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Abstract: Coverage is a vital indicator which reflects the performance of directional sensor networks
(DSNs). The random deployment of directional sensor nodes will lead to many covergae blind areas and
overlapping areas. Besides, the premature death of nodes will also directly affect the service quality of
network due to limited energy. To address these problems, this paper proposes a new area coverage and
energy consumption optimization approach based on improved adaptive particle swarm optimization
(IAPSO). For area coverage problem, we set up a multi-objective optimization model in order to improve
coverage ratio and reduce redundancy ratio by sensing direction rotation. For energy consumption
optimization, we make energy consumption evenly distribute on each sensor node by clustering network.
We set up a cluster head selection optimization model which considers the total residual energy ratio
and energy consumption balance degree of cluster head candidates. We also propose a cluster formation
algorithm in which member nodes choose their cluster heads by weight function. We next utilize an
IAPSO to solve two optimization models to achieve high coverage ratio, low redundancy ratio and energy
consumption balance. Extensive simulation results demonstrate the our proposed approach performs
better than other ones.

Keywords: directional sensor network; area coverage; cluster; particle swarm optimization; energy
consumption balance

1. Introduction

Directional sensor networks (DSNs) consist of low-energy, low-cost, small-size and multi-function
directional sensor nodes which cooperate to collect video monitoring data of target area and communicate
with a remote base station (BS) [1]. DSNs have wide application prospects in industry control, environment
monitoring and city management etc. [2]. Coverage is an important factor which directly reflects the
service quality of DSN. In actual application scenarios, random deployment of sensor nodes will lead
to many coverage overlapping areas and coverage blind areas. Besides, the directional sensor nodes
are generally powered by battery with limited energy, the premature death of nodes will also affect the
service quality of network. Therefore, in a random deployed DSN with limited energy, we should not only
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consider how to reduce coverage overlapping areas and coverage blind areas but also consider how to
prolong network lifetime by balancing energy consumption of each node.

In a randomly deployed DSN, the directional sensor nodes are rotatable and with limited energy.
Considering that the position, sensing radius and sensing angle of sensor nodes are invariable, it is
necessary to improve coverage ratio and reduce redundancy ratio by rotating sensing direction. Traditional
coverage optimization methods generally consider that coverage ratio and redundancy ratio have a
negative correlation. The redundancy ratio will certainly drop with the improvement of coverage ratio.
However, the correlation between coverage ratio and redundancy ratio is not obvious in the application
scenario where the target area is multiply covered. If the coverage ratio is improved, the redundancy ratio
may also improve if the new covered area has redundancy. On the contrary, with decrement of coverage
ratio, the redundancy ratio may also get reduced if reduced coverage area has redundancy. To address
the problems of multiple area coverage, this paper proposes a sensing direction rotation approach to
achieve high coverage ratio and low redundancy ratio by searching for optimal sensing direction group.
This problem is essentially a combinatorial optimization problem which is NP-hard [3].

For a directional sensor node, it is generally believed that the energy consumption consists of two
main components: the sensing energy consumption for data collection and the communication energy
consumption for data transmission. Considering that all the sensor nodes in a monitoring area are opened
during the service period, it is not necessary to consider how to control the sensing energy consumption of
the nodes by turning the nodes on or off. In order to achieve energy consumption balance of the network,
this paper only considers how to control the communication energy consumption.

Communication energy consumption mainly comes from data communication between nodes, and it
is important to reduce redundant data communication by optimizing the topology of the network and
designing a reasonable data communication protocol. Cluster is one of the most effective network layering
optimization technologies which is employed to conserve energy of sensor nodes [4]. The structure of a
clustered DSN is shown in Figure 1.

Base Station

Cluster

Member node

Cluster head

Figure 1. Cluster based directional sensor network.

The network is divided into many clusters, and each cluster consists of a cluster head and multiple
member nodes. The member node is only responsible for collecting and transmitting data. The cluster
head receives monitoring data from member nodes within cluster and send them to a remote BS after
fusion in addition to having the same function as the member node. In the process of clustering, cluster
head selection plays a vital role in distributing communication energy consumption on each node as it has
a direct effect on the energy conservation of member nodes. This paper mainly considers the total residual
energy ratio and energy consumption balance degree of the cluster head candidate nodes. Compared
to the traditional cluster head selection approach which can only be applied to small-scale networks,
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the proposed approach can effectively achieve energy consumption balance for networks of all scales.
The cluster head selection is also an optimization problem which has been proven to be NP-hard [5].

Based on the above analysis, the sensing direction rotation and cluster head selection are all NP-hard
problems. For this type of problems, a meta-heuristic algorithm such as simulated anneal, genetic algorithm
and particle swarm optimization are suitable for solving it [6]. The designed algorithm needs to consider
time, resource consumption and accuracy. Particle swarm optimization (PSO) is a better choice for
the NP-hard problems due to its easy implementation and high precision. In order to guarantee the
adaptability of the algorithm, we make an improvement for the inertia weight.

In this paper, we mainly concentrate on area coverage optimization and energy consumption
optimization problems. For the area coverage problem, we set up a multi-objective optimization model
due to the uncertainty between coverage ratio and redundancy ratio. We reduce coverage blind areas
and coverage overlapping areas by sensing direction rotation. For energy consumption optimization
problem, we set up cluster head selection optimization model in order to achieve communication energy
consumption balance. We make the energy consumption evenly distribute on each sensor node by
considering the total residual energy ratio and energy consumption balance degree of the cluster head
candidates nodes in each round. We also propose a cluster formation algorithm in which the member
nodes join their cluster heads by energy efficiency weight function. We next propose an improved adaptive
particle swarm optimization (IAPSO) to solve the two optimization models to achieve high coverage
ratio, low redundancy ratio and energy consumption balance. Compared to traditional PSO, we make an
improvement for inertial weight, and the IAPSO has higher convergence ratio and operator precision.

