random forest algorithm to perform the classification of instances in
order to make better use of sensor data and reduce manual intervention. In addition, this method
can reduce calculation efforts that are not critical in the analytic hierarchy process and improve the
computation efficiency in the case of a large volume of data.

The remainder of this article is structured as follows. In Section 2, we introduce the related
applications of sensor ontology in the field of IoT and the research work related to ontology mapping.
Based on the analysis of the sensor data processing method and the ontology correlation method
in the literature, we propose a random forest-based method to classify sensor instances in Section 3.
Then, in Section 4, we propose a multi-strategy similarity calculation method utilizing the sensor data
classification result to estimate the similarity between ontology concepts. In Section 5, the experimental
results of the proposed method are presented. Finally, in Section 6, some conclusions are drawn.

2. Related Work

In order to improve human-computer interaction, ontology is used to solve the problem that
one concept may correspond to multiple words. Domain ontology is a professional knowledge base
which describes the relationship between concepts within a specific field. For example, in the field
of IoT, there has been a lot of work on the interoperability of the IoT. These include many European
projects such as FIESTA-IoT, Inter-IoT, and LOV4IoT, etc. In the field of sensors, there are 12 main
categories of well accepted sensor ontologies [11]. Based on the wireless sensor network composed of
these sensor ontologies, there has been a significant amount of research in a variety of fields such as
network energy saving [12], collaborative computing [13], network routing [14] and so on. Although
these sensor ontologies are constructed according to the continuously improved unified ontology
framework SSN/SOSA, there are non-uniform definitions of the same concepts in different application
fields, which make these sensor ontologies difficult to share and reuse [15].

Although there are already a variety of ontology construction methods in each specific domain,
the ontology in these specific fields is difficult to expand and apply to other domains. This requires
the reuse of the ontology and the association between the ontologies, and the establishment of the
relationship between the ontologies in different domains. Liu et al. [16] proposed a construction
method for a multi-domain ontology that can be used for large-scale unstructured text. This method
is effectively applied to the construction of a multi-domain ontology in the shipping industry.
Ehrig et al. [17] correlate ontology by comparing similarities between entities in different ontologies.
Mao et al. [18] propose the use of quaternions (Entity 1, Entity 2, Relation, Confidence) to represent
ontology relations. In addition, in order to solve the problem of semantic heterogeneity, some research
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work is carried out around ontology matching. Ontology matching enables the knowledge and
data expressed in the ontology to interoperate by studying the semantic relationships between the
corresponding entities and then applying them to various tasks. Otero-Cerdeira et al. [19] proposed
an ontology matching method based on the context data collected by the sensor, and deployed it in a
smart city to improve the interoperability of information. Fernandez et al. [20] presented a system for
ontology alignment in the semantic sensor web which uses fuzzy logic techniques in order to combine
similarity measures between entities of different ontologies. Their similarity evaluation strategy mainly
consists of the context-related semantic similarity degree of the entity name and the degree of structural
similarity of the ontology concept. In order to implement ontology matching on the semantic web,
there are some methods [21] that combine deep learning techniques. They developed a system that
employs learning techniques to semi-automatically create semantic mappings between ontologies.

Ontology integration [22] refers to the process of establishing a mapping among entities,
processing mappings, and aligning or merging two or more ontologies into a “new” ontology.
Ontology integration is mainly used to solve two types of problems: (1) improve and enrich the
existing ontology content and structure, and reuse the existing ontology; (2) solve the problem of
heterogeneous information among the applications of different fields. Based on the different degree
of ontology integration [23], the ontology integration can be divided into three categories: ontology
mapping, ontology alliance and ontology merged. The degree of integration is strengthened in turn.
Ontology mapping has various applications, from machine learning, concept lattice, and formal
theories to heuristics, database schema and linguistics. The practice of ontology mapping ranges from
academic prototypes to large-scale industrial applications [24]. Research on ontology mapping needs
to study ontology feature representation and extraction. For feature extraction, Zeng [25] proposed a
method to learn features for distant supervised relation extraction (DSRE) using a method of generative
adversarial networks (GANs). This approach extracts more efficient feature representations than other
neural network models. Similar work by using GANs on digital signal modulation classification can
be found in [26].

The objective of ontology mapping is to find correspondences in entities from multiple
ontologies [27]. It is an effective way to address knowledge sharing and the reuse of heterogeneous
ontologies in semantic webs, which solves the exchange of complex information [28]. The method of
ontology mapping can be divided into the four categories. Firstly, statistical-based ontology mapping
in which a statistical approach is used in the mapping process. Jung M [29] proposed a method based
on Bayesian network, while Swat [30] proposed a method based on probability distribution in the
mapping process. Secondly, there is rule-based ontology mapping in which the heuristic rules are given
by domain experts during the mapping process. The mapping method proposed by Ehrig et al. [17] is
based on heuristic rules. This method first denotes the heuristic rules by domain experts and calculates
the similarity of each pair of entities to obtain the calculated results. Thirdly, there is ontology mapping
based on machine learning. Moran et al. [31] propose an ontology-based classification method using
the decision tree classifier method for multi-source classification of nature conservation areas. Finally,
an ontology mapping method based on the ontology concept feature calculates the similarity from
the different aspects of the concept name, the instance of the concept, the attribute of the concept
and the structure of the ontology. In addition, there are some studies on ontology feature mapping.
Ravikumar [32] used deep learning methods to extract features and then used binary tree support
vectors for feature classification. This method shows that the problem of feature mapping can be
explored by using feature classification. Liu [33] proposed a new way to mark entity categories,
using neural network models to extract multiple relationships. This method has a good effect on
describing complex mapping relationships and extracting mapping relationships.