The rest of the paper is organized as follows. Section 2 reviews the previous related work.
The preliminaries of network model, directional sensor model and energy consumption model are provided
in Section 3. In Section 4, the multi-objective area coverage optimization problem is described. Section 5
analyzes the cluster-based energy consumption optimization problem. Section 6 presents our proposed
approach. Section 7 conducts simulation experiment to evaluate the efficiency of the proposed approach.
The conclusion is in Section 8.

2. Related Works

In order to improve service quality of DSN, it is necessary to consider coverage and energy
consumption. On one hand, we should study how to improve area coverage quality by rotating sensing
directions of sensor nodes, on the other hand, we should consider how to guarantee energy consumption
balance by clustering network. This section reviews the existing area coverage optimization approaches
and cluster-based energy consumption optimization approaches.

2.1. Area Coverage Optimization Approaches

Many optimization approaches have been proposed for area coverage problems. Among them,
some explore the movement-assisted sensor node deployment by using mobile nodes to improve
coverage quality [7–12], and these approaches are only suitable to the scenario where the sensor node is
omnidirectional.

In Ref. [7], the authors propose a virtual force algorithm as a sensor deployment strategy to enhance
the coverage after an initial random placement of sensor nodes. In Ref. [8], a localized scan-based
movement-assisted sensor deployment method is proposed to use scan and dimension exchange to
achieve a balanced state. To address another coverage problem, authors in Ref. [9] propose the optimal
coverage in directional sensor networks problem to cover maximal area while activating as few as sensor
nodes as possible. To study how to place mobile sensor nodes to get high coverage, Ref. [10] designs two
sets of distributed approaches for controlling the movement of sensor nodes. In Ref. [11], the authors
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propose a harmony search optimization algorithm to solve area coverage problem. A previous study
in Ref. [12] proposes a learning automata-based heuristic algorithm to find a near optimal solution to
the proxy equivalent degree-constrained minimum-weight extension of the connected dominating set
problem.

With the increasing application of surveillance camera and video sensing network, some approaches
for directional sensor networks have been proposed. Some consider both the rotation and movement of
sensor nodes [13–18], and the others only consider the rotation of static sensor nodes [19–22].

Ref. [13] proposes a moving algorithm based on virtual forces of directional sensor nodes to eliminate
coverage holes. In Ref. [14], the authors present distributed self-deployment schemes of mobile sensor
node according to the circumcenter and incenter of sensing direction. Taking another perspective on the
coverage problem, authors in Ref. [15] propose two Enahanced Deployment algorithms namly EDA-1
and EDA-2 to maximize coverage ratio for heterogeneous directional mobile network. To address the
deployment problem, authors in Refs. [16,17] transform the area coverage problem into cell coverage
problems by exploiting the Voronoi diagram. Ref. [16] proposes a distributed approach to enhance the
overall area coverage, and Ref. [17] presents three local coverage optimization algorithm to improve
coverage ratio. Different from above two approaches, Ref. [18] presents several coverage increment
algorithms namely vertex-based adjustment with Voronoi diagram (V-VD), edge-based adjustment with
Voronoi diagram (E-VD), edge-based adjustment with Delaunay triangulation (E-DT) and angle-based
adjustment with Delaunay triangulation (A-DT).

Authors in Ref. [19] introduce the concept of sensing centroid into an omni-directional one, and the
artificial fish-swarm algorithm is utilized to reduce the coverage hole and achieve the global coverage
optimization. In Ref. [20], the proposed approach studies how many sensor nodes are needed to meet a
given required coverage probability under the circumstance that the sensing radius is adjustable. However,
these two approaches ignore the redundancy ratio which is also a vital factor for improving coverage
quality. In Refs. [21,22], the coverage ratio and redundancy ratio are considered at the same time. Among
those, Ref. [21] proposes a virtual potential field based coverage algorithm to increase the coverage ratio
by forcing sensor nodes to turn form overlapping region to coverage holes after random deployment.
In Ref. [22], a virtual centripetal force-based coverage-enhancing algorithm is proposed to enhance the
coverage by redeploying sensor nodes under the repel force-based centripetal force to shut off redundant
nodes. However, these two approaches consider that coverage ratio and redundancy ratio have a negative
correlation, and they are not suitable to the scenario where the target area is multiply covered.

Our proposed approach addresses the area coverage problem of DSN consisting of static and rotatable
sensor nodes. With the objective of improving coverage ratio and reducing redundancy ratio by sensing
direction rotation, we set up a multi-objective model in order to achieve high coverage ratio and low
redundancy ratio. We next utilize an IAPSO to search for optimal sensing direction group to achieve
multi-objective optimization for DSN. Compared to existing approaches [21,22], our proposed area
coverage optimization approach can be suitable for multiply covered area where the negative correlation
between coverage ratio and redundancy ratio is not obvious, and the IAPSO can effectively avoid local
optima to some degree.

2.2. Cluster-Based Energy Consumption Optimization Approaches

A large number of cluster-based energy consumption optimization approaches have been proposed
for energy consumption balance, and they can be categorized into two types: meta-heuristic approaches
and nature-inspired approaches.

Meta-heuristic approaches are proposed on the basis of intuitive or empirical construction, and they
usually have some randomness and uncertainty. The classic LEACH (Low-Energy Adaptive Clustering
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Hierarchy) is proposed in Ref. [23]. LEACH can effectively reduce energy consumption to some extent,
but it may select a cluster head with low residual energy and shorten the network lifetime. Therefore,
many approaches have made some improvement on the basis of LEACH. HEED in Ref. [24] selects
cluster heads according to a hybrid of the node residual energy and a secondary parameter such as node
proximity to its neighbors or node degree. PEGASIS in Ref. [25] makes sensor node communicate only
with a close neighbor and takes turns transmitting to the base station. In Ref. [26], TL-LEACH saves
energy consumption by using random rotation of local cluster base station. DL-LEACH in Ref. [27]
increases the energy efficiency of sensor node by reducing the transmission distance and simplifying the
transmission routine for short-range transmission. In Ref. [28–30], the authors propose energy efficient
cluster based routing schemes for reliable networks. In Ref. [31], E-LEACH uses homomorphic encryption
to provide secure data aggregation and reduce energy consumption. According to Ref. [32], M-LEACH is
better than the TL-LEACH, and E-LEACH is better than M-LEAC. Although these approaches have better
performance than LEACH, they cannot guarantee the energy consumption balance of sensor nodes when
the size of the network is large.

Other approaches are proposed in the literature based on application of nature-inspired approaches.
Among them, some are the improved LEACH. For example, LEACH-C in Ref. [33] has better performance
than LEACH because it considers the intra-cluster distance and residual energy of sensor nodes in the
phase of cluster head selection. In Ref. [34], a PSO based approach is proposed to select the optimal
location of cluster head. Although these two approaches can guarantee the energy consumption balance of
cluster head, they ignore the sink distance which is also an important factor to improve energy efficiency
for direct communication of data to the base station. LEACH-FL takes battery level, distance and node
density into consideration [35], and it easily raises complexity and the accuracy problem in the fuzzification
and defuzzification process.

As nature-inspired approaches which only utilize approximation algorithm to achieve energy
consumption balance. PSO is utilized to achieve cluster head selection in Refs. [36–38]. The authors
in Ref. [36] increase the network lifetime by reducing the total communication distance, and the authors
in Ref. [37] consider the intra-cluster distance and the residual energy of cluster head candidates.
In Ref. [38], the proposed approach considers the residual energy, intra-cluster distance, node
degree and head count of the probable cluster heads. However, these three approaches cannot
guarantee the performance with the size of the network verifying because they ignore the sink distance.
In Ref. [39], the authors propose an energy efficient clustering scheme based on recent variable population
based chemo-inspired approach. To prolong the network lifetime, a PSO-based multiple-sink placement
algorithm is proposed in Ref. [40]. However, it ignores the fault-tolerance of a network.

Our proposed cluster-based approach belongs to a nature-inspired approaches. In the phase of
cluster head selection, we consider the total residual energy and energy balance degree of the cluster
head candidate nodes, and the two parameters can effectively guarantee the energy consumption
balance of network whereas the existing approaches only consider the distance parameters or residual
energy [33,34,36–38]. We also propose a cluster formation algorithm in which the member nodes join in a
cluster head by a weight function. However, in the existing approaches [23,33,36–38], the member nodes
join the cluster head by only considering distance, and it may cause imbalance load of cluster head energy
consumption.

Based on the above analysis, area coverage optimization and energy consumption optimization are
two key processes for improving service quality of DSN. However, they are usually studied in separate
according to existing literatures. Most of the exiting approaches about area coverage optimization for DSN
only focus on how to improve coverage ratio and ignore how to reducing redundancy ratio. Although some
researchers consider the redundancy ratio, their proposed approaches are only suitable to the scenarios
where the coverage ratio and redundancy ratio have the negative correlation. The existing cluster-based
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energy consumption optimization approaches cannot effectively guarantee energy consumption balance
for network with different size because they usually only consider distance parameters and residual
energy in the cluster head selection phase. In this paper, we take both area coverage quality and energy
consumption into account and propose an approach based on IAPSO to achieve high coverage ratio and
low redundancy ratio and energy consumption balance for DSN.

The contributions of this paper are as follows:

1. We propose a multi-objective area coverage optimization model which considers coverage ratio and
redundancy ratio in order to reduce coverage blind areas and coverage redundant areas. This model
is suitable for the scenario where the target area is multiply covered.

2. We propose a cluster head selection optimization model which considers the total residual energy
ratio and energy balance degree of the cluster head candidate nodes to guarantee energy efficiency.
We also propose an energy efficiency algorithm in the cluster formation phase.

3. We utilize an improved adaptive particle swarm optimization (IAPSO) to solve multi-objective area
coverage optimization model and cluster head selection optimization model to achieve high coverage
ratio, low redundancy ratio and energy consumption balance. Compared to traditional PSO, IAPSO
has higher convergence ratio and operator precision.

3. Preliminaries

3.1. Network Model

Suppose that there are n sensor nodes randomly deployed in the m1 ×m2 rectangle monitoring area.
In order to simplify the problem analysis, some assumptions about the DSN scenario are given as follows.

(1) Each sensor node could collect data and send them to BS.
(2) The position information of sensor nodes could be obtained by BS.
(3) All directional sensor nodes had the same initial energy, sensing radius, angle of view (AoV) and

communication ability.
(4) Each sensor node could be cluster head or member node.
(5) Each sensor node could reduce data transmission by data fusion.
(6) All directional sensor nodes could guarantee the network connectivity.

3.2. Directional Sensing Model

Compared to traditional omni-directional sensor node, which has a circle sensing range, the sensing
area of a directional sensor node is a smaller sector-like area [16]. As shown in Figure 2, the sensing area of
a directional sensor node is a sector determined by a 5-tuple

(
xs, ys,

−→
D , α, R

)
, where xs, ys is the coordinate

of the node,
−→
D is the working direction of S, α is the angle of view (AoV), and R is the sensing radius.

In addition, ρ is the angle value of working direction
−→
D relative to the horizontal.
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Figure 2. Directional sensor model.