According to types of the objects that are chosen to construct the mapping relationship, we can
also classify ontology mapping into the following three categories: (1) mapping between an integrated
global ontology and local ontologies, (2) mapping among local ontologies, and (3) mapping on
ontology merging and alignment [34]. The first category of ontology mapping supports ontological
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integration by describing the relationship between an integrated global ontology and local ontologies.
This category supports ontology integration processes. Methodological aspects of ontology integration
relate to how this mapping is denoted [35]. This mapping specifies how concepts in global and local
ontologies map to each other, how they can be expressed based on queries, and how they are typically
modeled as views or queries [36]. The second category enables interoperability for highly dynamic
and distributed environments as a form of mediation among distributed data in such environments.
This category provides interoperability for highly dynamic, open and distributed environments and
can be used for mediation among distributed data in such environments [37]. The third category is
used as a part of ontology merging or alignment as an ontology reuse process. In this case, ontology
mapping establishes a correspondence among source (local) ontologies to be merged or aligned,
and determines the set of overlapping concepts, synonyms, or unique concepts to those sources [38].
This mapping identifies similarities and conflicts among the various source (local) ontologies to be
merged or aligned [39].

Related ontologies have semantic relationships between similar entities of two different ontologies.
This kind of association lays an important foundation for semantic sensor networks. Considering the
problem of semantic association, Wang [40] proposes a semi-structured and self-describing Extensible
Markup Language (XML) data organization form, which realized the model of solving semantic
association problems through semantic dependence in the process of data integration. Xiong [41]
proposed a new deep learning model based on the Continuous Bag of Words (CBOW) model [42]
and Convolutional Neural Networks (CNNs). This model uses a distributed vector representation to
realize the semantic association between large amounts of data in the dataset, with semantic relativity
and accuracy.

Ontology association also supports the semantic query of multiple ontologies from the perspective
of information retrieval. In addition, some researchers have used machine learning or heuristic rules in
order to find specific mapping patterns [43], and some have resolved ontology mapping by analyzing
the semantic information of elements in the ontology [44,45]. Pinkel et al. [46] presented a new
version of Relational-to-Ontology Data Integration (RODI), which significantly extends the previous
benchmark, and they use it to evaluate various systems. RODI includes test scenarios from the
domains of scientific conferences, geographical data, and oil and gas exploration. Scenarios are
constituted of databases, ontologies, and queries to test the expected results. Systems that compute
relational-to-ontology mappings can be evaluated using RODI by checking how well they can handle
various features of relational schemas and ontologies, and how well the computed mappings work for
query answering. Forsati et al. [47] formalized ontology mapping in heterogeneous knowledge bases
as an optimization problem, and an efficient method called harmony search based ontology mapping
(HSOMap) was proposed, that effectively finds a near-optimal mapping for two input ontologies.
Helou et al. [48] presented a large-scale study on the effectiveness of automatic translations to support
two key cross-lingual ontology mapping tasks: the retrieval of candidate matches and the selection
of the correct matches for inclusion in the final alignment. Thoroughly discussing several findings
of the research, which are believed to be helpful for the design of more sophisticated cross-lingual
mapping algorithms.

As mentioned above, in terms of ontology-based sensor data processing, there is a lack of
a universal efficient domain ontology mapping method. In addition, for the association method
between ontologies, most of the research work mainly match literal meanings or calculate the
similarity of concept names. How to reduce the semantic conflict and human intervention to
realize the semi-automatic or automatic ontology mapping is still a challenging task in the field
of ontology mapping.

3. Instance Classification

The sensor can collect a series of data including location, temperature, wind speed, altitude,
humidity and other attributes. However, in different ontology structures, the same sensor instance can
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be divided into different sets of concepts. For example, for different shipping bodies, there are two
main ways to divide the concept of containers: (1) dry container, bulk container, liquid cargo container,
reefer container, and special container, such as automobile container, animal husbandry container,
animal skin container, etc.; and (2) reefer container, dress hanger container, open top container, flat rack
container, tank container, reefer container, platform container, ventilated container, insulated container,
etc. It is not difficult to see that the concept of the animal husbandry container and the ventilated
container in the above division has a certain degree of an overlapping relationship. Suppose a series of
data collected by the sensor is expressed as R = {r1, r2, . . . rn}, where ri(1 ≤ i ≤ n) represents the data
collected on the ith attribute. Then, as far as the temperature concept of the container is concerned,
according to the result f (R) of the attribute data set R in the sensor instance for each concept in the
ontology, we can use the sensor instance as an example of the temperature concept in the animal
husbandry container, or as an example of the temperature concept in the ventilated container.

The above situation is widely presented in the ontology of different structures. According to the
features of sensor instance data, relationships that exists between different sets of the sensor instance
data can be used a measure for the similarity between concept pairs in the ontology. In our method,
a random forest algorithm, denoted as f , is used to classify sensor instances into different concept
sets by using various attribute values in the sensor data as the basis for classification. When we use
random forests to build a dataset for a sensor, we use the attribute set R of all sensors as a set of
attributes for each sensor’s data. Assume that there is a total of M sensor data. For a specific sensor,
the uncollected attributes are recorded as default values. This process ensures that all sensor data has
a uniform dimension. In addition, for the concept, we use a manual labeling method to mark a part of
the data, which is denoted as Y. This data set consists of the sensor’s various attribute values X and
concept tags Y. It is important to note that we deal with the discrete attribute values by transforming
the expert definitions into numerical form.