Figure 2 also shows the coverage situation of a point in the monitoring area, it can be observed
that point P can be covered by the directional sensor node S if and only if the following two conditions
are satisfied.

(1) Let dis (S, P) be the distance between S (xs, ys) and P (x, y), and it must be no more than the sensing
radius R, i.e., dis (S, P) ≤ R:

dis (S, P) =
√
(x− xs)

2 + (y− ys)
2 ≤ R (1)

(2) The absolute included angle between
−→
SP and working direction

−→
S must be no more than the half of

AoV, i.e., α/2

δ= arccos
−→
SP · −→D∣∣∣−→SP

∣∣∣ ≤ α

2
(2)

In brief, a point P (x, y) is said to be covered by the sensor node S if and only if (1) and (2) are satisfied
with the sensor node coordinate (xs, ys) and characteristic parameters R and α.

3.3. Energy Consumption Model

The energy consumption model in this paper is the same as the radio model in Ref. [23]. In this
model, the transmitter dissipates energy to run the radio electronics and the power amplifier. The receiver
dissipates energy to run the radio electronics.

The radio electronics and power amplifier are responsible to send data. The energy consumption
includes two modes: (1) free space mode and (2) multipath fading mode. If the data transmission distance
d is less than the threshold distance d0, free space mode is used. Otherwise multipath fading mode is used.
Let the Signal to Noise Ratio (SNR) be reasonable in the circuit, the energy consumption that a sensor node
sends l-bit data packet is given by the following equations.

ETx (l, d) =

{
l × Eelec + l × ε f s × d2, d ≤ d0

l × Eelec + l × εmp × d4, d > d0
(3)

where Eelec is the energy dissipated per bit to run the transmitter or the receiver circuit. ε f s and εmp are the
power amplification energy consumption coefficients in different energy consumption modes. d0 is the
threshold transmission distance, and d0 is given by

d0 =

√
ε f s

εmp
(4)
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To receive l-bit data, the energy consumed by the receiver is given by

ERx (l) = l × Eelec (5)

In general, the communication energy parameters can be set as: ETx = 50 nJ/bit, ε f s = 10 pJ/bit/m2,
εmp = 0.0013 pJ/bit/m4, d0 = 87 m.

4. Multi-Objective Area Coverage Optimization Problem

To improve the coverage quality of DSN, we should improve coverage ratio and reduce redundancy
ratio by sensing direction rotation, and it is a multi-objective optimization problem. It is important to
derive a multi-objective area coverage optimization model after coverage situation verification.

4.1. Coverage Situation Verification

In order to calculate coverage ratio and redundancy ratio, we conduct grid partition in the monitoring
area. As shown in Figure 3a, the area can be regarded as a collection of points when the grid is small
enough. Let the monitoring area be a m1 ×m2 rectangle area, and P (x, y) , 0 ≤ x ≤ m1, 0 ≤ y ≤ m2 is a
point in the area. We define 2-dimensional arrays C and R to represent coverage and redundancy situations
of each point. We justify their coverage and redundancy situations according to Equations (1) and (2).
If the point can be covered by sensor nodes, C [x] [y] = 1, otherwise C [x] [y] = 0. If the point can be
covered by at least two sensor nodes, R [x] [y] = 1, otherwise R [x] [y] = 0.

Due to the fixed position and limited sensing range of directional sensor node, we only need to justify
the coverage and redundancy situations of the grid points in the rectangle area in the Figure 3b in order to
reduce calculation complexity, and the four peak points are defined as follows.

xsl = max {xs − R, 0} (6)

xsh = min {m1, xs + R} (7)

ysl = max {ys − R, 0} (8)

ysh = min {ys + R, m2} (9)

Y

(0,0) X

2m

1m

(a)
X

Y

1
m

2
m

( )s sS x , y

( )sl shx , y ( )sh shx , y

( )sl slx , y ( )sh slx , y

R

(b)

Figure 3. Coverage situations varication of monitoring area. (a) Monitoring area gridding; (b) Sensing
range of sensor node.

In Algorithm 1, the four peak coordinates are determined according to the coordinate of sensor node
(xs, ys) and sensing radius R. The algorithm justifies the coverage and redundancy situations of each point
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in the rectangle area, and the values of arrays C and R are determined. The circle number of the algorithm
is n, and the time complexity is only o

(
R2) when the coverage situation of each point in the rectangle area

is justified.

Algorithm 1: Coverage verification algorithm based on the sensing area of sensor node

Input: Sensor nodes group: s = {s1, s2, ..., sn}
Sensing direction and sensing radius of sensor node:

−→
D , R

The length and width of target area: m1, m2
Output: The coverage situations of grid points in target area

1: Calculate the coordinates of four peak points xsl , xsh, ysl , ysh
2: for i = 1 to n do
3: for x = xsl to xsh do
4: for y = ysl to ysh do
5: if P (x, y) can be covered by S (xs, ys) then
6: C [x] [y] = 1;%Justify whether P (x, y) is covered.
7: end if
8: if P (x, y) can be covered by at least two sensor nodes. then
9: R [x] [y] = 1;%Justify whether P (x, y) is covered by at least two sensor nodes.
10: end if
11: end for
12: end for
13: end for

4.2. Multi-Objective Area Coverage Optimization Model

Based on coverage situation verification for grid points, we set up a multi-objective area coverage
optimization model in order to improve coverage quality. The relative fitness function considers the
following two factors.