We denote the training data set as D, which needs to be divided into K classes. According to the
calculation of information gain, we select the attribute A in sensor data as the basis of decision division.
Then the information gain can be defined as follows:

g(D, A) = H(D)− H(D|A). (1)

where H(D) represents the empirical entropy of and H(D|A) represents the empirical conditional
entropy of selected A.

Based on this, we build a decision tree. Each non-leaf node in the decision tree represents a test on
a feature attribute. Each branch represents a decision condition that the data is satisfied. Each leaf node
represents a category to which the data ultimately corresponds. The following Algorithm 1 shows the
process of generating an unpruned decision tree for uncategorized sensor data.

Next, we need to prune the generated decision tree, cut off some unnecessary branches, and control
the complexity of the decision tree by adding regular terms. Definition C(T) represents the prediction
error of the model for the training data. |T| represents the complexity of the model, which is the
number of leaf nodes. The parameter α balances the training error and the model complexity. The loss
of the decision tree is expressed as follows:

Cα(T) = C(T) + α|T|. (2)

The pruning process is shown in Algorithm 2. By generating a large number of decision trees,
these decision trees are combined to build a random forest model. The random forest training algorithm
is shown in Algorithm 3. And random forest classification algorithm is shown in Algorithm 4.
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Algorithm 1 Decision tree generation algorithm

1. Construct training set from sensor data
X is a matrix of R×M, Xij represents the j-th feature of the i-th sample.
Y is a matrix of R× 1, Yi denotes the class label of the i-th sample.

2. Build a decision tree
If all the sample values of X are the same, or all the class labels of Y are the same, or R < 2, a leaf node is

generated, and the class of this node is the class of the most number in X.
else:
Select m randomly from M features.
Among these m features, the maximum information gain is denoted as p.
If: the value of feature p is discontinuous

V is any value of p
XV is used to represent the sample whose feature p takes V, YV is the corresponding class.
Childv = Generate(XV , YV)

Return a decision tree node
If: the value of feature p is continuous

t is the best split threshold.
If: XLO represents a sample set whose values of feature p is less than t, and YLO is its

corresponding class.
Childlo = Generate(XLO, YLO)

If: XHI represents a sample set whose values of feature p is greater than or equal to t, and YHI is
its corresponding class.

Childlo = Generate(XHI , YHI)

Return a decision tree node

Algorithm 2 Pruning algorithm

1. Calculate the information gain of each node.
2. Recursively upwardly from the leaf node of the tree, calculate the loss of the leaf node before and after the
parent node: Cα(TB) and Cα(TA).
If Cα(TA) < Cα(TB): Prune.
3. Repeat step 2 until it cannot continue.

Algorithm 3 Training algorithm

1. Construct set from sensor data: Given training set S, test set T, feature dimension F.
Determine the parameters: The number of decision trees t, the depth of each tree d, and the number of
features f used by each node.
Termination conditions: The minimum number of samples on the node S, the minimum information
gain on the node m.

2. From S, there is a training set S(i) of the same size as the extracted size S, as a sample of the root node,
and training is started from the root node.
3. If: the termination condition is reached on the current node,

Set the current node as a leaf node.
If: the current node does not reach the termination condition,

The f dimensional features are randomly selected from the F dimensional features without
replacement. Using this f dimensional feature, find the best one-dimensional feature k and its threshold th.

The sample whose k dimension feature is less than th at the current node is divided into left nodes,
and the rest is divided into right nodes.

Continue to train other nodes.
4. Repeat 2, 3 until all nodes have been trained or marked as leaf nodes.
5. Repeat 2, 3, 4 until all decision trees have been trained.
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Algorithm 4 Random forest classification algorithm

1. Starting from the root node of the current tree, according to the current node’s threshold th, it is
determined whether to enter the left node (< th) or enter the right node (≥ th) until a certain leaf node is
reached and the predicted value is output.

2. Repeat 1 until all t-trees have output predictions. This will give a class with the largest sum of predicted
probabilities in all trees.

4. Associating Domain Ontology Based on Sensor Instances

In this section, we present a novel domain ontology mapping method. A higher similarity between
the ontologies implies a stronger equivalence relation. In our method, we will use three similarity
calculation strategies in order to assess the similarity of concepts between ontologies, and use the
analytic hierarchy process to construct mapping rules between different concepts of domain ontology.

4.1. Semantic Strategy

For one concept pair W1, W2 in the ontology O1, O2, if they are consisted by the same or similar
characters, it can be confirmed that the concept pair W1, W2 has the same or similar meaning. In the
similarity analysis of the concept pairs, we find that it is a better strategy to evaluate the semantic
similarity based on the knowledge base, HowNet [49]. There are more than 173,000 words in HowNet
which are described by bilingual DEF. Different DEF descriptions are used to express the different
semantics of a word. DEF is defined by a number of sememes and the descriptions of semantic relations
between words. It is worthy to mention that a sememe is the most basic and the smallest unit which
cannot be easily divided, and the sememes are extracted from about six thousand Chinese characters.

According to HowNet, we describe concept pairs separately through sememes. Then we denote
the concept similarity based on sememes described by the positional relationship of the sememe
hierarchy tree. Sim(W1, W2) represents the semantic similarity between W1 and W2 in the ontology.

For semantic similarity, we use the sememe distance and the sememe depth to calculate.
Among them, the meaning of the sememe distance is the length of the path from sememe feature p1 to
sememe feature p2 in the same sememe hierarchy tree, which is denoted by Dist(p1, p2). If the sememe
features p1 and p2 are not in the same sememe hierarchy tree, then we set Dist(p1, p2) to a fixed value
of 20.

Sememe depth refers to the path length from the root node on the sememe hierarchy tree to this p
node, denoted by dep(p).

The semantic similarity calculation combining the sememe distance and the sememe depth is
expressed as:

Sim(p1, p2) =
ω(dep(p1) + dep(p2)) + θ

Dist(p1, p2)
2 + ω(dep(p1) + dep(p2)) + θ

. (3)

Among them, dep(p1) and dep(p2) represent the sememe depths of p1 and p2. ω is an adjustable
parameter, which is the sememe path length when the sememe similarity is equal to 0.5. θ is also an
adjustable parameter.

Equation (3) highlights the degree to which sememe distance affects overall similarity assessment.
This is because when the sememe distance is large, the corresponding similarity is low; but when the
sememe distance is small, this means that the two concepts are similar. Our formula highlights the role
of sememe distance.

In addition, we also consider the effect of sememe distance on similarity calculation. For two
sememes, the similarity of sememes decreases as the level difference increases. The more similar
two sememes are, the smaller the level difference. We use the level differences in the sememe tree
to represent the semantic differences in concepts. In the formula, we use the parameter ω to add the
sememe distance information to the similarity calculation.
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The use of the tunable parameter θ limits the semantic similarity Sim(p1, p2) from 0 to 1.
Our formula takes into account the influence of the sememe level depth and the sememe distance
on the similarity, and at the same time gives the appropriate constraints on the similarity. Therefore,
reasonable results can be obtained.

In the description of a sememe, a feature structure will include multiple features, but the first
sememe description is more important than others. Therefore, when calculating sememe-based
semantic similarity, we give different weights for sememes in different positions in order, and ensure
that the first sememe description has the highest impact weight. Thus, we combine all the similarities
of the sememe calculations as:

Simpri(W1, W2) =
N

∑
i=1

λi

i

∏
j=1

Simj(W1, W2). (4)

where λi(1 ≤ i ≤ N), (λ1 ≥ λ2 ≥ · · · ≥ λN) represents the calculation weights of N original features

and
N
∑

i=1
λi = 1. Simj(W1, W2) calculates the semantic similarity of the jth sememe feature according to

the above formula.

4.2. Instance Strategy

We believe that the similarity between two concepts can be reflected by the relationship among
the collection of concept instances. The collection of instances contains the specific semantic relations
to a certain extent. We denote the concept instance similarity as Simins(W1, W2). The main idea of
using a concept-based calculation method is to measure the ratio of the total number of instances in
the intersection among the set of instances.

We set a threshold to measure the similarity of concepts to W1, W2 which represent the concept
pair in ontology O1, O2. UW1 , UW2 indicate the set of instances for the concepts W1, W2.

∣∣UW1
∣∣, ∣∣UW2

∣∣
represent the number of instances in the corresponding instance set. In addition, we assume that
U1, U2 are the set of instances corresponding to the ontology O1, O2. UW1,W2

1 means that in the ontology

O1, it belongs to both concept W1 in the ontology O1 and concept W2 in the ontology O2.
∣∣∣UW1,W2

1

∣∣∣
represents the number of instances in the ontology O1. UW1,W2

2 and
∣∣∣UW1,W2

2

∣∣∣ are similar to the above.

For the instance set U1, U2 belonging to the concept pair W1, W2, there is also a difference. UW1,W2

represents the set of instances that belong only to concept W2. UW1,W2 represents the set of instances
that belong only to concept W1. UW1,W2 does not belong to the set of instances of the concept pair W1,
W2.

Then we can denote the computational representation of Simins(W1, W2) based on the relationship
between the two instance sets.

Simins(W1, W2) =

{
Insrich × Simjac(W1, W2), Inscon ≤ T
Insrich × UW1∩UW2

2×Min(|UW1 |,|UW2 |) , Inscon > T . (5)

Insrich is the richness of the instance collection. Inscon is the instance set contrast value,
Simjac(W1, W2) is Jaccard’s similarity, which is used to express the similarity of concepts to W1, W2.
T is the threshold for the contrast of the set of instances.

By designing the richness of the instance collection Insrich, we can consider the specific differences
of the collection of concept instances based on the Jaccard method to reduce the inaccuracy of
similar results.

The definition of Insrich in our strategy is as follows:

Insrich =
log(|U1|) + log(|U2|)

2 ∗ log(|U1|) · log(|U2|) + ηrich
. (6)
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For the case where the denominator may be 0, the parameter ηrich is set in the formula. The richness
of the set of instances is judged by the above formula. When the richness of an instance set is greater,
the concept instance’s similarity is higher.

In addition, we also set Inscon to reflect the degree of difference in the number of instances. In the
case of a large difference in the number of instances, U1 ∈ φ, U2 ∈ φ may occur. In order to calculate
the similarity in this case, we use the value of Inscon to select different similarity calculation strategies.

The contrast of the Inscon instance set is denoted as follows:

Inscon =
1
π
(atan(

∣∣U1

∣∣∣∣U2

∣∣+ ηcon
) + atan(

|U2|∣∣U1

∣∣+ ηcon
)). (7)

Based on the richness of the instance set and the contrast of the instance set, we improved the
Jaccard similarity calculation. As shown in the calculation formula of Simins(W1, W2) above, we use
Insrich as the coefficient of Jaccard similarity calculation. When U1 ∈ φ, U2 ∈ φ appears in the instance
set, the similarity calculation form among the instance sets is adjusted to the ratio of the intersection of
the instance set U1, U2. The set of calculation instances is adjusted to twice the number of instances in∣∣UW1

∣∣, ∣∣UW2
∣∣. The new similarity calculation formulae are as follows:

Simjac(W1, W2) =
P(W1, W2)

P(W1, W2) + P(W1, W2) + P(W1, W2)
. (8)