(1) Missed ratio

After grid partition is conducted in the area, coverage ratio is approximately equal to the ratio of the
sum of covered grid points to the sum of points in the monitoring area. Coverage ratio is an important
evaluating factor for monitoring quality, and it is important to reduce the missed coverage ratio. One of
the objective function is as follows.

f1 = 1−
∑m1

x=0 ∑m2
y=0 C [x] [y]

(m1 + 1) (m2 + 1)
(10)

where ∑m1
x=0 ∑m2

y=0 C [x] [y] is the sum of the points covered by one directional sensor node,
and (m1 + 1) (m2 + 1) is the sum of grid points in monitoring area. The objective is to minimize the
objective function value.

(2) Redundancy ratio

It is defined as the ratio of the sum of grid points covered by at least two sensor nodes to the sum of
points in the monitoring area. Considering the deployment cost, it is wise to reduce redundancy ratio to
avoid the waste of resources. The other objective function is defined as follows.

f2 =
∑m1

x=0 ∑m2
y=0 R [x] [y]

(m1 + 1)× (m2 + 1)
(11)
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where ∑m1
x=0 ∑m2

y=0 R [x] [y] is the sum of the points covered by at least two directional sensor nodes,
and (m1 + 1)× (m2 + 1) is the sum of grid points in monitoring area. The objective is to minimize the
objective function value.

In our approach, we choose to minimize the linear combination of the above two objective functions
instead of minimizing them individually because the two objectives conflict with each other. To optimize
the two objectives at the same time, the coverage optimization fitness function is defined as follows.

Fitness1 = α× f1 + (1− α)× f2, 0 < α < 1 (12)

where the α is a constant defined by weighing the importance of the sub-objective, and its value is
between 0 and 1. Our objective is to minimize the fitness value in order to achieve better area coverage
optimization effect.

The multi-objective area coverage problem can be summarized as searching for a sensing direction
group of sensor nodes

(−→
D1,
−→
D2,
−→
D3,
−→
D4, ...,

−→
Dn

)
. When all sensor nodes in network rotate their sensing

directions according to this group, we can improve coverage ratio and reduce redundancy ratio.

5. Cluster-Based Energy Consumption Optimization Problem

The main process of cluster consists of two phases: cluster head selection and cluster formation. In the
cluster head selection phase, we select the optimal cluster head group amongst the directional sensor
nodes in monitoring area. In the cluster formation phase, the member nodes choose their cluster heads to
join in by energy efficiency weight. This section designs a cluster head selection optimization model and
propose a cluster formation algorithm based on cluster head weight.

5.1. Cluster Head Selection Optimization Model

To address the cluster head selection problem, it is important to achieve energy consumption balance
of network. We set up a cluster head selection optimization model which depends on the following two
relative energy efficiency factors.

(1) Total residual energy ratio of cluster head candidates

It is defined as the ratio of total residual energy of all active sensor nodes ni, i = 1, 2, ..., n in the DSN
to the total residual energy of cluster head candidates CHc, c = 1, 2, ..., k in current round. In the data
transmission phase, the cluster heads receive the data from member nodes and send aggregated data to
the BS. The energy consumption of cluster heads is much more than member nodes so it is necessary to
guarantee enough residual energy. One of the objective function is defined as follows.

f3 = ∑n
i=1 S_E (ni) / ∑k

c=1 C_E (CHc) (13)

where S_E (ni) is the residual energy of sensor node ni, and C_E (CHc) is the residual energy of cluster
head candidate CHc in current round. The objective is to minimize the objective function value.

(2) Energy consumption balance degree of the cluster head candidates

It is defined as the energy consumption variance of the cluster head candidates in current round.
To improve the lifetime of network, the BS needs to ensure that the energy consumption is evenly
distributed among all the cluster heads so it is necessary to guarantee all the cluster heads consume
approximate energy. The second objective function is defined as follows.
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f4 =

√
∑k

c=1 [CEr (CHc)− u]
2

(14)

where CEr (CHc) is the energy consumption of a cluster head candidates in current round, and u is the
average energy consumption of all cluster head candidates. The objective is to minimize the objective
function value.

The above two objectives are not conflicting with each other so the cluster head selection fitness
function is defined as a linear combination of the two objective functions.

Fitness2 = β× f3 + (1− β)× f4, 0 < β < 1 (15)

where the β is a constant defined by weighing the importance of the sub-objective, and its value is between
0 and 1. Our objective is to minimize the fitness value in order to achieve better cluster head selection
optimization effect.

The cluster head selection optimization problem can be summarized as searching for a cluster head
group (CH1, CH2, CH3, CH4, ..., CHc) to minimize the fitness value. When the fitness is minimal, we can
effectively guarantee energy consumption balance.

5.2. Cluster Formation

For the cluster formation process, we should balance the load of cluster head energy consumption.
The cluster formation depends on the following two parameters.

(1) The total distance of data transmission

In order to consume less energy, the total distance of data transmission should be as small as
can e acheived. The distance includes two aspects i.e., the inner-cluster distance and sink distance.
The inner-cluster distance is the distance between the member node Si, i = 1, 2, ..., n− k and cluster head
CHc, c = 1, 2, ..., k, and the sink distance is the distance between the cluster head and BS. The total distance
is given by the following equation.

total_dis (Si) = dis
(
Si, CHj

)
+ dis

(
CHj, BS

)
(16)

where dis
(
Si, CHj

)
is the inner-cluster distance, and dis

(
CHj, BS

)
is the sink distance. BS denotes the

base station. The total distance of transmission is the sum of inner-distance and sink distance.

(2) The residual energy of cluster head

In the phase of data transmission, the cluster heads receive data from member nodes and send them
to BS after fusion. In general, the energy consumption of cluster head is much higher than member nodes
so it is important to guarantee the sufficient residual energy of cluster head. Therefore, a member node
should join a cluster head which has a higher residual energy i.e., C_E

(
CHj

)
.

To take the above two factors into account at the same time, a weight function of cluster head is given
as follows.