P(W1, W2) =

∣∣∣UW1,W2
1

∣∣∣+ ∣∣∣UW1,W2
2

∣∣∣∣∣U1

∣∣+ ∣∣U2

∣∣ . (9)

P(W1, W2) =

∣∣∣UW1,W2
1

∣∣∣+ ∣∣∣UW1,W2
2

∣∣∣∣∣U1

∣∣+ ∣∣U2

∣∣ . (10)

P(W1, W2) =

∣∣∣UW1,W2
1

∣∣∣+ ∣∣∣UW1,W2
2

∣∣∣∣∣U1

∣∣+ ∣∣U2

∣∣ . (11)

When calculating the Jaccard similarity, we need to adopt a strategy to divide the sample set
U1, U2 of concept pair W1, W2 into positive and negative samples. Due to the large number of sample
instances, it is not practical for this strategy to be performed manually. However, by collecting part of
the actual sample data and tag set, we can use machine learning classification algorithms to carry out
this huge workload. In our method, a random forest algorithm has a good tolerance on the continuous
and discrete attribute values of the sensor attributes. At the same time, a random forest algorithm has
an excellent classification effect under supervised learning.

4.3. Structural Strategy

Concept is one of the elements of ontology, its information corresponding to the structure of
the ontology. It can also be regarded as a semantic level in its hosting ontology. Based on the
structural information of the ontology, we can calculate the degree of similarity between concepts from
a new level.

First of all, we need to build the ontology tree based on the ontology structure diagram. For the two
isomerism ontology trees, the similarity relationship between ontology concepts can be transformed
into the similarity between two concept nodes in the ontology tree. By setting a similar search radius,
r, which has a value of 3, 5, 7 for instance, a set of concepts on the ontology tree within a certain search
range can be constructed. On the two ontology trees of isomerism, the same operation is performed on
the calculation elements, and two related concept collections N(W) are constructed.

Structural similarity calculation rules are as follows:
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1. In the constructed ontology tree, we assume that the uncles of the parent nodes of the two
concepts are similar, and we believe that the two concepts are similar;

2. In the case where the two concept nodes are similar, their respective child nodes are also similar;
3. In the case where the two concept nodes are similar, their respective siblings are also similar.

According to the above rules, we use Jaccard’s coefficient to describe the similarity relationship
between the two sets. The structure-based structural similarity calculation is denoted as follows:

Simstr(W1, W2) =
σSimu(W1, W2) + τSims(W1, W2) + υSimb(W1, W2)

σ + τ + υ
. (12)

Simu(W1, W2) = Simjac(Nu(W1), Nu(W2)). (13)

Sims(W1, W2) = Simjac(Ns(W1), Ns(W2)). (14)

Simb(W1, W2) = Simjac(Nb(W1), Nb(W2)). (15)

Simjar(N(W1), N(W2)) =
P(N(W1), N(W2))

P(N(W1), N(W2)) + P(N(W1), N(W2)) + P(N(W1), N(W2))
. (16)

where W1, W2 represent the concept in two ontologies. Simu(W1, W2) represents the similarity among
the set of uncle nodes of parent nodes of W1, W2. Sims(W1, W2) represents the similarity among the
set of child nodes of parent nodes of W1, W2. Simb(W1, W2) represents the similarity among the set of
sibling nodes of parent nodes of W1, W2. We consider different degrees of influence on the calculation
of the overall structural similarity among the uncles, children, and siblings of the node. Set σ, τ, υ

to indicate different influence coefficients, and σ + τ + υ = 1, σ ≥ τ ≥ υ. The range of values of σ

highlights the effect of the element’s uncle nodes on the overall similarity calculation.
N(W) represents the collection of nodes related concept W. Based on this, we add u, s, b to

represent the set of uncles, children, and siblings of the parent. The elements in these collections are all
concepts in the ontology.

In addition, we also consider that the ontology tree constructed by different search radius r has a
different influence on the calculation of similarity. Thus, we revise the calculation method for structural
similarity as follows:

Simstr,r(W1, W2) =
σrSimu(W1, W2) + τrSims(W1, W2) + υrSimb(W1, W2)

σr + τr + υr
. (17)

Simstr(W1, W2) =
∑
r

Simstr,r(W1, W2)

num(r)
. (18)

According to different degrees of influence, we use σr, τr, υr to represent coefficients that differ
according to the search radius r and num(r) indicates the set number of searches.

4.4. Ontology Mapping Rules

Without loss of generality, for two ontologies O1 and O2, assume that there are m concepts in the
ontology O1 to be mapped and there are n concepts in the ontology O2 to be mapped. Then the result
of mapping between ontologies is a m× n matrix Mat. We use Mat[i][j], i ∈ [0, m− 1], j ∈ [0, n− 1] to
indicate the degree of similarity between the ith concept in the ontology O1 to be mapped and the jth
concept in the ontology O2 to be mapped.

According to our previously concept-based similarity calculation strategy, we can calculate each
value in matrix Mat. However, in the actual process, we cannot directly find out the set of the most
similar concept pairs in the matrix as the result of ontology mapping. Since the similarity computation
of the three different strategies have respective emphases and require an unequal computation load,
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we can use an analytic hierarchy process (AHP) to optimize the similarity calculation as shown in
Algorithm 5.

Algorithm 5 AHP algorithm

1. Initialize the m× n matrix Mat through semantic similarity computation.
2. Set different thresholds Tsem, Tins, Tstr for three different strategies.
3. For T = {Tsem, Tins, Tstr}:

For i, j. i ∈ [0, m− 1], j ∈ [0, n− 1]:
If Mat[i][j] < T:

Mat[i][j] = 0.
else

Mat[i][j] retains the original value.
4. For i. i ∈ [0, m− 1]:

For j. j ∈ [0, n− 1]:
find the largest Mat[i][j] in each row.

5. After finding the matrix Mat, we can get all mapping rules based on concept pairs between ontology O1, O2.

In this AHP based similarity calculation, we can initialize the matrix by computing similarity
based on semantic strategy. This takes precedence over other similarity calculation strategies, as the
similarity degree based on semantics can effectively exclude some concept pairs with low correlation
between ontologies. Thus, the subsequent similarity computation only needs to be done in the concept
pairs that we are interested in. In this process, we can obtain the final ontology mapping matrix by
using the three different similarity calculation strategies.

By setting threshold parameters Tsem, Tins, Tstr and scanning the final ontology mapping matrix,
we can determine that concept i in the ontology O1 is associated with concept j in the ontology O2.

5. Experimental Results

In order to verify that our method is effective in the practical application of ontology correlation,
we introduce the experimental results of the case study of semantic inference for berth management.
We use the sensors registered by 52North [50] to get the depth conditions and climatic conditions
of port berths. Data generated by our simulator is also used to test our proposed method. Through
semantic mapping, we transform the sensor data in the database into instances of SSN ontology
and store them in OWL files. In order to extract the concepts and attributes corresponding to the
sensor data in the SSN ontology and make the database model corresponding to the SSN ontology
model, we use the following XML mapping language pattern. The corresponding elements of sensor
data are shown in the following Table 1 where the concept of sensors is mapped to the SSN/SOSA
ontology framework [51], respectively. When building the SSN ontology instances, we denote the
corresponding relationship between the elements in the mapping language and classes in the SSN
ontology. For different types of sensors, we generate the SSN ontology instances based on the 52North
real sensor data and the corresponding sensor data from our simulator. As to the establishment of
domain ontology, we focus on the analysis of the various aspects of the port monitoring.

A semi-automated domain ontology construction method is adopted with expert opinions in
order to build two ontologies: the ship berth management ontology and the port monitoring ontology,
which are designed to provide support for the port administration to grasp real-time information and
make appropriate operation decisions.
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Table 1. Sensor Element Mapping.

Sensor
Element
mapping

Source
mapping

Table
name

Sensor_num Sensor number sosa:madeBySensor

Observationvalue Collection of sensor
observation value sosa:hasResult

Observationtime Time of
observation data sosa:resultTime

Source_id Selected data
source number sosa:observedProperty

Data
mapping

Source_id Data source number sosa:observedProperty

Sensor_id Number of sensor
instances sosa:madeBySensor

Type Sensor type sosa:observes

Unit Observational unit sosa:Result

Location_name Sensor position ssn:hasDeployment

The ship berth management ontology is used to analyze the changes of ship berth scheduling,
entry and exit berth, hydrology, weather and other related data, making timely decisions according
to the corresponding berth management plan. In general, the ship berth management makes a
corresponding plan according to the different levels judged by the comprehensive situation of the ship
berth. The ship berth management ontology contains a number of concepts about various aspects of
berths under different scenarios, and its brief structure is shown in the Table 2. The port monitoring
ontology is an ontology that contains comprehensive information of the port which has the goal
to achieve fully automated operations. This ontology mainly includes ship management, container
management, port cargo handling management, port hydrological management and many other
objectives. Among them, port hydrology management also contains many concepts about water
environment for a port. The examples under these concepts are built on the basis of a large number
of sensors in a port. The brief structure of this domain ontology for port monitoring is shown in
the Table 3.

Table 2. The Ship Berth Management Ontology.

Ship Berth
Management

Multi-level regular
plan management

First-level plan

Next concept list: Air
Temperature, Humidity, Wind
Power, Atmospheric Pressure,

Geology, Water Quality, Silt
Amount, etc.

Second-level plan

Next concept list: Air
Temperature, Humidity, Wind
Power, Atmospheric Pressure,

Geology, Water Quality, Silt
Amount, etc.

Three-level plan

Next concept list: Air
Temperature, Humidity, Wind
Power, Atmospheric Pressure,

Geology, Water Quality, Silt
Amount, etc.

. . . . . . . . . . . .

Emergency plan
management

Emergency situations I . . . . . .

Emergency situations II . . . . . .

. . . . . . . . . . . .
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Table 3. The Port Monitoring Ontology.

Port Monitoring

ship management . . . . . .

container management . . . . . .

port cargo handling
management . . . . . .

port hydrological
management

Class A water
environment

Next concept list: Rainfall,
Discharge of Water, Light

Intensity, Temperature, Depth of
Water, Wind Velocity Value,

Pressure Value, Air Water Content,
PH Value, etc.

Class B water
environment

Next concept list: Rainfall,
Discharge of Water, Light

Intensity, Temperature, Depth of
Water, Wind Velocity Value,

Pressure Value, Air Water Content,
PH Value, etc.

Class C water
environment

Next concept list: Rainfall,
Discharge of Water, Light

Intensity, Temperature, Depth of
Water, Wind Velocity Value,

Pressure Value, Air Water Content,
PH Value, etc.

. . . . . . . . . . . .

. . . . . . . . . . . .

Based on the above description of the experimental domain ontologies, we partially select and
test seven concepts in the ship berth management ontology and nine concepts in the port monitoring
ontology to test our concept-based similarity calculation method between ontologies. The definition of
each concept consists of 6 parts: concept name, concept instance set, concept semantic neighbor set,
concept composition, function and attribute set.

Conceptual instance sets are used to calculate similarity based on conceptual instances; concept
names and attribute set are used together to calculate semantic similarity; the semantic neighbor set of
the concept is used to calculate structural similarity. The set of attributes for each concept is the union
of all the different kinds of sensor attributes we have collected. This operation provides a unified
representation of sensor data.