C_W
(
Si, CHj

)
= γ×

C_E
(
CHj

)
total_d (Si)

(17)

where C_W
(
Si, CHj

)
is a linear combination of the total distance of data transmission and the residual of

energy of cluster head, and γ is a constant defined by user.
Algorithm 2 shows the process of cluster formation by using cluster weight. The member nodes in

the monitoring area select the cluster head of lowest weight to join in.
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Algorithm 2: Cluster formation algorithm based on cluster head weight

Input: Sensor nodes group: s = {s1, s2, ..., sn}
Cluster head group: CH = {CH1, CH2, CH3, ..., CHk}
The residual energy of all sensor nodes: S_E
The residual energy of cluster heads: C_E

Output: The ids of cluster heads the member nodes join: S_clusterhead

1: for i = 1 to n do
2: if S_E > 0 then
3: Calculate C_W (Si, CH1)
4: temp = C_W (Si, CH1)
5: S_clusterhead (i) = 1
6: for j = 2 to k do
7: Calculate C_W

(
Si, CHj

)
8: if C_W

(
Si, CHj

)
> temp then

9: temp = C_W
(

Si, CHj

)
10: S_clusterhead (i) = j
11: end if
12: end for
13: end if
14: end for

6. Proposed Approach

Our proposed approach consists of two phases, i.e., area coverage optimization and energy
consumption optimization. To achieve high coverage ratio, low redundancy ratio and energy consumption
balance, we utilize an improved adaptive particle swarm optimization (IAPSO) to solve multi-objective
area coverage optimization model and cluster head selection optimization model.

6.1. Improved Adaptive Particle Swarm Optimization

The particle swarm optimization (PSO) is an evolutionary optimization technology by choosing a
number of particles to search for best solution [41]. In PSO, each particle represents a random solution
for a specific problem, and it can calculate the fitness function value. The position and velocity of the
particle is given by a directional vector respectively. During the process of iteration, each particle search
for a better solution dynamically by personal best value Pbesti and global best value Gbesti. Let there
are m particles in h-dimensional space, the position of each particle i (1 ≤ i ≤ n) during tth iteration
is Xih (t) = (xi1, xi2, ..., xih), and the velocity is Vih (t) = (vi1, vi2, ..., vih). The best position a particle
has experienced is Pbesti = (pi1, pi2, ..., pih), and the best position all the particles has experienced is
Gbest = (gi1, gi2, ..., gih). During each iteration, each particle updates its velocity and position according to
the following equations.

Vih (t + 1) = ω ·Vih (t) + c1 · rand1 · (Pbesti − Xih (t)) + c2 · rand2 · (Gbesti − Xih (t)) (18)

Xih (t + 1) = Xih (t) + Vih (t + 1) , 1 ≤ i ≤ n, 1 ≤ h ≤ H (19)

where ω, 0 < ω < 1 is the inertia weight, c1, c2, 0 ≤ c1, c2 ≤ 2 are the acceleration coefficients and
rand1, rand2, 0 ≤ rand1, rand2 ≤ 2 are random values. To achieve better optimization, this paper make an
improvement for inertia weight.

In PSO, the inertia weight ω play a vital role in adjusting velocity by considering how the former
velocity affect current velocity. To adapt to actual situations, it is necessary to adjust the pace of searching
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for best solution by improving inertia weight. The bigger inertia weight ω benefits a global search, and the
smaller one benefits a local search. The traditional linear decrement inertia weight is as follows.

ω = ωmax −
ωmax −ωmin

Tmax
× t (20)

where Tmax is the maximal number of iteration, and t is the current number of iteration. ωmax is the maximal
inertia weight, and ωmin is the minimal inertia weight. Although the inertia weight can effectively avoid
the fluctuation of global best position, it cannot be guaranteed to avoid being caught in local optima with
the number of iteration increasing. To solve the problem of partial best, it is necessary to balance the global
and partial search. The inertia weight in this paper is defined by the following equation.

ω (k) =

ωmax −
ωmax− 1

2 ωmax
2
5 itmax

× k, k ≤ 2
5 itmax(

1
2 ωmax −ωmin

)
× e−β·(k− 2

5 itmax) + ωmin, k > 2
5 itmax

(21)

where the inertia weight is a non-linear dynamic adaptive value. itmax is the maximal number of iteration,
and k is the current number of iteration. ωmax is the maximal interation weight, and ωmin is the minimal
weight. When the number of iteration k is in the interval

[
0, 2

5 itmax
]
, the linear decreasing of the inertia

weight benefit to getting close to global optima and avoid local optima. After k is over
[
0, 2

5 itmax
]
, the index

decrease of inertia weight benifit to accurate search and getting close to optimal area quickly.

6.2. Multi-Objective Area Coverage Optimization Based on IAPSO

Let there are n directional sensor nodes randomly deployed in the monitoring area, and the position of
them are fixed. To improve coverage quality, the improved adaptive particle swarm optimization (IAPSO)
algorithm is utilized to improve coverage ratio and reduce redundancy ratio by solving a multi-objective
area coverage optimization model. In each iteration, the position and velocity update using Equations (18)
and (19). The pseudo code of the proposed multi-objective area coverage optimization algorithm based on
IAPSO (IAPSO-MOACO) is shown in Algorithm 3.