For the sensor instance, the different attribute set distributions are shown in the following Table 4.
The total represents the number of instances contained under each concept name, that is, the size of
the concept instance set. Similarly, we classify the concept of instances according to the values of each
attribute set according to the random forest algorithm. Figure 1 and Table 4 reflect the distribution
of the conceptual instances. RF, DIW, LI, T, DEW, WVV, PV, AWC, PHV, AT, H, WP, AP, G, WQ,
SA are the abbreviations of Rainfall, Discharge of Water, Light Intensity, Temperature, Depth of Water,
Wind Velocity Value, Pressure Value, Air Water Content, PH Value, Air Temperature, Humidity,
Wind Power, Atmospheric Pressure, Geology, Water Quality, Silt Amount respectively.

As shown in Table 4, we can see that the concept instance set size of the RF is 55, and the instance
with a size of 8 can also be used as part of the concept instance set of AT. This is the case because the
concept of rainfall has a certain overlapping relationship with the concept of temperature. Therefore,
according to the data collected by the sensors on each attribute, there is also an intersection part of
their instance sets.

Using the similarity computation method based on instance strategy, we get the similarity between
the two ontologies in the following Table 5. Tables 6 and 7 respectively represent similarity results
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based on semantic strategy and results based on structural strategy. The bold numbers in the tables
indicate the highest value in each column. Figures 2–4 show similarity calculation results in a more
intuitive form.

Table 4. Attribute intersection distribution of random forest division.

RF DIW LI T DEW WVV PV AWC PHV Total

AT 8 3 12 17 3 8 8 10 1 70
H 20 2 8 11 4 5 9 16 2 77

WP 10 9 1 3 0 20 6 6 0 55
AP 9 0 2 4 0 7 14 4 0 40
G 1 1 8 6 1 2 0 5 14 38

WQ 6 13 4 3 6 4 0 0 10 46
SA 1 17 1 0 25 0 0 0 9 53

Total 55 45 36 44 39 46 37 41 36
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Table 5. Similarity results based on instance strategy.

RF DIW LI T DEW WVV PV AWC PHV

AT 0.222 0.053 0.333 0.405 0.051 0.159 0.194 0.195 0.057
H 0.356 0.079 0.208 0.243 0.051 0.091 0.250 0.366 0.086

WP 0.133 0.184 0.042 0.054 0.026 0.477 0.139 0.171 0
AP 0.156 0 0.083 0.081 0 0.159 0.361 0.098 0.029
G 0.022 0.026 0.208 0.135 0.051 0.023 0 0.146 0.429

WQ 0.089 0.395 0.083 0.081 0.179 0.068 0.056 0.024 0.229
SA 0.022 0.263 0.042 0 0.641 0.023 0 0 0.171

Table 6. Similarity results based on semantic strategy.

RF DIW LI T DEW WVV PV AWC PHV

AT 0.161 0.083 0.091 0.327 0.094 0.042 0.071 0.059 0.036
H 0.226 0.167 0.682 0.308 0.125 0.083 0.107 0.088 0.679

WP 0.032 0 0.045 0.058 0 0.833 0.071 0.029 0.143
AP 0 0.028 0 0.038 0 0.042 0.679 0 0.107
G 0 0 0.045 0.019 0.031 0 0 0.088 0

WQ 0.484 0.528 0.091 0.135 0.594 0 0.071 0.588 0.036
SA 0.097 0.194 0.045 0.115 0.156 0 0 0.147 0

Table 7. Similarity results based on structural strategy.

RF DIW LI T DEW WVV PV AWC PHV

AT 0.187 0.317 0.200 0.274 0.199 0.195 0.012 0.119 0.245
H 0.263 0.060 0.220 0.086 0.012 0.116 0.050 0.166 0.031

WP 0.044 0.075 0.076 0.193 0.046 0.049 0.079 0.005 0.189
AP 0.101 0.113 0.213 0.122 0.160 0.249 0.314 0.211 0.120
G 0.263 0.306 0.085 0.015 0.228 0.175 0.207 0.122 0.145

WQ 0.101 0.121 0.172 0.183 0.133 0.177 0.132 0.164 0.194
SA 0.041 0.008 0.034 0.127 0.223 0.039 0.207 0.213 0.077
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Different from other synthetic methods of similarity computation, we use the analytic hierarchy
process (AHP) and three different strategies to screen similarity. In this experiment, first we eliminate
concept pairs below the threshold by using a semantic-based similarity strategy. Assuming a threshold
of 0.03, concept pairs like geology-rainfall, atmospheric pressure-rainfall, wind power-discharge of
water, geology-discharge of water can be eliminated. Then we set the threshold to 0.04 and further
filter based on structural strategy. Finally, by setting the threshold to 0.2, we can use the instance-based
similarity strategy to get the result of the concept match.

As shown in Figure 5 and Table 8. This method, on the one hand, eliminates the need for domain
experts to adjust the weight of the comprehensive calculation. On the other hand, it reduces the
calculation consumption of some unnecessary concepts.Sensors 2019, 19, x FOR PEER REVIEW 18 of 22 
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According to the results shown in Table 8, where the bold numbers in the table indicate the
highest value in each column, we use the AHP method to set the screening thresholds for each level,
and the results of the three similarity calculation strategies mentioned in this paper are processed
hierarchically. As can be seen from the data in the above table, after the multi-strategy similarity
evaluation, some concept pairs have strong similarities, such as RF-H, DIW-WQ, LI-AT, and the



Sensors 2019, 19, 1193 17 of 21

like. At the same time, the weaker similarity between most conceptual pairs is reduced to zero.
After processing the data shown in Table 8 with the computations of steps 4 and 5 in the AHP
algorithm shown in Algorithm 5, we use the concept pairs with the largest similarity as the mapping
relationship of the corresponding concepts in the ontologies.

Table 8. Similarity results based on structural strategy.

RF DIW LI T DEW WVV PV AWC PHV

AT 0.222 0 0.333 0.405 0 0 0 0 0
H 0.356 0 0.208 0.243 0 0 0.25 0.366 0

WP 0 0 0 0 0 0.477 0 0 0
AP 0 0 0 0 0 0 0.361 0 0
G 0 0 0.208 0 0 0 0 0 0

WQ 0 0.395 0 0 0 0 0 0 0.229
SA 0 0 0 0 0.641 0 0 0 0

In terms of the domain ontologies we evaluated in this experiment—ship berth management
ontology and port monitoring ontology—the experimental results of our ontology mapping can
effectively help to link multiple ontologies, thus achieving the linkage between port monitoring and
ship berth management. This intelligent linkage is very useful in real-world autonomous industrial
operations such as maintenance work for ship berths in our experiment. By monitoring the port
hydrology in real time through many sensors and mapping the hydrological monitoring data to the
ship berth management system, effective ship berth maintenance can be achieved by a multi-level
management plan and a rule reasoning library.

In addition, in order to further evaluate our proposed method, we also utilize the ontology
mapping calculation strategies proposed in the other four ontology mapping systems (Rimom [52],
ASMOV [53], Falcon [54] and OntoDNA [55]) in our experimental system too. We evaluate the
performance of our method by conducting two sets of experiments. We first use all these five strategies
to perform the ontologies’ correlation task with the sensor data and two domain ontologies that are
used in our simulation experiment; the experimental results are shown in Table 9. As our method
uses sensor data to generate sensor instances to increase the instance set size of the ontology concept,
the degree of similarity between concepts in the perspective of instance collection can be measured.
This makes our method superior to others. It can be seen from the experimental results that, compared
with other ontology mapping methods, our method has achieved relatively better results in term
of recall (Rec.), precision (Pre.) and F-measure (F.), whose calculation method is defined as the
following formulae in [19,20]. In the evaluation, we divide the prediction result into four cases (true
positive, true positive, false positive and false negative). In the formula, true positive, true negative,
false positive, and false negative represent the specific values in different cases.

Table 9. Experimental comparison with other methods.

Rec. Pre. F.

Rimom 0.85 0.94 0.893
ASMOV 0.82 0.87 0.844

Falcon 0.76 0.91 0.828
OntoDNA 0.77 0.88 0.821
This paper 0.85 0.95 0.897

recall(Rec.) =
TruePositive

TruePositive + FalsePositive
. (19)

precision(Pre.) =
TruePositive

TruePositive + FalseNegative
. (20)
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F−measure(F.) =
2× recall(Rec.)× precision(Pre.)

recall(Rec.) + precision(Pre.)
. (21)

In terms of ontology mapping performance, another set of experiments is conducted to evaluate the
effectiveness of the similarity computation strategy between ontology concepts that we proposed in
Section 4. We compare our methods again with the four ontology mapping calculation strategies of
other mapping systems (Rimom, ASMOV, Falcon, OntoDNA). These experiments used the ontologies
numbered as #101–#304 in the OAEI standard test dataset benchmarks [56] as the evaluation target.
Among them, ontology #101 is used as reference ontology, #1XX represents all special ontologies,
#2XX represents all ontologies lacking semantic information in some aspects, and #3XX represents
all actual ontologies. As shown in Table 10, where the bold numbers in the table indicate the highest
value in each column, the results of the ontology mapping experiment are evaluated in terms of the
recall (Rec.), precision (Pre.) and F-measure (F.), which are defined above. It can be seen from the
experimental results that the multi-strategy similarity calculation method of this paper can achieve
almost all mapping relationships in the OAEI data set.

Table 10. Experimental results based on OAEI data set.

Rec. Pre. F.

#1XX #2XX #3XX #1XX #2XX #3XX #1XX #2XX #3XX

Rimom 1.00 0.79 0.87 0.99 0.97 0.96 0.995 0.871 0.913
ASMOV 1.00 0.84 0.85 0.98 0.88 0.71 0.989 0.860 0.774
Falcon 1.00 0.86 0.79 0.98 0.96 0.87 0.989 0.907 0.828

OntoDNA 1.00 0.76 0.78 0.97 0.78 0.94 0.985 0.770 0.853
This paper 1.00 0.87 0.85 0.99 0.95 0.88 0.995 0.908 0.865

6. Conclusions

Associating sensor data with existing domain ontologies is an effective way to give richer semantic
meaning to the sensor data, and to realize the sharing, reuse and fusion of that sensor data. In this
work, we have proposed a mechanism to associate sensor data with multiple domain ontologies.
Our mechanism uses a random forest-based learning model to classify the sensor instances, thus greatly
reducing the workload of manual analysis and labeling. In the meantime, by adding the classified
sensor instances into the instance set of specific concepts of the ontology, the instance set can be
effectively expanded. Based on this, a novel multi-strategy method is proposed to construct the
ontology relations, and we use the analytic hierarchy process to analyze the similarity of concept
pairs in ontologies. Through the calculation of semantic similarity, instance similarity, and structural
similarity, we associate the concept pairs with high similarity in the ontologies, and finally establish
the mapping of sensor data and multiple domain ontologies. In future work, we will continue to
optimize the strategy for associating sensor data with ontologies to make better use of the enormous
heterogenous sensor data.
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