Algorithm 3 shows the process of coverage optimization by iteration. Firstly, randomly deployed
sensor nodes group, predefined swarm size, number of dimensions of particles, and largest number of
iterations are initialized. Then, the fitness function values of coverage optimization are calculated by using
Equation (12), and the personal best and global best are derived. With the particle constantly search for the
better personal best, the fitness function values gradually tend to be best. Finally, the sensing direction
groups are derived.
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Algorithm 3: Multi-objective area coverage optimization algorithm based on IAPSO

Input: Sensor nodes group: s = {s1, s2, ..., sn}
Predefined swarm size: num
Number of dimensions of particles: D1 = n
Largest number of iterations: maxnumber

Output: Coverage ratio and redundancy ratio: CoverageRatio, RedundancyRatio

1: Initialize particle P1i, ∀i, j, 1 ≤ i ≤ num, 1 ≤ j ≤ D1 = n, X1i,j (0) =
(

x1i,j (0) , y1i,j (0)
)

2: for i = 1 to num do
3: (1) Calculate Fitness1 (P1i), Using Equation (12)
4: (2) P1besti = P1i
5: end for
6: G1best = {P1besti|Fitness1 (P1besti) = min (Fitness (P1besti) , ∀i, 1 ≤ i ≤ num)}
7: for t = 1 to maxnumber do
8: for i = 1 to num do
9: (1) Update velocity and position of P1i using Equations (18) and (19)
10: (2) Calculate Fitness1 (P1i), update P1besti and G1besti
11: (3) Calculate the coverage ratio and redundancy ratio using Equations (10) and (11)
12: end for
13: end for

6.3. Cluster Head Selection Optimization Based on IAPSO

To achieve energy consumption balance, the improved adaptive particle swarm optimization (IAPSO)
algorithm is utilized to select optimal cluster head group by solving cluster head selection optimization
model. In each iteration, the position and velocity update using Equations (18) and (19). The pseudo code
of the proposed cluster head selection optimization algorithm based on IAPSO (IAPSO-CHSO) is shown
in Algorithm 4.

Algorithm 4: Cluster head selection optimization algorithm based on IAPSO

Input: Sensor nodes group: s = {s1, s2, ..., sn}
Predefined swarm size: num
Number of dimensions of particles: D2 = k
Largest number of iterations: maxnumber

Output: Cluster head group: CH = {CH1, CH2, ..., CHk}

1: Initialize particle P2i, ∀i, j, 1 ≤ i ≤ num, 1 ≤ j ≤ D2 = k, X2i,j (0) =
(

x2i,j (0) , y2i,j (0)
)

2: for i = 1 to num do
3: (1) Calculate Fitness2 (P2i), Using Equation (15)
4: (2) P2besti = P2i
5: end for
6: G2best = {P2besti|Fitness2 (P2besti) = min (Fitness2 (P2besti) , ∀i, 1 ≤ i ≤ num)}
7: for t = 1 to maxnumber do
8: for i = 1 to num do
9: (1) Update velocity and position of P2i using Equations (18) and (19)
10: (2) Calculate Fitness2 (P2i), update P2besti and G2besti
11: (3) Output the optimal cluster heads group G2besti
12: end for
13: end for

Algorithm 4 shows the process of cluster head selection optimization by iteration. Firstly, randomly
deployed sensor nodes group, predefined swarm size, number of dimensions of particles, and largest
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number of iterations are initialized. Then the fitness function values of cluster head selection optimization
are calculated by using Equation (15), and the personal best and global best are derived. With the particle
constantly search for the better personal best, the fitness function values gradually tend to be best. Finally,
cluster head group are derived.

7. Performance Evaluation

7.1. Simulation Environment

In this section, we conducted simulation experiments to verify the efficiency and the stability of
the proposed approach in MATLAB (version 7.11) and on an Intel core i7 processor with chipset 2600,
3.40 GHZ CPU 4GB RAM running on the platform Microsoft Window 10. In simulation enviroments,
the number of directional sensor nodes vary from 100 to 200, and the cluster head ratio is set as 6%.
The network parameter and IAPSO parameter are shown in Tables 1 and 2 respectively.

Table 1. Network parameters.

Parameter Value

Target area 500 × 500 m2

Base Station position (250, 250)
Number of directional sensor nodes 100–200

Number of cluster heads 6–12
Sensing radius of directional sensor nodes 6 m
Sensing angle of directional sensor nodes π/6
Intitial energy of directional sensor nodes 2 J

Eelec 50 nj/bit
ε f s 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

d0 87 m
Packet length 4000 bits
Message size 500 bits

Table 2. IAPSO parameters.

Parameter Value

Number of particles 30
C1 2
C2 2
ω [0, 1]
D1 [0, 200]
D2 [6, 12]

Vmax 2π
Number of iterations 500

7.2. Performance Evaluation

In the process of simulation, we compare the proposed coverage and energy consumption
optimization approach with existing ones. In terms of coverage optimization, the proposed approach
is compared with simulated anneal (SA) and random deployment (RD) under the circumstance that
cluster-based energy efficiency approach is the same. In terms of energy consumption optimization,
the approach is compared with LEACH, LEACH-C, PSO-C. To evaluate the performance of our proposed
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approach, we consider the four factors, namely coverage ratio, redundancy ratio, number of alive nodes
and number of data packets received by BS.

7.2.1. Comparison of Coverage Ratio

In this experiment we run the approaches for comparing the coverage ratio of DSN by varying
number of sensor nodes from 100 to 200 and number of cluster heads from 6 to 12. The performance
of IAPSO-MOACO is compared with simulated anneal (SA) and random deployment (RD) under
the circumstance the cluster-based energy efficiency approach is the one proposed in this paper.
The comparison results of the IAPSO-MOACO with other approaches are shown in Figure 4a–c.
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Figure 4. Comparison in terms of coverage ratio with 100 to 200 nodes. (a) 100 nodes with 6 cluster heads;
(b) 150 nodes with 9 cluster heads; (c) 200 nodes with 12 cluster heads.

As can be seen from the figures, the IAPSO-MOACO has better performance than SA and RD in most
of time because the proposed IAPSO algorithm can effectively avoid local optima and improve coverage
ratio. With the round of data transmission increase, the coverage ratio will gradually decrease because the
number of alive nodes decreases. However, the IAPSO-MOACO can still guarantee higher covergae ratio
in comparison with other approaches when the round is no more than 700. It also can be noted that the
IAPSO-MOACO still has better optimization performance as the size of the network increases.

7.2.2. Comparison of Redundancy Ratio

In this experiment we run the approaches for comparing the redundancy ratio of DSN by varying
number of sensor nodes from 100 to 200 and number of cluster heads from 6 to 12. The performance of the
IAPSO-MOACO is compared with SA and RD under the circumstance the cluster-based approach is the
same one proposed in this paper. The comparison results of the IAPSO-MOACO with other approaches
are shown in Figure 5a–c.
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Figure 5. Comparison in terms of redundancy ratio with 100 to 200 nodes. (a) 100 nodes with 6 cluster
heads; (b) 150 nodes with 9 cluster heads; (c) 200 nodes with 12 cluster heads.

It can be observed from the figures that the IAPSO-MOACO outperformances the SA and RD in most
of time because the proposed IAPSO can effectively avoid local optima and reduce the redundancy ratio.
As the round of data transmission increases, the redundancy ratio gradually decrease with the number of
alive nodes gradually decreases. However, the IAPSO-MOACO still has better optimization performance
when the round is no more than 700. It also can be seen that the IAPSO-MOACO can still guarantee lower
redundancy ratio in comparison with other approaches with the size of the network changes.

7.2.3. Comparison of Number of Alive Nodes

In this experiment we run the approaches for comparing the number of alive nodes by varying
number of sensor nodes from 100 to 200 and number of cluster heads from 6 to 12. The number of alive
nodes in each round will directly reflect whether the optimization approach can effectively guarantee
energy consumption balance. The comparison results of IAPSO-CHSO with LEACH, LEACH-C and
PSO-C are shown in Figure 6a–c.
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Figure 6. Comparison in terms of number of alive nodes with 100 to 200 nodes. (a) 100 nodes with 6 cluster
heads; (b) 150 nodes with 9 cluster heads; (c) 200 nodes with 12 cluster heads.

It can be observed from the three figures that the IAPSO-CHSO can guarantee higher number of alive
nodes because the approach not only considers the residual energy of cluster head candidates but also
consider the energy consumption balance of them in a round. In contrast, LEACH and LEACH-C do not
consider the residual energy when selecting cluster head. The proper cluster head selction optimization
model makes the energy consumption evenly distribute on each node which has higher residual energy.
The PSO-C consider the residual energy of cluster head, but cannot guarantee the energy consumption
balance of cluster heads. As the size of the network increases, the IAPSO-CHSO still has better performance
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in comparison with other approaches, and 70% sensor nodes was alive during the early 700 rounds under
different circumstances.

7.2.4. Comparison of Number of Data Packets Received by BS

In this experiment, we run the approaches for comparing the number of data packets received by BS
with varying number of sensor nodes from 100 to 200 and cluster head from 6 to 12. The number of data
packets received by BS is directly affected by the number of alive nodes. The data packets received by the
base station with different number of initial sensor nodes are shown in Figure 7a–c.
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Figure 7. Comparison in terms of data packets received by BS with 100 to 200 nodes. (a) 100 nodes with
6 cluster heads; (b) 150 nodes with 9 cluster heads; (c) 200 nodes with 12 cluster heads.

It can be observed from the three figures that the IAPSO-CHSO has advantage over LEACH, LEACH-C
and PSO-C in terms of data packets received by BS. The reason is that our proposed approach can guarantee
higher number of alive nodes by achieving energy consumption balance. The IAPSO-CHSO has much
higher number of packets receipt in comparison with existing approaches after the round is over 500.
As the round of data transmission increases, the IAPSO-CHSO approach accomplish the cluster head
selection by using proper energy efficiency fitness function. It also can be noted from the figures that
the performance of IAPSO-CHSO approach is still better than existing ones with the size of the network
increases.

To sum up, the simulation results show that our proposed approach can effectively achieve high
coverage ratio, low redundancy ratio and energy consumption balance. For area coverage optimization,
we can guarantee higher coverage ratio and lower redundancy ratio compared to SA and RD. For energy
consumption optimization, we can guarantee energy consumption balance compared to LEACH,
LEACH-C and PSO-C.

8. Conclusions

In this paper, we proposed an area coverage and energy consumption optimization problem based on
IAPSO for DSN. First, we set up a multi-objective area coverage optimization model in order to improve
coverage ratio and reduce redundancy ratio. Then, we set up an energy efficiency cluster head selection
optimization model and proposed a cluster formation algorithm based on weight function. We ultilized
IAPSO-MOACO to achive high coverage ratio, low redundancy ratio by sensing direction rotation. We also
ultilized IAPSO-CHSO to achieve energy consumption balance by reasonable cluster head selection.

We conducted simulation experiments to demonstrate the advantages of our proposed approach.
For area coverage optimization, the comparison with existing approaches showed that our proposed
approach could effectively improve coverage ratio and reduce redundancy ratio when the round of data
transmission was no more than 700. The IAPSO-MOACO had better optimization performance in most of
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time because the IAPSO could effectively avoid local optima to some degree. For energy consumption
optimization, the comparison with existing approach showed that the IAPSO-CHSO could effectively
achieve energy consumption balance because it could guarantee higher number of alive nodes and data
packets received by BS. During the early 700 rounds, 70% sensor nodes was still alive when we ran the
IAPSO-CHSO in networks with different sizes. The number of data packets received by BS was much
higher than other approches after the round was over 500. The proposed approach could effectively
guarantee energy consumption balance.
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